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It is shown that in the case of a nondegenerate semiconductor the critical current for supercon- 
ductor-semiconductor-superconductor junctions can decrease with the thickness of the semicon- 
ductor layer more slowly than in the case of ordinary tunneling. The effect is attributed to reso- 
nant passage of coherent electrons along trajectories made up of periodically arranged impurity 
atoms that are produced in the semiconductor with low probability. The corresponding tempera- 
ture dependence of the critical current and the region in which the effect exists are determined. 

PACS numbers: 74.50. + r 

1. INTRODUCTION 

The critical current of superconductor-semiconductor- 
superconductor (S-Sm-S) junction depends essentially on the 
density of the doping impurities in the semiconductor. At 
high impurity density such system are similar in their prop- 
erties to superconductor-normal metal-superconductor (S- 
N-S) junctions, and at low density they are close to ordinary 
tunnel junctions.'" In the case of weak doping, the presence 
of impurity levels in the semiconductor can facilitate the 
passage of the electrons between the superconductors. 

Lifshitz and KirpichenkovS have shown that if the elec- 
tron energy is near impurity levels, resonant passage of the 
electrons becomes possible in the junction along special im- 
purity configurations (resonance-percolation trajectories). 
We investigate here in this connection the flow of a super- 
conducting current through a semiconductor layer under 
these conditions. It is found that the critical current of the 
junction can increase appreciably. 

When current passes through a semiconductor layer 
containing impurity levels, the electrons must surmount the 
barriers between the impurities. The superconducting cur- 
rent is transported by the coherent electrons, and in succes- 
sive tunneling through several barriers the tunnel resistances 
are not additive (as in cases of normal current) but are multi- 
plicative. Whereas in the case of a semiconductor-metal 
junction hopping conduction sets in starting already with 
very low temperatures, in an S-Sm-S junction resonance pas- 
sage turns out to preferred in rather wide temperature range. 

The analysis is based on the microscopic approach de- 
veloped earlier7 for impurities in a degenerate semiconduc- 
tor. It is assumed that in a nondegenerate semiconductor 
Schottky barriers are produced near the interfaces with the 
superconductors, and the potential in the remainder of the 
semiconductor is equal to V (the bottom of the conduction 
band). The chemical potentialp is much lower than the bot- 
tom of the conduction band, and the impurity levels ED (do- 
nor, for the sake of argument) are scattered about the chemi- 
cal potentialp. The scatter of the impurity levels can be large 
compared with the temperature T, but small compared with 
the barrier height V-p (see Fig. 1). 

2. RESONANT TUNNELING ALONG IDEAL TRAJECTORIES 

We start with the formula obtained in Ref. 7 for the 
superconducting current through an S-Sm-S junction: 

X @zfpi'; z', z) A (pi'-pi; 2) A' (p2-p,'; z') [sign z-sign z' 1, 

(1) 

where Gm(p,,p2;z,z') is the Green's function of the junction 
with the impurities, and depends both on the coordinates z 
and z' along the direction perpendicular to the plane of the 
junction, and on the transverse momenta p, and p, (it is con- 
venient to transform to the momentum representation with 
respect to the transverse coordinates p); w = (2n + 1)n-T is 
the Matsubara frequency; the superscript n labels the nor- 
mal state of the junction. It is assumed here that the order 
parameter A in the semiconductor is zero (in view of the 
weak electron-phonon interaction) and the mutual influence 
of the superconductors is small. 

Upon averaging of (I)  over the impurity positions (the 
impurity coordinates enter as parameters in the expressions 
for the Green's functions) it turns out that the main contri- 
bution to the current is made by trajectories with periodic 
arrangement of the impurities. The probability of formation 
of such a trajectory is low, but at the same time the damping 
of the superconducting current on passing through the semi- 
conductor region is substantially decreased; we therefore 

FIG. 1. Band structure of S-Sm-S junction in the case of a nondegenerate 
semiconductor with impurity levels. 
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find first the contribution made by such ideal trajectories to We have introduced here the quantity 
the superconducting current. 1 h - e-ZCLu 

