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It is shown that the multichannel problem of the recombination of an electron and a molecular ion 
can be rigorously reduced to the determination of an optical potential for the elastic scattering of 
an electron by a molecular ion. A method, based on the formalism of many-particle theory, is 
proposed and makes it possible to construct the optical potential. As a result, formulas are derived 
for the reasonance part of the dissociative-recombination cross section with allowance for strong 
channel coupling. These formulas are used to calculate the cross section for dissociative recom- 
bination of an electron and a molecular-oxygen ion in various vibrational states. All the quantities 
in the formula for the cross section are determined by the present method, and are not adjustable 
parameters. The results are in satisfactory agreement with the experimental data. 

PACS numbers: 34.80.Gs, 34.10. + x 

1. INTRODUCTION 

Processes involving the scattering of electrons by mole- 
cules and molecular ions play a leading part in low-tempera- 
ture plasma dynamics. Many papers have been published on 
these processes.' Nevertheless, many basic problems of the 
scattering of electrons by molecules remain unsolved. This is 
mainly the case for problems involving the effect of excited 
states of molecules and molecular ions on the cross sections 
for such processes as dissociative recombination, dissocia- 
tive attachment, etc. 

In this paper we consider one of the most important 
processes for plasma physics-dissociative recombination 
(DR)-and propose a method, based on the formalism of 
many-body theory, which makes it possible not only to inter- 
pret the available experimental data on DR cross sections 
correctly, but also to solve many fundamental problems of 
that phenomenon, including, in particular, the problem of 
the dependence of the DR cross section on the vibrational 
state of the ion. The results permit conclusions to be drawn 
concerning the part played by vibrationally excited ions in 
the dynamics of a low-temperature plasma. 

Many authors have investigated the DR process.' The 
refinement of experimental tehcniques has now made it pos- 
sible to investigate not only the DR rate constant, but also 
the DR cross section, which has a characteristic reasonance 
structure for some molecules (O,, NO, and  other^).^ In addi- 
tion, there are experimental measurments of the dependence 
of the DR rate constant on the vibrational temperature of the 
ion (see, e.g., Ref. 4). Under various discharge conditions, 
however, especially at low pressures when the approxima- 
tion of a vibrational temperature is not valid, i.e., when the 
vibrational levels do not have a Boltzmann distribution, it is 
necessary to know the dependence of the DR cross section 
on the number of the vibrational (electronic) state of the ion. 
There are no such experimental data in the literature, so a 
theoretical study is required. 

The current approach to this problem5 does not fully 
reflect the essence of the DR phenomenon: it does not take 
into account the resonance structure of the cross section. 

Let us consider the DR process within the framework of 
the traditional modeL2 The incident electron first excites a 
target electron and undergoes a transition to the discrete 
spectrum. As a result, an autoionizing state of the molecule 
is formed which, as a rule, is a dissociative term, the nuclei 
remaining fixed at the electron-capture point R,. After that 
the nuclei separate and dissociation takes place. 

Thus, the DR process is by its nature a resonance pro- 
~ e s s . ~  However, the study of DR, even within the limitations 
of the cited model, is a very complicated enterprise. The 
trouble is that there are many "suitable" autoionizing states 
and their density is rather high. As a result, in calculating 
DR cross sections one is faced with a multichannel prob- 
lem.' The numerical methods now available for solving such 
problems8 turn out actually to be applicable only to the sim- 
plest molecules such as Hz. In the case of molecules of practi- 
cal interest (0,, N,, etc.) one usually has to neglect the inter- 
channel  correlation^.^ An alternative method for solving 
multichannel problems is to construct an optical potential9; 
in the general case this, too, is a rather laborious problem 
but, as will be shown below (see Sec. 3), it is quite solvable for 
molecules such as O,, N,, F,, etc. 

