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The Villain variant of the X Y  model of a spin glass is considered in the three-dimensional case. It  is 
shown that there occurs in the system of topological phase transition connected with the appear- 
ance of frustration lines of infinite length. In the phase thus produced, the correlation distance at 
zero temperature is infinite. At any finite temperature, however, the correlation has a finite range. 
The possibility of generalization to the Heisenberg model of spin glasses is discussed. 
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1. INTRODUCTION 

In recent years, in the theory of spin glasses, the concept 
of frustration has attracted much attention. Introduced by 
Toulouse' and by Villain2 from a microscopic point of view, 
as a topological property of lattices with bonds (edges) of 
different signs, it received a macroscopic interpretation in 
papers of Volovik and one of the  author^.^.^ The microscopic 
frustration lines of Toulouse and of Villain are, from the 
macroscopic point of view, disclinations in a field of X Y  or 
Heisenberg spins. 

The concept of frustration lines seems reasonable if the 
concentration of the so-called "wrong" bonds is sufficiently 
small. This means that we must begin with a regular ferro- 
magnetic (antiferromagnetic) system, with positive (nega- 
tive) bonds, and gradually replace the "right" positive (nega- 
tive) bonds by wrong negative (positive) ones. If the 
concentrations of positive and of negative bonds are equal, 
the concept of frustration lines is of doubtful usefulness. 
Physically, this last case obviously includes spin glasses in 
dilute magnetic alloys, where everything is determined by 
the rapidly oscillating long-range Ruderman-Kittel- 
Kasuya-Yosida (RKKY) interaction. 

But what happens to a system, let us say a regular ferro- 
magnet, on gradual increase of the concentration of negative 
bonds? Here there are two possibilities. In the first case, at a 
certain concentration c,, the percolation limit will be at- 
tained, and the system will cease to be ferromagnetic. In Sec. 
3 we shall discuss in more detail the properties of the phase 
thus produced; there is reason to suppose that it is the spin 
glass with finite rigidity considered by Halperin and Sas- 
low,' by A n d r e e ~ , ~  and by Volovik and one of the  author^.^'^ 
At a certain other concentration c,, , the system undergoes a 
so-called topological transition, in which frustration lines of 
infinite length first appear. The spin rigidity then vanishes. 
It is natural to call such a phase a genuine spin glass. 

In the second case, the concentration c,,, at which frus- 
tration lines of infinite length appear is less than c,,, , and a 
spin glass with finite rigidity does not occur at all. 

A topological transition connected with the appearance 
of singular lines (in our case disclinations) of infinite length 
has already been considered repeatedly as a model of the 
melting of a crystal (appearance of dislocations of infinite 
length), fo the superfluid transition in He4 (by appearance of 

infinite vortices), etc.; a good review of the problems con- 
nected with it is given in a lecture of Halperin.' But there is 
an important difference between, for example, topological 
melting and the transition in spin glasses. Whereas in the 
first case the singular lines originate as a result of thermal 
excitation, in spin glasses they exist also at absolute zero, and 
their form (configuration) is frozen. This does not mean, 
however, that for spin glasses thermally excited singular 
lines are not also important (see, however, Sec. 4). 

We shall consider a topological transition in the X Y  
model of a spin glass with the Villain intera~tion.~ A disclin- 
ation in the XY model is analogous to a vortex in superfluid 
helium; the disclination density j(r), which is analogous to 
the superfluid velocity, has the usual form: 

Here r = R(t ) is the equation of the disclination line, and N is 
its strength (charge). For frustrational disclinations, N is a 
half-integer: N = + 1/2, f 3/2, ...; for thermally excited 
vortices, an integer: N = + 1, + 2, ... . I t  is clear that it is 
sufficient to consider frustrational lines with the minimum 
possible strength f 1/2, treating states with higher 
strengths as thermal excitation. For frustrational lines, their 
form at T = 0 is given by an a priori random distribution 
W, { R(t 1, and the strengths are determined by the interac- 
tion energy, i.e. by a Gibbs distribution. For disclinations, 
both the form and the strength are given by a Gibbs distribu- 
tion. 

Disclinations interact like electric currents in magne- 
tostatics: 

The constant J, to within a factor, coincides with the rigidity 
of the standard XY model: 

For given form and number of the frustration lines, the 
distribution of currents on them (i.e. of disclination 
strengths + 1/2) is determined by the partition function 
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If it is desired to average over the form (configurations) of the 
frustration lines, then it is necessary to average, as always, 
not Zcu, but the free energy Fcur . For the correctly averaged 
free energy F, the standard formula holds: 

The best method for calculating Fis  the method of repli- 
c a ~ . ~  In this method, n identical systems are introduced, but 
the quantity 

is calculated, and then n is made to approach zero. This 
technique brings the whole calculation within the frame- 
work of the standard Gibbs theory. We number the n identi- 
cal systems of disclinations with the index a = 1, ..., n. The 
interaction of the currents j, is given by the obvious formula 

One calculates the partition function of the replicas, 

an=(exp {-%,IT) ), (1.7) 

where the symbol (...) is now understood to mean averaging 
both over the currents (1.4) and over the configurations (1.5) 
Finally, 8, is expanded in n, and the linear term is extracted. 

