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The nonrelativistic energy of a symmetric Coulomb system with particle charges zl  = z, = + 1 
and z, = f 1 and masses m, = m, = m and m, is expressed in the form E = m&( P ) ,  where 
p = m3/(2m + m,). An approximate formula for the function E( 0 ), which makes it possible to 
calculate the energies of the systems for all possible values of the masses m and m,, is derived. The 
results of such calculations agree well with previous precise calculations of the energies of sym- 
metric mesic molecules and predict the energies of many diverse Coulomb systems whose energies 
have not previously been calculated. 

PACS numbers: 11.1O.St 

Three-particle systems with Coulomb interaction are of 
considerable interest in various problems of atomic, molecu- 
lar, and nuclear physics. A number of papers has appeared in 
the last decade in which nonadiabatic calculations of the 
energies of such systems with allowance for the motion of all 
three particles are presented. Reviews of such calculations 
have been published by Bishop and Cheung1.' for isotopic 
modifications of the molecular hydrogen ion, and by Pono- 
marev et for mesic-molecular ions; calculations have 
also been p ~ b l i s h e d ~ - ~  for the e-e'e- system. Since differ- 
ent authors use different approaches, however, the results of 
the calculations are frequently quite discrepant (this can be 
seen by comparing Refs. 3 and 4 with Refs. 10 and 11, and 
Refs. 5 and 6 with Refs. 7, 8, and 9). 

Here we shall show that by employing a scale transfor- 
mation and expanding the energy in powers of the Born- 
Oppenheimer parameter we can obtain a formula for the 
energy of three-particle Coulomb systems for all possible 
values of the particle masses. That formula encompasses the 
isotopic modifications of the molecular hydrogen ion, sym- 
metric mesic molecules, atomic systems in which two me- 
sons are bound by a proton, deuteron, or triton, as well as the 
negative atomic hydrogen ion and its isotopic modifications, 
including the analog of that ion whose nucleus is a positively 
charged meson. 

We shall use atomic units (/el = me = f i  = 1) through- 
out except when the contrary is specifically stated. 

We shall consider a system of three particles consisting 
of two particles with equal masses m, = m, = m and 
charges z, and z,, an a third particle of mass m, and charge 
z,. After separating the motion of the center of mass, the 
nonrelativistic energy operator for this system, 

reduces to the form 

We have introduced scale-transformed relative coordinates, 
which are related as follows to the initial particle coordi- 
nates; 

Here 

p=m31 (2m+m3). (4) 

The quantity h in (2) denotes the operator 

~ = - ! ~ A , - - A ~ + Z ~ ~ , /  I s 1 f 22,2,/ I t-s I f 2ziz3/ I t+s 1 .  (5) 
Let E( 0 ) be the lowest eigenvalue of the operator (5) It is 

related as follows to the ground-state energy of the system 
described by the energy operator (2): 

E ( m ,  m3) =mpe (P) .  (6) 
It is evident from (4) that O< P< 1. The function E( P ) is de- 
fined on this same interval; if this function is known, the 
energies of all Coulomb systems of the type under discussion 
(with arbitrary values of m and m, but with fixed values of 
the particle charges z,, z,, and 2,) can be found. 

It is evident from the structure (5) of the operator it that 
the Born-Oppenheimer parameter x for this operator is pro- 
portional t o p  'I4. Hence the expansion of the eigenvalue E in 
p will contain half-inte4ral and integral powers ofp. Sincep 
occurs in the operator h as the coefficient of a positive-defi- 
nite operator, E increases monotonically with increasing 8 .  

In view of what was said above, we adopted the expres- 
sion 

which contains six unknown coefficients Cj ,  as an approxi- 
mation to the function E( p ). The values of the coefficients Cj 
were so chosen as to make formula (7) exact for six "refer- 
ence" systems. The reference systems were chosen as fol- 
lows: a) the molecular hydrogen ion H,+ ( w )  with infinitely 
massive nuclei, whose energy is1' E = - 0.6026342; b) and 
c) the molecular ions H: and D; , whose energies, calculat- 
ed for the masses M, = 1836.152 and M, = 3670.479, are1 
E = - 0.5971391 and E = - 0.5987888; d) the negative 
atomic hydrogen ion, whose energy is E = - 0.5274458 for 
the masses m = 1 and m, = 1835.92; e) the negative hydro- 
gen ion H- ( w ) for an infinitely massive nucleus, whose en- 
ergy is13E = - 0.5277510; and f )  the e-e+e-  system con- 
sisting of two electrons and one positron, whose energy, 
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according to Ref. 5, is E = - 0.2619956. Then the coeffi- 
cients C, in Eq. (7) turn out to have the following numerical 
values: 

We chose the reference systems as we did in order to extract 
the greatest amount of information from precise calculations 
of the energies of ordinary atomic and molecular systems 
such as H; and H-, and the e-e+e- system in order to use 
that information in calculations of the energies of diverse 
Coulomb systems, including "exotic" systems containing 
mesons. 