2. THE CROSS SECTION FOR DISSOCIATIVE 
RECOMBINATION 

As was noted above, the DR process takes place in two 
stages. The incident electron is first captured in an autoion- 
izing state which, as a rule, is a dissociative term of the mole- 
cule. If the lifetime of this state against electron emission is 
long enough, dissociation takes place. For the incident elec- 
tron to undergo a transition to the discrete spectrum, it must 
lose some of its energy. Hence the capture of the incident 
electron must be accompanied by excitation (either elec- 
tronic or vibrational) of the target molecule. The transfer of 
energy of the incident electron directly to the nuclei can take 
place only as a result of nonadiabatic effects. We shall show 
that such effects can be neglected in the case of DR. First, we 
note that the interaction between the motions of the nuclei 
and the electrons is weak (of the order of ( m / ~ ) ' / ' ,  where m 
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and M are the masses of the electron and the nuclei). More- 
over, most of the dissociative terms of the molecule are not 
genealogically related to the ground state of the ion. In the 
case of the 0; ion 3 4  la: lag,  for example, the DR process 
goes via states with the configurations 3 4  la: la:, 
3c7: la: la:, etc. In other words, to form a dissociative term 
of the molecule in the course of the DR process it would be 
necessary to restructure the electron shell of the ion, and this 
cannot be done on the basis of nonadiabatic transitions. 
Hence nonadiabatic effects can be neglected in the case of 
DR. We shall carry through the further analysis of the DR 
process within the limitations of the Born-Oppenheimer ap- 
proximation, using the methods of the steady-state theory of 
scattering with redistrib~tion.~ 

We shall assume that the electron-emission width r of 
an autoionizing state is not very large, i.e., that fi/r > AR h, 
where A R is the distance from the electron-capture point R, 
to the point R,, where the ionic term crosses the term of the 
autoionizing state, and F is the mean separation velocity of 
the nuclei. This allows us to neglect electronic transitions in 
the dissociation of an autoionizing state, i.e., we shall assume 
that the nuclei separate long some definite term. 

O'Malley10 has presented the formal theory of electron 
scattering by a diatomic target molecule in the most general 
form. Following Ref. 10, we separate the complete wave 
function of the system into two parts, Q$ and P$, where Q 
and P are projection operators onto the scattering channel 
with (Q channels) and without (P channels) restructuring. 
There may actually be many Q channels; in that case we 
write Q = Q, . The operators P and Q have the following 
obvious properties: 

pQ=Qp=O, P2=P, Q2=Q, P+Q=i. 

The functions P$ and Q$ satisfy the following integral 
equations 

A 

in which 6, and GQ are the Green's operators for the P and 
Q channels, 

&:,= (E-PHP)-',  SQ= (E-QHQ)-', 

H is the complete Hamiltonian for the system, and I@,) is 
the asymptotic expression for P$. 

Now let us determine the usual asymptotic conditions 
in the P and Q channels. In the P channel, the function P$ 
behaves asymptotically as 

@P = $P(r)fCle (r,R )xv(R 1, 
where $,(r) is a Coulomb wave, while $,(r,R ) andxV(R ) are 
the electronic and vibrational wave functions of the ion. We 
define the asymptotic behavior of the wave function in the Q 
channel so that it will correspond to two isolated atoms A 
and B, i.e., 

@Q=$A$BX~(R)  

where ICI, and $, are atomic wave functions and X ,  (R ) is a 
plane wave. 

In the case the channel Vp and VQ have the form 

where the summation is over all the electrons in the ion, and 
VQ = EQ(R ) is the dissoziative term of the molecule. 