2. THERMODYNAMICS OF FRUSTRATION LINES 

The averaging over configurations of frustration lines 
actually coincides with the theory of polymers. A technical- 
ly convenient form of it was developed by des Clo izea~x.~  
We shall use one of its variants, due to Nikomarov and one of 
the authors.1° We begin with the case of high temperatures, 
when it is possible to neglect the interaction (1.6). 

It is more convenient to begin with a discrete variant of 
the distribution W, ( R(t ) )  of (1.5) and of the energy of inter- 
action (1.6). The distribution of frustration lines, in length 
and form, is then replaced by the distribution of an N-com- 
ponent (real) field p,(r,), given at the sites of a three-dimen- 
sional cubic lattice (r, 1. With each edge (segment, bond), 
connecting adjacent sites, is associated interaction energy U. 
The number N mentioned above is in our case equal to 

where n is the number of replicas. As we shall see, this choice 
gives the right number of states (strenghts f 1/2) on each 
frustration line when n-0. 

At infinite temperature, 3, is given by the continuous 
integral over the fields 9,; y = 1, ..., N: 

The summation in (2.2) extends over all nearest neighbors 
(ab ). By calculating the functional integral, one can easily 
 how^.'^ that it is the partition function of the system of 
closed polymers-frustration loops; each loop may exist in 

N = 2" different states: 

Here L is the total number of segments (length) of all closed 
loops, M is the number of closed loops, and C,, is the num- 
ber of different configurations on the lattice containing M 
loops of L segments. 

The bond energy U is the modulus of the frozen distri- 
bution of frustration loops. The distribution of loops without 
currents is given by formula (2.3) with n = 0 (2" = 1). It is 
given by "quenching" and in itself is of no interest to us. 
Therefore in all further formulas for 3,, we shall understand 
(though, when it is not necessary, we shall not indicate this 
explicitly) that 8, is divided by 8,. In the limit n - 4 ,  we have 
from (2.3) 

whence, in accordance with the definition of replicas, we get 
for the entropy 

where is the mean number of loops at the given U. For- 
mula (24) shows that the definitions (2.2) and (2.1) correctly 
describe the double degeneracies of the frustration loops 
[two directions of current (1. I)]. The presence of the product 

in the functional integral (2.2) guarantees that through each 
site of the lattice there passes only one frustration line. In the 
language of the theory of polymers, we say that (2.2) is the 
partition function of free closed polymers with excluded vol- 
~ r n e . ~ . ' ~  If we allow one or more self-intersections, then we 
must replace (2.5) by 

But as we shall see directly, in our case the problem with 
excluded volume is sufficiently general. 

We pass to the continuous limit in (2.2) by making the 
length d of the edges tend to zero. We have 

We expand the logarithm in (2.6) through terms of the fourth 
order and rewrite the result, introducing some new symbols: 
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Here 

~ = ( 1 - 2 U ) / d "  u=21T2/d, 

and the coefficient of (Vp)' has been transformed to unity by 
the choice of scale p-+(Ud )'I2p. 

The functional integral (2.7) for n = 0 (number of com- 
ponents of the field p, equal to N = l), as is well k n o ~ n , ~ ~ ' ~  
determines the properties of closed polymer chains with 
allowance for excluded volume. The thermodynamics of 
open polymer chains corresponds to the case when the num- 
ber of components of the field p, is zero (de Gennes"). 

The simplified variant (2.7) of the functional integral, in 
which only quaternary interaction is retained, is reasonable 
only at small 7, which corresponds to large lengths of the 
chains.9-" If the charge u of (2.8) is not too large, allowance 
for an arbitrary finite number of intersections of contours at 
a single point does not change the universality class of the 
integral (2.7). 

For small positive 

T - ' ( ~ i o P - c )  / c t o p  , 
the mean length of the contours is large. Furthermore, for 
7 = 0 the topological transition mentioned above occurs; 
and for 7 < 0, there appear frustration lines of infinite length, 
whose number is determined by the mean value of the field 
(p,) (for details, see Appendix 1). 

In the scaling region, the correlation radius r, - 171- ", 
where v is the index of the theory of an N-component field 
(N = 2"). In particular, in the limit when the number of repli- 
cas n 4 ,  the properties of the distribution (2.7) are described 
by the indices of the Ising model. Thus the distribution of 
free frustration lines of great length is quite simple and uni- 
versal and is independent of the charge u. 