We assume that the impurities are spaced equal dis- 8n y , a= (2m)Ih (V-p)lh, (10) 
tances 2y apart, and that the distance from the first and last 
impurities to the nearest interface with the superconductor which determines the damping of the Green's function 
is y. In this case the equation for the Green's function between two neighboring impurities. (We neglect the quanti- 

ty w - T compared with V - p.)  
V,2+p-V-P 6 (r-r,) GQn(r, r') =6(r-r'), 2 1 Equation (8) has a solution 

j=i  cp,=~+h~j+c-h-~, A,= (2gh)-'[if (1-4g2hz)'"], (1 1) 
(2) 

wherer~ = (zJ PJ) is the radius vector of thej-th impurity, can where the constants c+ and c- are obtained by substituting 
be solved by assuming the barrier to be high enough: expressions (1 1) in Eqs. (7) and (8), which serve as boundary 
m112(V -p)'12y$ 1. The solution of (2) can be written in the conditions. 
form Using Eq. (1 1) for p,, we can obtain from (3) the Green's 

Gun (p, p'; 292') 
function of the system 

=con (p; z, .zr)6 (P-Pf) +x GIn (pi zj) eippl~j(Z't P') 9 (1-a+) 
j- I 

Gon (pi, pz; 2 , ~ ' )  = 8n2mh (i+h+) (h+N-h-N) . ~ X P [  i ( p l ~ o - ~ z ~ ~ ) ]  

(3) 

where G ;  ( p;z,zl) is the Green's function of the junction 
without impurities (the solution of (2) at 0 = O), and the val- 
ues of p, are determined by the expressions 

As seen from (1 I) ,  when the number N of the impurities 
U~ (z', P') =B J G~~ (p, pl; q, z r )  e-lpp,. (4) is large, the Green's function of the system is exponentially 

n 1 small. Indeed, using (6),  (lo), and (1 I), we have 
We then obtain from Eq. (3) 

p lh*!=1 *- v-IJ B = - e-2aY (13) 
%(af, PI) = -,[1-p J ~ ~ G : ( ~ ;  zj, 2,) ] -! 2B 

(2n) 
aY 

(2x1 

The integral in the first factor of (5) diverges, owing to the S- 
function form of the impurity potential, so that the constant 
Pmust be renormalized in the usual manner by introducing a 
final amplitudeg of the scattering by the impurity having the 
energy level ED (Ref. 8): 

g=2z~2nm-119 [ (V-p) 'I1- (V-ED) 'i8] -I. 
(6)  

To find the superconducting current in accord with Eq. 
(I ) ,  it suffices to calculate the values of pi at z' corresponding 
to the superconducting regions (z' < - a;z' >a ,  where 2a is 
the thickness of the semiconductor layer). To be specific, we 
obtain pi at z' > a  and assume that the first impurity is close 
to a point with coordinate - a, and the last (numbered N )  is 
close to the point with coordinate a. Recognizing that the 
subbarrier damping is large, we obtain from (5) for pi the 
system of algebraic equations 

gh 1 
cp, = [~p. , --~ - - e-'~'p~G." (p'; z,, z' . (9) 

8n2mh 1 

where B characterizes the width of the impurity band pro- 
duced when the impurities are periodically arranged spaced 
2y apart. Therefore the expression (A + - A -N) in the de- 
nominator of (2) is exponentially large: 

Equations (13) and (14) were derived under the assumption 
that the Matsubara frequency is low compared with B (as is 
the case at appreciable values of y), and the parameter No/B 
is large compared with unity. 

When determining the superconductivity of the current 
through the junction from Eq. (I), we shall assume that the 
order parameter is constant in the superconducting regions: 

A (z) = A ,  exp ( i ~ , )  at zc-a, 

A (z) .=Az exp (ixz) :at z>a 

[the corrections to A ,  and A ,  are given by the terms of next 
order, in view of the smallness of the integrand in (I)]. 