Let us assume that GQ is do defined as to take all the Q- 
channel correlations into account (see Sec. 3). Then Eqs. (1) 
can be solved separately for each j-th channel Q,. On substi- 
tuting ( la)  into (lb), we obtain 

Since (2) is a single-channel equation, it can be solved formal- 
ly: 

Then we obtain the following expression9 for the t matrix for 
Q, -channel scattering: 

where E, is the energy of the j-th autoionizing state. 
We write E; for the energy of thej-th autoionizing state 

without allowance for Q-channel correlations (the Hartree- 
Fock energy); then 

Mj=Ej-E,C+(DQ 1 QjHPBpPHQJ I mQj> 
is the mass operator for the autoionizing state and the 
expression for the t matrix takes the form 

ti= 
( @ Q ~  I V Q ~ Q ~ H P  I @ P )  

E -  E j O -  M ,  (44 

The imaginary part of Mj determines the half-width Tj/2 of 
thej-th autoionizing state. Thus, the problem reduces to that 
of accurately determining Mj.  

We shall treat the ground state of the ion as the vacuum. 
This permits us to deal with the single-particle Green's func- 
tion GQ alone. In that case 

t . -  
( @ Q ~  I (EP f Mj)  Q j H p  1 @ P )  

I -  E - E F - M ~  7 (5) 

where&; is the electron-capture resonance energy and E is the 
energy of the incident electron. 

It has been shown1' that the motion of the nuclei in the 
dissociation process can be treated quasiclassically. In that 
case one can calculate the complex phase shift incident to Q- 
channel scattering. If the dissociative terms of the molecule 
have a considerable slope U, (in our case U, - 20 eV/ao), the 
quasiclassical nuclear wave function can be approximatedI0 
by a delta function: X, = U;I2S(R - R,). In that case we 
obtain the following approximate expression for the t ma- 
trix: 

where 
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Re r, um. Then the excitation of an electron of the target molecule 
= e r p  (- J - d ~ )  

Lfiv will be equivalent to the production of a particle-hole pair. 
Rr, Thus, an autoionizing state formed by two electrons and a 

is the survival factor, ICIQ, is the Q,-channel electronic wave hole is produced as a result of the capture. If the nuclei of the 
function, and v is the separation velocity of the nuclei. atoms remain stationary, after a certain time one of the elec- 

Now we can easily obtain an expression for the DR trons will recombine with the hole and the other electron will 
cross section: undergo a transition to the continuous spectrum. This pro- 

t iz(21+l) I E ;  (Re)  + M j ( R e )  lZriolxv (Rc) 1 'pZ cess is described by the first diagram of the series in Fig. l a  o(Rc)=z n m e U j  [ ~ - E ~ ( R ~ ) - R ~ M ~ ( R , ) I ~ ~ ~ ~ / ~  ' and the diagram of Fig. lb. Since there are many autoioniz- 
i (6) ing states, their possible correlations must be taken into ac- 

where count. If the exchange effects are small, this can be done by 

I',0=2n((qQj IVpI$p)12. summing the series of Fig. la. Summing this series makes it 
possible to construct an optical potential (an electron mass 

Equation (6) must be averaged over Rc.  operator) with allowance for correlations between all the au- 
We that for e'g'9 for Oxygen' we toionizing states produced by two electrons and a hole. 

have Using well-known rules to recover the analytic form of 
a ( R , )  4 ( E )  I xv (Re) 1 '- the diagrams, we obtain13 

Actually, at resonance we have p -, 1 and rj - (&;)a, where 
a -, 1 /2; hence 

o (R, )  - ( E ~ " ' / u ~ )  1% ( R e )  1'. 
Using the data of Ref. 12, we find that for the oxygen 

molecule, the R ,  dependence of E;/U, is considerably 
weaker than that of Ix, 1,. On averaging (6) over R , ,  there- 
fore, we obtain an expression similar to the Breit-Wigner 
formula, so the DR cross section will have a characteristic 
resonance structure. When E;/% depends strongly on Rc 
there will be no resonance structure (in this case the width of 
the peaks will actually be determined by the expression 
AR U, - 10 eV). In the other words, for the DR cross section 
to have a resonance structure it is necessary that the nuclear 
wave function of the ion be "nar r~w".~  

The summation in Eq. (6) is taken over the partial cross 
sections, not over the corresponding probability amplitudes. 
This is associated with the fact that the half-width of an 
autoionizing state is defined as the imaginary part of the 
electron mass operator, it being assumed that the correla- 
tions between all of the autoionizing states are taken into 
account in constructing the mass operator. Now we turn to 
the solution of this problem. 

d p 2  (i) 'Go (p i .  P I )  
x c s r  

where V, and Vd are matrix elements for the interelectron 
interaction potential between wave functions of the contin- 
uous and discrete spectra, respectively. 