We shall now take into account the interaction (1.6). 
For this purpose we note that it is transmitted by a magnetic 
field with a vector potential A, interacting with the field p, 
in a gauge-invariant manner. This essentially determines the 
interaction energy uniquely. We shall carry out the appro- 
priate reasoning in the continuous limit. The considerably 
more cumbersome formulas for the case of a lattice and the 
proof that the distributions (1.7) and (2.14) coincide are given 
in Appendix 2. 

We note that when there is only one replica, the two- 
component real field p, may be regarded as a real spinor pA; 
R = 1,2, constituting a real irreducible representation of the 
group SO(2). To avoid misunderstanding, we recall that al- 
though the group SO(2) = U (1) is Abelian, nevertheless all 
its one-dimensional representations are complex: e * In'. The 
minimal real representation is necessarily two-dimensional: 
cos n6J sin n: The vector potential A, is connected with the 
matrix field A, of the Yang-Mills group, proportional to the 
matrix 2 that is the generator of the group SO(2): 

In a rotation through anglex, the spinor p%ransforms thus: 

q+exp ('1~6) p. (2.10) 
h 

If we assume that A, transforms as the field of the Yang- 
Mills Abelian group S0(2), 

then 

is the covariant derivative. For a single replica, the gradient- 
invariant generalization of the Hamiltonian in (2.7) is 

where T is the temperature. The symbol denotes the row 
conjugate to the column p ,  and 

The functional integral for 8, now becomes, instead of 
(2.7), an integral of exp( - R,) with respect to ~ p '  and 
DA, in some fixed gauge, say in the transverse, div A = 0 
(see, for example, Ref. 12): 

8.- J D T ' D A ~ ~  (div A) erp {-a,). 
The generalization to the case of n replicas is obvious. 

We introduce the n-component real spinor 

TO' . . . an 

and a Yang-Mills field defined for each replica: 

where, in the definition of b,, the matrix E of (2.9) stands 
exactly in the a-th place. In the transformations 

the covariant derivative has the form 

i, 1 D,=---CA,. ax, 2 a 

The functional (2.7) is accordingly replaced by 

a a 

with J from (1.2). Hereafter we shall measure temperature in 
units Jand  write Tinstead of T/J. By introducing, instead of 
the reduced temperature T, the "electric charge" e2 = 1/T 
and making the scale transformation A e A ,  we can rewrite 
(2.14) and (2.13) in the more familiar form 
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Similar problems (for n = 1) were treated in their 
time~3,~4 in connection with the question of the effect of fluc- 

tuations of the magnetic field on the superconducting transi- 
tion. We shall return to the problem of fluctuations a little 
later; but we begin with the molecular-field approximation. 
Here the situation is analogous to the situation with Gold- 
stone modes, which occur when a Higgs mechanism is in- 
cluded in gauge theories of the field (see, for example, Ref. 
15). When r > 0 ,  i.e. when cf c,,,, the system contains 2" 
massive bosons of the field q, and n massless photons A,. 
When 7 < 0 (c > c,,, ), infinite frustration ljnes appear, corre- 
sponding to a fmite mean value of the field q,: = - r/u. All 
n photons A, become massive, with mi, -- e2q,:; one of the 2" 
bosons q, also remains massive. Of the remaining bosons, 

No==2^-n-I 

become massless Goldstone particles, and n are absorbed by 
the vacuum of the gauge field.'' Thus the infinite frustration 
lines, equivalent to open infinite electric currents, shield the 
magnetic field at a finite distance - l/m,, . On the other 
hand, currents of infinite length produce a new type of corre- 
lation of finite radius [more simply stated, the radius is equal 
to the length of the current (frustration) lines L-+oo]. 

From a formal point of view, the correlations of pairs of 
currents j in different replicas, j, , jp, are long-range (hereaf- 
ter, for brevity, we shall not indicate the vector indices on the 
currents j): 

( i G ( x ) j s ( x r ) i a  ( Y )  i 8 W )  ) 

-<Q ( x )  vliacp (2) Q (x' )  v * , E P ( P  ( X I )  

X Q ( Y )  v v ; a ~ p ( ~ )  9 (Y')  VV,&CP(Y') ) .  (2.17) 

Suppose that the mean value of only one of the components 
of the field q, is nonzero: 

c p o = ( c p i  ' )  

(in our situation, this is the general case). It  is easy to see that 
in an arbitrary order of perturbation theory, the long-range 
part of the correlators of the currents of a single replica, for 
example ( j, j, ), vanish in the limit n - 4 .  In the correlator 
of currents from different replicas, one can separate out, in 
(2.17), a term containing means of the type 

121 1 1 121 I ) ,  ((+,L 121 121 1 1 121 121.1), 
'Px ,  'P, 

and, expressly, 

(jajpjajp) - (cpi 1) ( V  x cpl x 121 1 V  X' (PI.  X*  121 1) 

x(rp:, 121 121 1 1 121 121 l ) p ,  121 1 v  , q,;, 1 t l  
1) 'PV y 

In the zeroth order of perturbation theory, we have that at 
finite Ix' - X I -  Iy' - yl(  lx - y1-f w , the correlation 

<j ,  (z) js  ( x )  ja (y) j ,  (y)> - q: (q: 121 12' qv  lZ1 

- P , ~ ) X - ~ . I .  (2.18) 

It is easy to verify that the long-range character is retained 
also in any order of perturbation theory. 

