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The self-consistent problem of the self-action of a multimode light beam in a nonlinear cubic 
medium is treated by the Monte Carlo method. The transformation of the statistics of the intensi- 
ty and phase distributions of the radiation is investigated, and the behavior of the mean intensity 
and the dispersion of its fluctuations, as well as the spatial coherence range both along and across 
the beam, are examined. It is shown that the field distribution of a broad-band beam retains its 
normal form under self-focusing, whereas self-focusing of a narrow-band beam results in the 
beam breaking up into filaments, and consequently, in a strong change in the intensity distribu- 
tion. The phase distribution remains uniform, however, even in this case. 

PACS numbers: 42.65.5~ 

I. INTRODUCTION 

By now the basic laws of the self-action of beams of 
coherent radiation have been fairly well investigated (see, 
e.g., Refs. 1 and 2). Our understanding of the processes that 
take place in the self-action of incoherent radiation has not 
yet reached such a high level. 

Thus, a perturbation method has been successfully used 
to trace the initial stage of the transformation of the spatial 
statistics of a plane wave2 and a bounded beam,3 both modu- 
lated by weak noise. It was shown that in a nonlinear cubic 
medium these perturbations are unstable against small am- 
plitude and phase fluctuations in a certain range of spatial 
frequencies, and as a result, the perturbations increase. This 
has been used to explain the phenomenon of small-scale self- 
focusing-the breakup of a beam into filaments under its 
self-action-which has been observed in a number of experi- 
ments. 

The transformation of the radii of the envelope and the 
spatial coherence under self-action of a beam with a broad 
spatial-temporal radiation spectrum has been investigated in 
Ref. 4 in the aberration-free approximation, and in Ref. 5 by 
numerical methods. In those papers the problem was solved 
using a closed equation for the second-order spatial correla- 
tion function. As is well known, however, such an equation is 
obtained by expressing the higher moments of the field as 
products of the second moments. Although it is clear from 
general physical considerations that such a procedure can be 
justified if the coherence time is so short that the nonlinear 
medium cannot "keep up" with the rapid fluctuations of the 
wave field and the induced refractive index will be deter- 
mined by the mean intensity of the beam, nevertheless, not 
even considering the necessity of estimating the errors of 
such an approximation, an analysis of the closed equation 
does not afford the possibility of tracing the transformation 
of the statistics of the amplitude and phase distribution, nor 
of investigating the fluctuations of the light-wave field, etc. 
And finally, the above technique becomes entirely inapplica- 
ble in the case of the self-action of radiation having a narrow 
frequency spectrum. 

Perhaps the only way to carry through a comprehensive 
analysis of the self-action of a multimode light beam is to 
solve the nonlinear parabolic equation exactly, using ran- 
dom simulations of the wave field with given statistical prop- 
erties as initial conditions, and then to average these solu- 
tions. Our work is based on this method of statistical trials 
(the Monte-Carlo method). 

We have investigated the self-action of spatially inco- 
herent two-dimensional light beams with an arbitrarily 
broad frequency spectrum. In that investigation the problem 
was solved in three stages. 

In the first stage, random complex fields having Gaus- 
sian statistics with specified mean values of the intensity pro- 
file, the beam radii, and the spatial correlation were simulat- 
ed. 

Next, each simulated random field was used as the ini- 
tial condition for the nonlinear parabolic equation, which 
was solved numerically for a local cubic nonlinearity with 
allowance for the time lag of the latter. All the simulated 
fields with the same duration r were introduced steadily, one 
after another, so in our model of multimode radiation the 
duration r represents the coherence time of the radiation. 

In the last stage we averaged the solutions thus ob- 
tained. We used up to 1400 solutions for a single set of initial 
conditions in order to achieve good accuracy and to be able 
to construct reliable histograms. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM. 
SIMULATION OF THE RADIATION OF A MULTIMODE LASER 

Let us assume that a partially coherent two-dimension- 
al light beam is propagating along the z axis in a nonlinear 
cubic medium. The equation for the self-action of a light 
wave with the complex amplitude A has the form 

Here 77 = t - z/u0 is the local time, u, is the group velocity, k 
is the wave number, E,, is the nonlinear addition of the di- 
electric constant E,, which for a relaxing cubic medium is 
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determined by the equation 

in which T,, is the characteristic relaxation time for the non- 
linearity. Since the complex amplitude A ( x,z,v) is a random 
function of the coordinates and time, at the entrance to the 
medium (z = 0) any of its realizations (say the I-th) will have 
the form 

A(') (x, 0, q) =u(') (x) +id') (x) , (3) 

where the random functions u and v for a specific realization 
do not depend on 7. 