It can be shown (see the Appendix) that the matrix ele- 
ments Vc ( p, q, Aq) and Vd ( p,, p,, Aq) depend only on the 
changes Aq of the quantum numbers. In that case formula (8) 
takes the form 

3. THE GREEN'S FUNCTION FOR AN AUTOIONIZATION IM,  = JZ i ~ , ( q - ~ q ,  e - A e ) y l  (Ae, Aq)  no(^&. 
STATE 

A9 

Let us consider the capture of an electron into a bound 
(9) 

state. We shall regard the ground state of the ion as the vacu- where y ,  and 17, are defined by the formulas 

FIG. 1.  Mass-operator diagrams. The lines with arro- 
wheads pointing up (down) are particle (hole) propagators 
described by the free Green's function Go = (E - s, 
+ is,)-', where q is the set of quantum numbers charac- 

terizing the state of the particle (hole), s, is the energy of 
the state, and E is an energy parameter. The wavy lines 
represent Coulomb interaction between electrons. The af- 
fixes As,  Aq, and I * indicate energy transfer, changes in 
the quantum numbers, and the multipolarity of the inter- 
action, respectively. 

e f g h j k 
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iyl=- z JZ G. ( p ,  B) G ,  ( P + L \ ~ .  P-AE) V: ( ~ q ) .  (10) 

and 
P 

The entire series depicted in Fig. la reduces to the expression 

A9 

x[l-II , (A&, Aq)  I-'. (12) 

In the general case the exchange effects cannot be ne- 
glected. The diagrams that take account of exchange 
between electrons can be separated into two groups (within 
the limitations of the model employed). The first group con- 
sists of diagrams like those depicted in Fig. lb-d. They de- 
scribe corrections to the first terms of the series in Fig. l(a), 
i.e., corrections to yl(Aa, Aq). The second group (Fig. le-g) 
describes corrections to the polarization operator 
Il,(A&,Aq). To allow for the contribution to the mass opera- 
tor from correlations between states formed by three elec- 
trons and two holes, four electrons and three holes, etc., one 
must take into account diagrams like those depicted in Fig. 
lh-k. These diagrams essentially describe corrections asso- 
ciated with the polarization of the medium to states of the 
discrete spectrum. 

Let us estimate the contribution from the various dia- 
grams depicted in Fig. l to the mass operator. The internal 
lines of these diagrams correspond to states of the valence 
electrons; for the molecules under consideration, these are 
3ug, 3u,, l r g ,  and ln-, electrons. For definiteness we shall 
consider the valence shell of the oxygen molecule. The 
ground state has the configuration 30; 1n-t ln-i (X3Z,f). 
According to the definition given above, the vacumm is de- 
fined by the configuration 3ui In; 1% (X2ng). The main 
contribution to the matrix element for the electron-interac- 
tion potential comes from terms of zero multipolarity, I * = 0 
(see the Appendix). Starting from this, we easily find that the 
diagram of Fig. lb is approximately six times smaller than 
the second-order diagram of Fig. la. This is due to the fact 
that both wavy lines on the first diagram of Fig. l a  corre- 
spond to the same matrix element Vc(Aq). In the diagram on 
Fig. lb  the wavy lines correspond Vc(Aq) and Vc 
(q - p - Aq). Certain conditions must be imposed on q andp 
if these matrix elements are to correspond to an interaction 
of multipolarity zero. Since an 1 * = 0 interaction corre- 
sponds to a change AR = 0 in the projection of the orbital 
angular momentum and a change Ax = 1 in the parity, it is 
necessarythatR -Ail =R,andIx-Ax-x , l  = 1.Forthe 
electrons under consideration, the projection of the orbital 
angular momentum may assume three values, il = 0, + 1, 
and the parity may assume two values, x = 0,l. Since AR and 
Ax are summed over [formula (7)] there occur 18 terms with 
1 * = 0 in the expression for the second-order diagrams in 
Fig. la. There are only three such terms in the diagram of 
Fig. lb. Hence the second-order exchange diagram amounts 
to - 1/6 of the second-order direct interaction diagram. The 
same can be said of the diagrams of Fig. lh  and j. Thus, the 