Anticipating, we note that, as always, in the scaling 

FIG. 1. 

mode 

vo2- (-TI eR, 

and merging of x' with x and of y' with y means that 

1x'--x1 -1  y-y'l <rc- I.xI-", 

where@ and v are the exponents of the model (2.7) (the Isipg 
model.when n = 0). 

We shall show in our case, for n 4  the renormalized 
charge e,, corresponding to effective temperature 

Teff=llete, (2.19) 
is small near the tran~ition~point. We recall that the free 
charge, on the contrary, is large at low temperatures. There- 
fore the assertion of the smaI1ness of the renormalized 
charge is equivalent to the assertion that even at very low 
temperatures, the system is effectively hot; and consequently 
the interaction between frustrations is insignificant, and 
everything is basically determined by the statistics of the free 
frustration loops (2.7). 

We shall denote the Green functions of the field q, by 
solid lines and the photon propagators A by broken (Fig. 1). 
It is clear that in the limit n - 4 ,  the additions to a photon 
propagator containing internal photon lines (radiation cor- 
rections) vanish (diagrams of the type l(d). Therefore Dy- 
son's equation gives an exact expression for the renorma- 
lized charge in terms of the correlators of the currents, 
averaged over the distribution of free frustration currents 
(2.7): 

where A is the Laplacian operator. In the scaling region, this 
relation is rewritten 

1/e,l=l/e2+const !(cp2{0) ' P 2 ( r )  )d3r.  

The integral on the right side has the dimensions "heat ca- 
pacity""; therefore 

1/e,2=Tef,=T+const/I .c la, (2.20) 

where a is the index of the Ising model. 
At low temperatures, near the topological transition, 

1/er2=Tef,- 1  TI-^. (2.21) 

The topological transition with respect to r remains contin- 
uous at n = 0 and T = 0. This is again due t a  the absence at 
n = 0 of radiation corrections, which in principle made pos- 
sible a first-order transition.I3 

From the fact that the effective temperature of the sys- 
tem is large, it follows that there are no power singularities 
with respect to a small physical temperature T. This fact can 
be verified, if one wishes, by direct calculation according to 
formula (2.14). 
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3. EFFECT OF THERMALLY EXCITED VORTICES 

At finite temperatures, it is necessary to allow for ther- 
mally excited currents (1.1) with integral strength. If we neg- 
lect magnetic interaction of the currents, then we can use for 
the description a formula analogous to (2.2). We introduce 
an n-component complex field &. Then it is easy to under- 
stand that 

As before, 

but now V depends substantially on the temperature T. Spe- . 
cifically, since (3.2) is the Gibbs partition function, therefore 

where I is the energy of the vortex line per segment. In order 
of magnitude, I coincides with the Curie temperature T,. In 
the continuous limit, we have 

1 a:""= J'D$D$* exp {- J' d31: [p1Qa12 

after we carry out, as in the derivation of (2.7), a scale trans- 
formation 

9' ( V d )  "Q, p= ( I-2V) IdZ, v=2VZ[d. (3.5) 

At low temperatures, 

therefore the self-action of the field $ (the term $4) may in 
fact be neglected with exponential accuracy. I t  is necessary 
to take into account the magnetic interaction of thermally 
excited vortices with each other and with frustration cur- 
rents. We shall therefore suppose that the field $, interacts 
with the photons A, of (2.15) and (2.16) in a gauge manner: 

As has already been mentioned, problems of the type (3.6) 
were considered by Halperin and in a description 
of a phase transition in superconductors. In their c a s e p 4 .  
Here we are interested in the case of limitingly low tempera- 
tures T, whenp is finite but the charge v 4 .  In such a situa- 
tion, closed thermal currents do not play an important role, 
because their length is small. The essentially new physical 
feature of the problem is the possibility of decay of a thermal 
current into two frustrational [see Fig. 2, where the thermal 
current is denoted by a wavy line and the strengths 1/2 and 1 
of (1.1) are marked]. The law of conservation of strength in 
Fig. 2 requires that finite open thermal currents either con- 

FIG. 2. 

nect two infinite frustration currents [Fig. 3(a)] above the 
topological transition point, c > c,,, , or form closed or infi- 
nite chains of the type of Fig. 3(b), c below the topological 
transition, c < c,,, . 