We shall assume a given initial intercoherence function 

in which a, and r, are the initial values of the beam radius 
and the correlation length. Taking into account what has 
been said above and using a computer programed to follow 
the algorithm described in Ref. 6,  we generated two statisti- 
cally independent pseudorandom vectors (u ,,u,, . ..,urn ,. . .,u, ) 
and (v,,v ,,..., urn ,..., v, ) having multidimensional normal dis- 
tributions with zero means and specified covariation matri- 
ces (urn u,. ) and (v, urn. ) whose forms are determined by 
the initial ~ondi t ion .~  Each I-th realization of the vectors 
(uy), ..., u:)) and (uy', ..., u',") corresponded to distributions of 
the real and imaginary parts of the complex amplitude 
among n points on the x axis. The complex random fields 
thus simulated have Gaussian statistics and adequately sim- 
ulate the radiation of a multimode laser.' 

The initial mean intensity profile 

<I(x, O))=(A(x, O)A'(x, 0)) 

and the degree of coherence 

agree very accurately with Eq. (4), while for the relative dis- 
persion of the intensity fluctuations we have 

within the initial cross section of the beam. 
Since u and v are distributed normally, the intensity 

I = u2 + v 2  should have the exponential distribution 

GI ( I )  =(I>-' exp [- I/(I>], 

while the phase should be uniformly distributed. Figure 1 
shows the computer-calculated histogram for the intensity 
distribution at the center of the beam at z = 0 while the full 
curve, which is given for comparison, is a graph of the above 
exponential. The size of the sample used in the numerical 
calculations (L = 1400) ensures the reliability of the results 
presented below. 

FIG. 1 .  Probability density distribution for the intensity on the axis o f  a 
narrow-band beam (6 = 0 )  forp = 40 and N = 3 atthe pointsz = 0 (a) and 
z = 0.15ka: (b) .  

3. NUMERICAL CALCULATIONS 

The computer simulations of the random field serve as 
initial conditions for the parabolic equation (1). The follow- 
ing quantities were varied in the numerical solution of that 
equation: the parameterp = Po/Pc,, where 

is the input power flux and 

is the critical power for self-focusing of the two-dimensional 
coherent beam; the number N = ao/r, of inhomogeneities 
in the initial cross section of the beam, which characterizes 
the transverse mode composition of the radiation; and the 
parameter 6 = rnl /T (T is the coherence time), which is pro- 
portional to the width of the frequency spectrum. 

The dashed curve on Fig. 2,a depicts an individual ran- 
dom simulation of the initial intensity profile, while those in 
Figs. 2,b and 2,c show that profile as modified by passage 
through the nonlinear medium to the point z = 0.15 kai for 
the cases of narrow-band (6 = 0) and broad-band (S = 100) 
radiation, respectively. The full curves show the mean inten- 
sity profiles obtained by averaging over 1400 simulations. 
The mean power of the beam as it entered the medium was 
Po = 20P,,. In each of these figures, the bar near the top 
shows the spatial coherency range near the beam axis and is 

716 Sov. Phys. JETP 56 (4). October 1982 Aleshkevich etal. 71 6 



FIG. 2. Average (solid curves) and instantaneous (dashed curves) intensity 
profiles for a beam withp = 20 and N = 3 at the entrance to the medium 
(a) and at the point z + 0.15kai for 6 = 0 (b) and 6 = 100 (c). 

evidently roughly equal to the characteristic scale of the 
transverse inhomogeneity of the beam. 

It is very important that a broad-band beam focuses as a 
whole, whereas a narrow-band beam in a nonlinear medium 
exhibits an additional spatial modulation, which leads to its 
stratification (in the case of a three-dimensional beam, to its 
breakup into filaments). The appearance of filaments (we 
shall use this term even for two-dimensional beams) is 
further confirmed by an analysis of the intensity distribution 
histrogram (Fig. 1,b) for the paraxial part of a beam with 
Po = 40P,, and N = 3 at the distance z = 0.15ka:. The 
smooth curve shows the initial distribution of the beam. 
Since a filament is an indeterminate inhomogeneity of the 
radiation field in which the maximum intensity is consider- 
ably higher than average while the intensity at its boundary 
is close to zero, it follows that, from a statistical point of 
view, the presence of filaments will increase the probability 
for the occurence of intensity extrema. Such an increase in 
the number of intensity extrema is clearly to be seen in the 
corresponding transformation of the intensity distribution 
function depicted in Fig. 1,b. 

An analysis of the phase distribution of the field permits 
us to conclude with considerable confidence that the distri- 
bution is invariant in the nonlinear medium: 

FIG. 3. Correlation range in the propagation direction near the beam axis 
vsz/kai for N = 3,6  = 0, and the following values ofp: 1-10,2-20,340. 

o (rp) =1/2n, cp=arctg (v lu ) .  