diagram of Fig. l h  amounts to - 1/6 of the fourth-order 
diagram occurring in the series of Fig. la. The diagram of 
Fig. l j  amounts to - 1/18 of the sixth-order diagram of Fig. 
1 a. 

Let us return to the exchange diagrams of Figs. Ic-g. 
Since the valence-electron shell of the 0, molecule is more 
than half filled, the wavy lines I, on these diagrams corre- 
spond to a dipole interaction. As a result, on repeating the 
above discussions we find that the contribution from the dia- 
grams depicted on Fig. l c  and e amounts to - 1/12 of the 
third-order diagram of Fig. l a  (the dipole-interaction matrix 
element is approximately half as large as the matrix element 
for the interaction with I * = 0). Similarly, the diagrams on 
Fig. ld,f, and g amount to - 1/36 of the diagrams of the 
corresponding order on Fig. la. Summarising what has been 
said, we may assume that it is sufficient to consider the con- 
tribution to y1(A.c, Aq) from the diagrams of Fig. lb  and h in 
order for the calculation to be accurate within - 10%. In the 
diagram of Fig. l h  it is necessary to take fully into account 
the correction to the internal lines due to polarization of the 
medium, i.e., the wavy line Aq' corresponds to 

The imaginary part of the mass operator corresponds to 
the total half width of all the autoionizing states formed in 
the elastic scattering of an electron by a molecular ion. If we 
are interested in some specific state, that case would corre- 
spond to certain specific values of the quantum numbers of 
the particle-hole pair. On integrating over the energy in for- 
mulas (7) and (10)-(12) we obtain an expression for the imagi- 
nary part of the mass operator: 

where 

Here E,  is the electron-capture resonance energy, and Pindi- 
cates that the sum is to be taken as a principal value. 

Only the first diagram of the series depicted in Fig. la is 
included in the expressions for Im y, and Re y,. This was 
done only because the expressions for the corresponding dia- 
grams of Fig. lb and h are very cumbersome. Thus, the pro- 
posed method makes it possible to obtain relatively simple 
expressions for the mass operator and the half widths of the 
autoionizing states. 

It is of interest to consider the limiting case AE-+w. In 
this case Im I7, turns out to be zero. Then the imaginary part 
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FIG. 2. Half widths of some autoionizing states of the 0, molecule. 

of the mass operator corresponds simply to Im y,. As a re- 
sult, formula (13) reduces to the expression usually used for 
the half width of an autoionizing stateI4: 

4. RESULTS 

Below we present the results of calculations of the DR 
cross section for an electron and an 0: (X2Z7,) ion as an 
example. 

Figure 2 shows the dependences of the half-widths of 
several autoionizing states of the 0, molecule on the internu- 
clear distance. Formula (1 3) was used for the calculations, y, 
being determined with allowance for the diagrams of Fig. lb  
and h. It should first be noted that the half-widths of the 
autoionizing states depend strongly on the internuclear dis- 
tance. The half-widths turn out to be rather large; this con- 
firms the necessity of allowing for correlations between the 
autoionizing states. We note for comparison that the half- 
widths calculated with formula (14) for small values of E, 

turn out to be smaller by factors of 1.5-2. 
Figure 3 shows the results of calculations of the reso- 

nance part of the DR cross section for an electron and an 0: 

FIG. 3. Resonance parts of the DR cross sections for an electron and an 
0: ion in the zeroth (I), first (2), and second (3) vibrational states. 