The presence of finite thermal currents of the type of 
Fig. 3(a) disturbs the long-range action (2.18) that is present 
in the purely frustrational model of Sec. 2, above the topo- 
logical transition point. It  is easy to understand that with 
allowance for processes of the form of Fig. 3(b), the direction 
of the current ja  and also of jp  is no longer conserved along a 
whole infinite line, and at large distances it is random; there- 
fore the product ja ja is also not conserved along an infinite 
furstration line, as was the case in (2.18). 

Technically, this situation is described by addition to 
and pnhe" of an interaction describing the decay of Fig. 

2: 

Here it is very important that, in accordance with the scale 
transformation (3.5), the constantR is exponentially small at 
low temperature: 

The whole partition function now has the form 

In the molecular-field approximation, we vary the sum 
of the Hamiltonians in (3.9) with respect to ($,). We get 

Thus if in the system of frustrations there are infinite open 
lines, i.e., there is a nonzero (q) ,  then there necessarily oc- 
curs also a ($). With allowance for a nonzero +b0, one can 
separate out in (3.8) the terms that give a finite correlation 
radius of Goldstone bosons: 

FIG. 3. 
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FIG. 4. 

In this sum, a term of the form (vE'"'En)2 containing m twos 
and n - rn ones among the indices E ,  ... E,  is encountered rn 
times with a plus sign and n-rn times with a minus sign. Thus 
in the limit n 4 ,  all Goldstone oscillations have the mass 

Thereby there appears in the system a new correlation dis- 
tance R, that becomes infinite at T = 0. In the scaling range 
with respect to frustrations. (r, - (71 - "), we can write for R, 

The exponential temperature dependence in (3.10) can also 
be obtained by simple physical considerations, connected 
with estimation of the probability of appearance of segments 
of thermal currents of finite length. 

The finiteness of the correlation distance R, of (3.10) 
means that the phase considered in the Introduction and in 
Sec. 2, "genuine spin glass" (GSG; see Fig. 4), is actually 
paramagnetic (see, however, the Conclusion). Strictly speak- 
ing, this state is a so-called mictomagnetic; state, i.e., a phase 
with magnetic clusters, whose size increases exponentially 
with lowering of the temperature to zero. 

In the mictomagnetic phase, as in any paramagnet, the 
spin stiffness p, is zero. In our model, this fact is easy to 
understand from the following considerations. Above the 
topological transition, when all frustrational currents are 
closed, in accordance with the magnetic analog, the "suscep- 
tibility" inverse to the rigidity p, is finite, while the "magnet- 
ic field" A has no mass. After the topological transition, 
frustrational currents of infinite length appear, and in conse- 
quence (we recall Ampere's old picture!) the "susceptibility" 
tends to infinity and the stiffness p, to zero. The "magnetic 
field" meanwhile acquires mass. 

We finally consider the region immediately before the 
topological phase transition, c < c,,, (0 < r( I), where with 
increase of the temperature T there should occur a transition 
to the paramagnetic phase. This transition is again topologi- 
cal: closed chains of thermal currents, of the type of Fig. 3(b), 

split, and infinite thermal chains, of the type of Fig. 3(c), 
appear. Here a cardinal fact is that the thermal segments (the 
wavy lines) in a chain remain short, because the probability 
of their originating is exponentially small with respect to 
temperature [see (3.3)]. A large (or infinite) length of the 
chains is attained at low temperatures because for r-+0 the 
lengths of the frustrational currents [the loops in Fig. 3(b) 
and (c)] tend to infinity. The topological transition with re- 
spect to temperature means the appearance of a nonzero 
mean field ($) in the high-temperature phase. 

In order to treat the transition, we integrate over the 
fields q7 in (3.9). A renormalized Hamiltonian for $ and the 
photons A emerges: 

+p,l (~ - i e .A . )$ . l~+  (rot A,)'). (3.1 1) 

Here the renormalized charge e, in the scaling region with 
respect to r is given by formula (2.21), and 

p.=p-h2Zi, p.=l+hZI,, v,=vSh4Zs. (3.12) 

In the scaling region with respect to r ,  the integrals I, ,  I,, 
and I, are given by the relations [average over the distribu- 
tion of free frustrations (2.7)J 

1,- Jd3x(cp2 (0) cp2 ( x )  ) - T - ~ ,  

Z2 - d3xx2(qa ( 0 )  q2 ( x )  ) - T - ~ - ~ ~ ,  

1, - d 3 z , d 3 r . d ~ ( l p 2  (0)lp2 (z,) q 2 ( x z )  qz (x3)  ) -r-'-'. 

In the derivation of (3.12), all diagrams have been discarded 
that vanish when the number of replicas n tends to zero. We 
recall once more that a and Y are the indices of the Ising 
model. 