It is important that formula (6) was derived without any 
assumptions concerning adiabatic separation of the varia- 
bles. The formula is therefore valid for the exact nonrelati- 
vistic energies of three-particle systems. It follows from for- 
mula (6) and the values given above for the energies of 
systems such as H,f and H- win infinitely massive nuclei 
that as /3 increases from 0 to 1, the function E(P ) increases 
from ~ ( 0 )  = - 1.2052684 to ~ ( 1 )  = - 0.5277510; within 
these limits are included the values of E for all symmetric 
three-particle Coulomb systems in which z ,  = z, = f 1, 
z3 = f 1, and m, = m, = m, the masses m, and m being 
arbitrary. 

In approximating the exact function E( P )  by the func- 
tion f ( 0 ) [Eq. (7)] the effects of nonadiabaticity have also 
been taken into account, both by including high powers of 
the Born-Oppenheimer parameter (up to x1° = / 3 5 J 2 ,  inclu- 
sive) and by using accurate energies of the reference systems 
in evaluating the coefficients Cj .  Hence the function f ( /3 ) 
constructed here yields the energies of symmetric Coulomb 
systems with very high accuracy." 

The results of the calculations are presented in Table I. 
The systems are listed in order of increasing 8. The "refer- 
ence" systems are included in the table for completeness; 

they are marked by asterisks. The results of our energy cal- 
culations are given in the penultimate column. The high ac- 
curacy of our results for small values of /3 (i.e. for isotopic 
modifications of the molecular hydrogen ion) and for values 
o f p  close to unity (for isotopic modifications of the negative 
atomic hydrogen ion) is guaranteed by the very choice of the 
reference systems: three of them lie close to the point /3 = 0, 
and two of them are close to the pointp= 1. It is therefore of 
great interest to compare our results with precise calcula- 
tions for intermediate values ofp lying between the reference 
points p = 0 and /3= 1/3, and between the points P =  1/3 
and p = 1. The first of these regions include symmetric me- 
sic molecules for which reliable energy calculations have 
been made.4 It is evident from the table that our results agree 
well with those calculations. For the interval from /3 = 1/3 
to /3 = 1 (in particular, for mesic analogs of the negative 
atomic hydrogen ion) there are no accurate energies in the 
literature. By analogy with the mesic molecules, we may ex- 
pect our results in this region to have relative errors of the 
order of lo-'. The important part played by the accurate 
value of the energy of the electron-positron system eke+ in 
constructing the approximating function f ( /3) should also be 
noted: if the value of this energy found in Refs. 7,8, or 9 had 
been used instead of the more accurate value found in Ref. 5, 
the errors in approximating the energies of mesic molecules 
would reach several electron volts. 

We note two more possible applications of our approxi- 
mating function f (P). The first concerns aggregates consist- 
ing of two electrons and a hole (or of an electron and two 
holes) in a semiconductor whose current carriers have iso- 
tropic masses. The formation of such aggregates is the first 
stage leading to the appearance of an electron-hole "liquid." 
The second possible application involves compact charged 
systems such as mesic-molecular ions M+ that are much 
smaller in size than the electron shell of an atom and can play 
the part of atomic nuclei for electrons. From this point of 
view, our formula (7) yields an approximate description of 

TABLE I. Energies of symmetric three-particle Coulomb systems 

Energy of the system 

y e  1 fi ( . 1 
from Eqs. (6) and (7/l previously publish& vaiues 

Hz+(m)* 
Tz+ ( t t e )  
Dz+ (dde )  * 
Hz+ ( P P ~ )  * 
P + P + ~  
t t y -  

ddy -  

PPW- 

eee+* 

V - P - P +  
PPP 
~ P P  
tPP 
p+ee 
H- (pee) * 
D- (dee)  
T - ( t e e )  
H- (m) * 
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such systems as M+ee, where M+ is treated as a single parti- 
cle whose mass is equal to the sum of the masses of two 
nucleons and a meson. 

On the whole, our results show that scaling the Hamil- 
tonian and using a truncated expansion of the Born-Oppen- 
heimer type makes it possible to predict the dependence of 
the energy of symmetric three-particle Coulomb systems on 
the mass ratio (on the parameter p = m3/(2m + m,)) with 
quite satisfactory accuracy. It is significant that in such a 
case formula (7) is more accurate than moderately accurate 
purely theoretical calculations of the energies. For asymme- 
tric Coulomb systems in which the masses of all three parti- 
cles are different, scaling the Hamiltonian results in a Hamil- 
tonian that depends on two parameters. Hence the 
expansion of the energies of asymmetric systems in param- 
eters of the Born-Oppenheimer type is a more complicated 
problem; nevertheless, it may have useful applications. 

'The greatest relative error in the energies of the reference systems 
amounts to lo-'. We give the coefficients C, to one "extra" decimal place 
to avoid the accumulation of random errors. Accordingly, formula (7) 
ensures a relative error of the order of in the calculation of energies 
near the reference points, i.e., near the valuesb = O,B = 1/3, andb  = 1. 

On receding from the reference values, the error in formula (7) increases, 
but it can hardly exceed anywhere in the range of variation ofB 
(from zero to unity). More accurate values of the energies of the reference 
systems will amke it possible to calculate the coefficients C, more accura- 
tely; at present, for example, the energies of the H: and H- ions with 
stationary nuclei have been calculated to 13 and 9 significant figures, 
respectively. 
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