In addition, to determine the Josephson current for the 
superconducting Green's functions (without the index n)  we 
can likewise use Eq. (12), where the normal Green's func- 
tions of the system without impurities must be replaced by 
the superconducting Green's functions. In this case, using 
(12), (13), and (14), we obtain 
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where the angle brackets denote averaging over the 
impurity positions and over time impurity-level energies 

3. CONTRIBUTION OF THE RESONANCE-PERCOLATION 
TRAJECTORIES 

We first average in (15) over the impurity-level energies. 
The scatter of the impurity levels ED in the semiconductor is 
due mainly to fluctuations of the potential, and the correla- 
tion radius of the fluctuations in a nondegenerate semicon- 
ductor exceeds appreciably the average distance between the 
impurities (large-scale  fluctuation^).^ Therefore in S-Sm-S 
junctions having not too thick a semiconductor layer it can 
be assumed that the position of the bottom of the conduction 
band does not vary along the z axis, and the fluctuations take 
place in different places of the junction. We can thus average 
independently over the impurity trajectories that join the 
superconductors and over the values of the impurity levels 
ED in (15). 

To average over the values of ED it is necessary, general- 
ly speaking, to know the distribution function of the random 
potential F ( E ) ;  this function was obtained in a number of 
papers.6 However, as seen from (15), in the averaging over 
ED the significant values ED -p are of the order of the 
width B of the impurity band, which is small compared with 
the impurity level scatter due to the potential fluctuations. 
Using this circumstance, we obtain after averaging 

The exponential factor (16) in the equation for the cur- 
rent has a simple physical explanation. It stems from the loss 
of electron coherence in the semiconductor layer, where the 
electron-phonon interaction is assumed weak. Indeed, the 
coherence length in the semiconductor is 6-u/T, where the 
characteristic velocity u is determined by the probability of 
the transitions between the impurity levels: v -yB. The argu- 
ment No/B of the exponential is therefore of the order of a/< 
(where a -Ny is the thickness of the semiconductor layer). 
The exponential damping of the superconducting current 
occurs thus when the semiconductor-layer thickness ex- 
ceeds the coherence length. 

Proceeding to the averaging of (15) over the impurity 
positions, we note that the probability of formation of a tra- 

jectory with a strictly periodic arrangement of the impurities 
is zero, so that we must allow the impurities to deviate from 
the ideal positions. This does not alter substantially the 
damping of the current if the impurities are shifted by dis- 
tances - 1 /a along the z axis and by distances -y8 in the 
transverse direction, where 0 is the angle characterizing the 
sinuous character of the trajectory (and is assumed to be 
 mall).^ Such a resonance-percolation trajectory consists of 
N impurities (N> 1) located in small volumes y28 '/a at an 
average distance 2y from one another; in this case the trajec- 
tory should be solitary (i.e., there should be no other scatter- 
ing centers in regions of size -y around the impurities). The 
probability Wof formation of such a trajectory was obtained 
with exponential accuracy in Ref. 5 assuming a Poisson dis- 
tribution of the impurities: 

W = e x p  [ N  In (y202n/a) -nnNy3], (17) 
where n is the density of the donor impurities, and for sub- 
stantial values of y the second term in the argument of the 
exponential is relatively small). 

Using (16) and (l7), we obtain from (1 5) for the density jc 
of the critical current 

In (18) are used the known expressions for the Green's 
functions of the system without impurities, and the vlaue of 
D ( p) describes the damping of the current on account of the 
tunneling through the Schottky barriers, which are assumed 
to be parabolic (d is the width of the barrier, V, is the value of 
the potential on the semiconductor-superconductor inter- 
face, and A is the coefficient in the quadratic dependence of 
the potential on the coordinate). '.' The number of impurities 
N on the trajectory is determined by the expression5 

N= (aly) (1+02/2). (19) 

The integrals in (18) can be calculated by the saddle- 
point method. The saddle point is determined from the sys- 
tem of equations 

where we have introduced the dimensionless variables 
x = 2ay, c = n/a3, L = 2aa,B = vT/2(V -p).  The asymp- 
totic solution of (20) at 04 1 and c<ln-'B is of the form 
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It can be seen that x,) 1 and 8,d 1, thus justifying the as- 
sumptions made. 

Calculating in this manner the integrals in (1 8), we can 
retain the first term in the sum over a. We then obtain with 
exponential accuracy 

The exponential superconducting-current damping de- 
scribed by (22) is mainly the result of the low probability of 
formation of a resonance-percolation trajectory. With in- 
creasing impurity density, however, this probablity in- 
creases, and even before the onset of degeneracy, if the con- 
dition 

Iln c1<21In?/ (23) 

is satisfied, the resonance passage turns out to be easier than 
direct tunneling through the semiconductor layer [in the lat- 
ter case the critical current is jc -exp( - 2L )]. 