Recalling now that A and v are exponentially small at 
low temperatures, we rewrite (3.12) (to within unimportant 
constant factors) in the form 

The critical properties of the system (3.1 1) have so far 
not been definitively explained. Whereas in the first papers 
of Halperin and othersi3 it was asserted that the transition to 
the low-temperature phase is a transition of first order, in a 
recent paper of Dasgupta and Halperin14 it was asserted that 
for large charges e, the transition is continuous. In the opin- 
ion of the authors of Ref. 14, it can become a transition of 
first order only for very small e,. These conclusions are 
drawn on the basis of analysis of a Hamiltonian of the form 
(3.1 l), but not in the continuous limit, as in our case, but in 
the lattice variant of this theory. Here the characteristic fluc- 
tuations of the field r+b are from the very beginning assumed 
not to be small. 

Thus two situations are possible: a) The transition may 
be described within the framework of the theory of the self- 
consistent field, when the characteristic fluctuations of the 
field 11 before and after the transition may be neglected.I3 
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This is a first-order transition. b) If the fluctuations of the 
field $ are important, then the transition is apparently con- 
tinuous. 

In the high-temperature phase, the nonvanishing ($, ) 
= $, is found from the obvious condition 

The value of (A: ) in the lowest approximation can be calcu- 
lated from Dyson's equation for a photon, 

where the lightning signs denote the mean field $,. For 
D ;  ' (k  ) it is necessary to substitute k '. We have for (A:  ) 

This integral (again except for unimportant constants) is 
'h 

<Aa')-1-e,p, Iqol. (3.16) 

Thus the energy determining $o has the form 

Equation (3.17) describes a first-order transition. In order to 
determine whether fluctuations of the field $may be neglect- 
ed, we compare the characteristic distance I, of screening of 
the currents below the transition point with the scale I,, on 
which fluctuations of the field $ become important: 

Since I, (I,, the approximation in which (3.17) was written 
is justified. 

We consider the case in which T - 1. This means that the 
mean length of the frustration loops is small; that is, their 
size is comparable with the size of an elementary cell of the 
lattice. If we return to the original model of a ferromagnet, in 
which certain bonds have been replaced by antiferromagnet- 
ic ones, this means that there are few such "spoiled" bonds. 
Then both lengths are of the same order of magnitude, and 
the transition is continuous (case b). 

The first-order transition line on the T, c diagram near 
the topological transition, T( 1, has the form 

T--1lln T. (3.18) 

On the other hand we know, of course, that when c is not 
close to c,,, , there is the usual second-order phase transition 
to the paramagnetic state, at the Curie temperature TC(c). 
Therefore the state diagram has the form of Fig. 4(a). It 
seems reasonable that when a first-order transition is pre- 
sent, the spin glass with finite rigidity mentioned above, also 
exists [the phase FRSG, finite-rigidity spin glass, in Fig. 
4(a)]. The diagrams of Fig. 4(a) and (b) then correspond to the 

cases c,,, <c,,, and c,,, > c,,, respectively. The possibility 
may of course also not be excluded that the line separating 
the phase F from the phase GSG in Fig. 4(b) has a tricritical 
point, i.e., consists of two pieces-transitions of first and 
second order. 

We note that a spin glass with finite rigidity was ob- 
served in experiments of Maletta and others,I6 although in 
other physical systems. 

Within the framework of the Villain model, it is also 
possible to calculate the correlation function of the spins in 
phase GSG. Here, if the phase FRSG is absent [Fig. 4(b)], 
this will be the ferromagnetic short-range order; if it is pre- 
sent, the correlation of the corresponding quantity in the 
FRSG (see Refs. 3-6). For definiteness, we shall speak of the 
ferromagnetic case, Fig. 4(b). 

In the Villain model, it is necessary to add to the Hamil- 
tonian in (3.9) a spin-wave part (1.3) in each replica: 

wherex, coincides with the gauge in (2.13). The correlation 
of the spins in a single replica is 

In the phase GSG, where the spin-wave part of the fluctu- 
ations is insignificant, Q (R ) is determined by the gauge-in- 
variant part of (3.19). There is a standard procedure for this. 
We write (3.19) in the form 

R 

O ( R )  = ( exp{i Igrad %.dl 
0 

where the integral is taken along an arbitrary path between 
the points 0 and R. The gauge-invariant part is the mean of 
the integral along a closed contour CoR passing through 0 
and R: 

By Stokes's theorem, 

@ ( R )  - (exp{ i J rotgrad xadS }) , 
S O X  

where So, is the surface resting on the contour C,,; and by 
virtue of the definition of the currents j, as densities of dis- 
clinations in the field cos x,, sin X, 

@ (R) - (exp{ i jadS }) = ( e ~ p  (iJ.0.) ), (3.20) 

where JoR is the total current through the surface So,. 
The following considerations, which are correct in the 

scaling regime, are very simple. Since (JoR ) is obviously zero 
at large R, 

(exp ( I J G O R )  ) -exp (-'IZ< J o R 2 ) ) .  