FIG. 4. Averaged total DR cross section for an electron and an 0: ion: 
1-resonance part of the cross section [Eq. (6)], 2-potential part of the 
cross section (calculated using the approach of Ref. 15), 3-sum of the 
resonance and potential parts. The experimental points are from Ref. 3. 

ion in the zeroth, first, and second vibrational states. The 
DR cross section averaged over the vibrational distribution 
function corresponding to the conditions of Ref. 3 is present- 
ed in Fig. 4 for comparison with experiment. The beam of 
0: ions at a pressure of - lo-" Torr was used in that ex- 
periment. The ions were produced by ionizing 0, molecules 
by 14- or 33-eV electrons. In the first case the 0: ions were 
produced only in the electronic ground state (X2n,) and 
were distributed over the vibrational states in accordance 
with the Franck-Condon factors. (Of course there was no 
vibrational relaxation at such low pressures.) In the second 
case it is more difficult to determine the distribution of the 
ions formed over the vibrational states. This is due to the fact 
that when an 0, molecule is ionized by 33-eV electrons the 
resulting 0; ion may be in any of several excited electronic 
states. As a result, in the general case various vibrational 
states may be populated by electron transitions. 

Comparison of the calculation results with experiment 
reveals satisfactory agreement. The discrepancies between 
the experimental data and the magnitude of the resonance 
part of the cross section in the low-energy region disappears 
when the potential-scattering cross section, determined by 
the method of Ref. 15, is taken into account. As the calcula- 
tions show: the potential-scattering cross section is virtual- 
ly independent of the vibrational state of the ion. The agree- 
ment of the half-width of the central peak with the 
experimental data shows that the proposed method yields 
acceptable results. It is interesting to compare the DR cross 
section of the 0: ion in the second vibrational state with the 
experimental data for the case in which the 0, molecules 
were ionized by 33-eV electrons. The agreement of these re- 
sults permits us to suppose that in this case it was mainly the 
second vibrational level of the 0: ion that was populated. 

Thus, the proposed method makes it possible to calcu- 
late the cross sections for various processes taking place in 
the scattering of electrons by molecules with fair reliability. 
The main advantage of the method is its simplicity, which 
makes it possible to dispense with complicated computer 
calculations. 
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It is interesting to analyze the effect of the results ob- 
tained here on the DR coefficient K,  which is usually defined 
as the product av ,  averaged over the electron velocity distri- 
bution (v, is the electron velocity). 

If the ion is in the vibrational ground state, the DR cross 
section will have the form of a curve, falling as - I/&, with 
widely spaced resonance peaks superimposed on it. As a re- 
sult, the DR coefficient turns out to be dependent on the 
electron temperature: K - T :, where a - 0.5 (Ref. 2). Vibra- 
tional excitation of the ion results in the presence of more 
resonance peaks more closely spaced (see Figs. 3 and 4); a 
consequence of this is a change in the effective dependence of 
the DR cross section on the electron energy. If it happens 
that u - E - " ~ ,  K will be constant, i.e., the DR coefficient 
will be independent of T,. With further excitation of the ion, 
the a(&) curve becomes even less steep, and this leads to the 
appearance of regions of T, values in which the DR coeffi- 
cient K increases with increasing T,. When using experi- 
mental data on K as a function of T, in specific calculations 
of the dynamics of a low-temperature plasma, therefore, one 
must make sure that the distribution of the ions over the 
vibrational states corresponds to the conditions of those ex- 
periments. 