We note also that the inequality (23) ensures satisfaction 
of the condition, used in the intermediate derivations, that 
the temperature be low compared with the width of the im- 
purity band. As for the scatter of the impurity levels, it is 
found to have relatively little effect on the critical current. 

4. DISCUSSION OF RESULTS 

The results show that in an S-Sm-S junction with a non- 
degenerate semiconductor there can be realized a resonant 
mechanism of electron tunneling through the semiconduc- 
tor layer. Owing to the overlap of the wave functions o'f the 
electrons of the impurities equidistantly spaced 2y apart, a 
band of width B-exp( - 2y/aB), is produced, where a, 
= (2m)-112(V - p)-Il2 is the Bohr radius of the impurity. 

Superconducting current can flow through this band at a 
damping -exp( - 2a/f) due to the electron coherence loss 
in the semiconductor layer. 

The coherence length f - v/T- 2yB / T  decreases with 
increasing distance between the impurities. However, the 
probability of formation of a trajectory with a periodic ar- 
rangement of impurities (which is also exponentially small) 
is higher the larger the distance between impurities (the 
smaller the number of impurities that should be periodically 
located on the trajectory). The optimal distances are 2y,- a, 
ln[(V - p)/T]. The width of the band is then 

Trajectories on which the impurities are periodically 
arranged and spaced 2y0 apart make the main contribution 
to the superconducting current. The degree to which the 
optimal trajecotry is sinuous turns out to be small, so that the 
problem is close to one-dimensional. In this case the critical 
current is determined by Eq. (22) and attenuates less with 

increasing thickness of the semiconductor than the usual 
tunnel exponential. 

Large-scale fluctuations of the potential lead to an ener- 
gy scatter of the impurity levels on the different trajectories. 
This scatter is usually large compared with the band width 
B. The main contribution to the superconducting current is 
made by electrons with energies -B near the chemical-po- 
tential level, inasmuch as for electrons with other energies 
the damping of the current is already determined by the tun- 
nel exponential. The level scatter, however, has less influ- 
ence on the critical current than the damping due to loss of 
electron coherence in the semiconductor layer. 

Allowance for the electron interaction leads, as is well 
known, to formation of a "Coulomb gap." The size of the gap 
is determined by the electron interaction energy at distances 
on the order of the correlation radius. Therefore in the case 
of weakly and strongly compensated semiconductors, as 
well as amorphous semiconductors (when the correlation ra- 
dius is large), thegap turns out to be less than the level scat- 
ter.6 It can become also less than the width B of the impurity 
band, as is indeed assumed in the present paper. Otherwise 
the region of existence of the resonance effect decreases. 

Equation (22) for the critical current of the junction cor- 
responds to the resonance mechanism of current flow 
through the semiconductor layer and is valid at temperature 
low enough that the width B of the band exceeds T. At these 
temperatures the transparency of the semiconductor barrier 
increases in comparison with the usual tunnel transparency. 
A change in transparency begins with a temperature 
T, = (V - p) (na,3)"2. The temperature TI can be higher as 
well as lower than the critical temperature T, of the super- 
conductors. At TI > T, the temperature dependence of the 
critical current differs from the tunnel dependence already 
at T < Tc, while at T, < Tc in the region T, < T < Tc the Am- 
begaokar-Baratov formula is valid.9 

Equation (22) no longer holds at very low temperatures, 
when the coherence length 6 becomes larger than the semi- 
conductor thickness 2a. The limiting temperature T2 at low 
impurity densities is given by 

T2= (V- y) exp [- (a/aB) lh I In (naB3) I '"1 
and at temperatures lower than T2 the dependence of the 
critical current on the layer thickness is given by an equation 
similar to that obtained in Ref. 5: 

j,-exp [-4 (aln,) '" 1 In (naB3) 1 %] . 
We can thus expect resonant tunneling to be revealed by 

the characteristic temperature dependence of the critical 
current of ti, : S-Sm-S junction. 
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