For R)r,, only currents of infinite length are important; 
therefore 

(]:OR) - S O R a m r C  

with a, from (Al. 10). The correlation function (3.20) is de- 
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termined by the minimum value of So, - Rr,, whence 

cD ( R )  -exp ( -RIR,) ,  R,-l lcr,rC2- (-T) -2+a+2v- (-TI -'-rC. 

(3.21) 

(The scaling relation a = 2 - dv for space dimensionality 
d = 3 has been used.) Thus for ferromagnetic order in the 
phase GSG dies out at a distance of the same radius r,. 

Naive scaling considerations give a 1/T law for the 
magnetic susceptibility X.  We have by definition 

Substituting @ from (3.21) here, we find 

X-r,3/T- (-a) -3v/T.  (3.22) 

Of course the dependence on r and T in (3.22) is not too 
certain. The angles of X ,  are not fundamental in the phase 
transition. Therefore the considerations leading to (3.21) 
correctly determine only the exponents. But the degrees of 
the dependence on R and T may arise also from non-scaling 
and gauge-noninvariant corrections. It  can hardly be doubt- 
ed, however, that the susceptibility is infinite at T = 0, while 
the number of "effective spins"-r: in formula (3.22)-be- 
comes infinite at the topological transition point. 

A dependencex- 1/T in the Ising model with random 
bonds was indicated, for example, in a paper of Lyuksyu- 
tov," who found a formula of the form x - c 2 / ~  for small 
concentrations of wrong bonds c. 

4. HEISENBERG SPIN GLASS 

In the case of Heisenberg spins, the transition from a 
microscopic lattice picture to a continuous is not so lucid 
and simple as in the Villain model for an XY spin glass. We 
shall limit ourselves to a discussion of the consequences of a 
naive generalization of the continuous gauge theory devel- 
oped above to the non-Abelian gauge fields of the group 
S0(3), corresponding to Heisenberg 

A generalization of the partition for frustration lines is 
carried out without difficulty. Instead of (2.14) we now have 

+, ( V  -C "1)' q~ +TC s p  B ~ ~ ~ P ~ ~ ~ ] }  . 
a akl (4.1) 

Here p is a tensor of rank n in the three-dimensional space of 
the group SO(3): 

cp"-..*, e,=I,2,3, 
h 

A ,  ,$ the Yang-Mills field of the group SO(3); k = x, y, z; 
and Fa,, is the intensity of the Yang-Mills fields (the curva- 
ture; see, for example, Ref. 3 and 4), 

- aAal aAa, 
pakl = - - - - [ A c r k ,  Aat  I 

ax, ax, 

In rotations of the group S0(3), the fields p, A,  and P trans- 
form as 

Here 

G=O,X.. .XO,, G,=IX.. .XIXO,XiX.. .XI, 
n 

where 0, is a three-row orthogonal matrix of the group 
SO(3). 

Qualitatively, all the conclusions of the theory (4.1) are 
the same as those of the theory of Sec. 2. Below the topologi- 
cal transition point, the bosons q, are massive, while the pho- 
tons A are massless. On appearance of infinite frustration 
lines, (p' ') is nonzero. All the photons acquire mass, but in 
return there appear again a certain number N,  of Gold- 
stones (see Ref. 15): 

N,=3"-2n- 1. 

Thereby there appear in the system long-range correlations 
of currents in different replicas, of the type (2.18). 

We note that the description of the system of frustration 
lines in a Heisenberg magnet by means of (4.1) has a topologi- 
cal basis. The frustration lines in this case are, as is well 
k n ~ w n , ~ . ~  disclinations in the field of a magnetic moment m 
with strength 1/2 (the same as in a nematic liquid crystal). 
Topologically they are equivalent to disclinations in the field 
of orthogonal matrices S0(3), a fact that was used earlier in a 
derivation of (4.1) by Volovik and one of the authors3v4 for 
description of a Heisenberg spin glass. Here it is very impor- 
tant that although disclinations with strengths f 1/2 are 
topologically equivalent, nevertheless for a topologically 
continuous transition from disclinations with strength - 1/ 
2 to strength + 1/2 it is necessary to surmount a large ener- 
gy barrier. The interaction of disclinations with each other, 
as is again well known from the theory of liquid crystals, 
depends on the product of their strengths and is described by 
the formula of the type (1.2). 

The situation changes importantly for thermal disclina- 
tions with integral strengths. All such disclinations are topo- 
logically equivalent to a uniform state; usually they are not 
even local minima of the energy functional. Therefore there 
are no infinite or closed thermal disclinations. What is still 
more important, there are also no finite segments of thermal 
disclinations. The decays of Fig. 2 are now forbidden. One 
easily shows this by noticing that the only candidate for a 
decay interaction of the type (3.8) that is permitted by the 
symmetry SO(3) is 

where E , ~ ,  is the antisymmetric unit tensor, and where the 
vector $, , as in Sec. 2, describes thermal disclinations. The 
expression (4.2) is, in an obvious way, equal to zero. 