The breakup of a narrow-band multimode beam into fila- 
ments progresses rapidly at first and continues until the 
power in each filament is equal to the critical power; then the 
self-channeling of the radiation within an individual fila- 
ment that is characteristic for a nonlinear cubic medium sets 
in. The characteristic transverse dimension of a filament is 
essentially determined by the spatial coherence range, whose 
variation, calculated near the beam axis in the propagation 
direction, is presented in Fig. 3. The rapid breakup into fila- 
ments then ceases, regardless of the initial spatial structure 
of the beam. Of course the size of a filament decreases as its 
input power increases. 

The small-scale self-focusing is accompanied by a rapid 
increase of the relative intensity fluctuations, with subse- 
quent saturation. 

As the beam power increases the above-mentioned fluc- 
tuations decrease because of the increase in the averge inten- 
sity associated with self-focusing. In the case of beams hav- 
ing a frequency spectrum of finite width, the small-scale 
structure of the self-focusing is not so strongly expressed 
since the lag of the nonlinear response of the medium begins 
to make itself felt. For a broad band beam with S)1 the 
nonlinear refraction will be determined by the average inten- 
sity profile, and the spatial modulation disappears entirely. 
Figs 4,a and 4,b show the change in the nature of the self- 
focusing when the width S of the frequency spectrum is in- 
creased. It is quite evident that the broadening of the fre- 

FIG. 4. Intensity (a) and correlation range (b) on the beam axis vs z/kai for 
N = 3,p  = 20, and the following values for the width 6 of the frequency 
spectrum: 1-0,2-10, 3-100. 
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TABLE I. Comparison of the normalized values of the second, third, and fourth central 
moments A = M,/c?, S = M 3 / d ,  and @? = M4/u4 of the intensity on the beam axis at 
z = 0.15ka: for Po = 40P,, , obtained for various values of 6 in the Monte-Carlo calculations 
(superscript MC) with the corresponding theoretical values for the exponential law (super- 
script T). 

quency spectrum results in a decrease of the mean intensity 
at the beam axis (Fig. 4,a). At the same time, the spatial 
coherence range (b) and the relative dispersion of the intensi- 
ty fluctuations vary smoothly on passing to broad-band 
beams with 6 ~ 1 ;  this indicates the absence of small-scale 
self-focusing. On comparing the ways in which the effective 
beam width a - (I ) -'I2 and the coherence ranger, decrease 
(curves 3 on Figs. 4,a and 4,b) we see that the ratio r, /a does 
not decrease, but in a number of cases may even increase on 
account of the aberration noise.5 

As an analysis of the intensity and phase distribution 
histograms shows, the statistics of broad-band radiation ap- 
proaches the Gaussian form as the width of the frequency 
spectrum increases. 

CONCLUSION 

1. The numerical treatment of the self-action problem 
for multimode radiation shows that the self-focusing of a 
narrow-band beam is a small-scale phenomenon, while the 
statistics of the intensity distribution changes strongly, al- 
though the phase distribution remains uniform. The trans- 
verse spatial structure is determined by the thickness of the 
filaments whose power is of the order of the critical power. 

2. A quantitative analysis of the intensity-distribution 
histograms for various values of6 was carried through, using 
Kolmogorov's criterion for the fit; it showed that the prob- 
ability W(6)  for not rejecting the exponential law increases 
with increasing 6 and has the values 

3. An additional test of the exponential-law hypothesis 
for the intensity distribution was carried through by com- 
paring the third and fourth central moments M :  and M :  for 
the intensity with the corresponding theoretical values M :  
and M :  for various values of 6. The results of this compari- 
son are presented in Table I. 

4. An analysis of the phase-distribution histrograms us- 
ing an analogous technique gave grounds for asserting that 
the phase distribution very probably remains uniform. 

5. The self interaction of a broad-band light beam can 
also be investigated by solving the equation for the mutual- 
coherence f u n c t i ~ n , ~ . ~  but this only makes it possible to trace 
the behavior of the beam intensity and of the spatial coher- 
ence range. Analysis shows that the criterion for the applica- 
bility of this approach reduces to the requirement that the 
fluctuations of the nonlinear addition to the dielectric con- 
stant be small compared with its average value: 

where GI (0) is the spectrum of the intensity fluctuations near 
zero frequency. 

6. In some problems of nonlinear optics, the small-scale , 

self-focusing that arises is a negative factor that limits the 
construction of high-quality amplifiers and systems of adap- 
tive optics. The use of broad-band laser light for such pur- 
poses makes it possible substantially to improve the spatial 
structure of the light beam in a nonlinear medium. 

In conclusion, the authors thank Professor S. A. Akh- 
manov for valuable remarks during discussions of work, and 
V. A. Vysloukh for assistance with the numerical work. 
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