In concluding, let us examine the effect of the errors 
that inevitably arise in calculations of electron wave func- 
tions and molecular terms on the results of the present work. 
We note first of all the published results of calculations of 
dissociative terms are available only for a small number of 
molecules (of the molecules of practical interest, only the 
oxygen molecule has actually been well investigated). For 
calculations of the DR cross section using formula (6), infor- 
mation on single-electron wave functions and energies and 
on the dissociative terms of the molecule are required. Let us 
analyze the effect of errors in the determination of these 
three components on the results of calculations of DR cross 
sections. Errors in determining the first two factors affect 
only the magnitude of TI. Since the wave functions occur 
only in the corresponding intergrals, the relative error in TI 
will be approximately equal to the relative error in determin- 
ing the wave functions. The situation is worse as regards 
inaccuracies in determining the single-electron energies and 
the dissociative terms of the molecule. Since the values of 
these energies determine the positions of the resonance 
peaks, even a slight error in determining the dissociative 
terms can greatly distort the resonance structure of the DR 
cross section. As an example, we note that shifting the 1 'A, 
term by only AR - - 0 . 0 4 ~ ~  (this quantity lies within the mean- 
error limits of the  calculation^'^) changes the resonance en- 
ergy from 2.8 to 1.3 eV. Summarizing what was said above, 
we can conclude that in the present method simplifying as- 
sumptions are permissible only as regards the matrix ele- 
ments and the functions that occur in them. The electron 
energies and the positions of the dissociative terms must be 
determined with the greatest possible accuracy. 

APPENDIX 
The matrix element of the Coulomb potential for the 
interaction between electrons 

Here we present a scheme for determining the depen- 

dence on the electron quantum numbers of the matrix ele- 
ment of the electron-electron interaction potential. The 
wave functions of the valence electrons are taken in the form 
of an expansion16: 

where I, A, and x represent the orbital angular momentum of 
the electron, its projection onto the molecular axis, and the 
parity of the state, respectively. In the case considered here 
(molecules of the 0, type) we may drop all terms of the ex- 
pansion (A. 1) except those with I = 0 and I = 1." The atom- 
ic wave functions p,,, are determined in the form of expan- 
sions in series of Slater orbitals." The arguments of the 
exponentials for the 2s and 2p electrons are sometimes cho- 
sen equal in spectroscopic  calculation^.'^ 

The matrix element of the electron interaction potential 
V(R ) breaks up into integrals of four types: single-centered 
integrals (J,), hybrid integrals (J,), exchange integrals (J,), 
and Coulomb integrals (J4) . I7  For the case under considera- 
tion it can easily be shown that if the quadrupole interaction 
beneglected weshall have V (R ) = 2(J, - J,). Since the radial 
parts of the wave functions for 2s and 2 p  electrons are simi- 
lar, the radial parts of the J, integrals turn out to be roughly 
equal for various transitions (with an error of -7%). The 
same thing obtains for the radial parts of the J, integrals. 
This only provides the dependence of V (R ) on Ax. To deter- 
mine the dependence of V(R ) on AA the atomic wave func- 
tions must be reduced to a common center. This can be done 
with the aid of the following relations2': 

Ir-RI Y ~ , ~ ( T ~ R )  = r 1 ~ ~ 1 ~ ( - 1 ) 1 ~ ~ l , I ( ~ ) ( l I 1 2 h ~ ~  Li.) 
1t.11 

I ,+l*- i  

(A.2) 
and 

~ ( 2 l I i -  1) P ~ ,  (cos ;). 

Here I,, and K,, are modified Bessel functions. Since the 
main contribution to the matrix element comes from the in- 
tegration region close to the axis joining the nuclei (small 
values of the angle i) we may retain only the I, = 0 term (the 
first order in 1/R ) in (A.3). In that case the wave function 
$,,, reduces to the form 

so V(R ) will depend only on AA, i.e., V(R ) = V(A/Z, Ax). 
Now weshall estimate thecontribution to V(R )from the 

quadrupole interaction. It is determined by the magnitude of 
the Clebsch-Gordan coefficients and amounts toi -4%. 
Hence V(R ) = V(A/Z, Ax) with an accuracy of - 10%. 
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