Without thermal disclinations, the genuine spin glass 
phase GSG will exist also at finite temperature. 

5. CONCLUSION 

The results of Secs. 3 and 4 contradict computer calcu- 
lations and theoretical considerations'9920 that show that 
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d = 4 is the lowest marginal dimensionality for spin glasses 
with short-range action. The contradiction is especially bad 
for the Heisenberg model. It indicates that a disclination 
model that takes no account of the spin-wave degrees of free- 
dom is not adequate for the problem. Spin wave fluctuations 
destroy the long-range order in the phase GSG (Sect. 4) and 
make the correlation radius R,  finite, although it still be- 
comes infinite according to a power law with lowering of the 
temperature. It can only be hoped that our principal qualita- 
tive conclusion is preserved, that in the three-dimensional 
case the phase transition with repsect to concentration from 
the ferromagnetic phase (or a spin glass with finite rigidity) 
to the paramagnetic state at low temperatures is a topologi- 
cal transition. 

The situation with XYspins is more delicate. We solved 
the Villain model, in which the spin waves are free, with 
asymptotic accuracy at low temperatures and small r. Fur- 
thermore, we obtained a correct conclusion about the ab- 
sence of long-range order in the phase GSG at finite tem- 
peraturks. But formula (3.10) for the correlation radius 
indicates that d = 3 and not d = 4 is the marginal dimen- 
sionality for the Villain model. It  is noteworthy that on this 
point there is no direct contradiction between the topologi- 
cal model, which takes account only of disclinations, and 
computer cal~ulations'~ that include the interaction of spin 
waves. The correct transition from d = 3 to d = 4 in the to- 
pological model is given not by the field model (2.15) for 
d = 4, but by something quite different. A disclination in the 
field of XY spins, corresponding to the homotopic group 
I7,(S1) in four-dimensional space, is not a line but a two- 
dimensional plane (loops ford = 3 correspond to closed two- 
dimensional surfaces for d = 4). Therefore the correspond- 
ing field theory must operate not with particles but with 
strings. As is well known, only the first steps have so far been 
taken in this direction," and it is premature to speak of a 
transfer of the theory of strings to the theory of spin waves. 
But from Polyakov's results2' one can carry away the 
impression that in four-dimensional space a topological 
transition connected with two-dimensional surfaces always 
exists. 

We recall that another possible candidate for a topo- 
logical transition with two-dimensional surfaces is an Ising 
spin glass in three-dimensional space. In four-dimensional 
space, the topology of the Ising model is determined by 
three-dimensional hypersurfaces. 

In conclusion, we note as a curiosity that the marginal 
dimensionality d = 3 is possessed not only by the XY spin- 
glass model, but also, according to arguments of Volovik and 
one of the  author^,^ by a dilute magnetic alloy with RKKY 
interaction. We express our thanks to M. V. Feigel'man for 
valuable counsel. 

APPENDIX 1 

Below, we present some formulas that relate the con- 
centration of the segments that make up the frustration lines 
(i.e. the total length of them in unit volume, L / V ) ,  the con- 
centration of segments belonging to lines of infinite length, 
etc. to the parameter Wof the distribution (2.2). 

The polymer partition function 8, of (2.3) can be gener- 
alized so as to include finite sections of polymers. This is 
a c c ~ m p l i s h e d ~ ~ ' ~  by introduction of a "magnetic field" h in 
such a way that 

3. ( h )  = C hZNfULNMC ( N f ,  L, M) , (Al . l )  

where Nf is the number of open polymers, and where C (  ...) is 
the number of different configurations with total length L 
and with M closed polymers; N = 2". 

The total concentration of monomers is 

the number of closed contours is 

a ln 3, 
<M>=N -----, an; 

the number of open contours is 

We recall that we are interested in the case h 4 ,  n+O, N-1. 
The expression (A 1.1) can also be written as a functional 

integral over the N-component field p, : 

Here p, is the first component of the field p,(pl-.I in the 
spinor representation). 

On passing to the continuous limit, we get near the to- 
pological transition, in analogy with (2.7), 

In the scaling range, the singular part of a, is ((p2(0)); i.e., it 
has an entropy index: 

~ = a o +  I z I '-OC. (A1.7) 

The singular part of (M ) is dg, /dn for n 4 ,  i.e., the free 
energy 

<M>=M,+T+  IT^^-". (A1.8) 

It is possible to calculate the concentration of mon- 
omers belonging to open polymers, a f ,  and thereby the con- 
centration of infinite polymers 

in the scaling region from the following considerations. Be- 
fore the topological transition, for jf-0, according to (A1.4) 
and (A1.6) 

<N,>--'/,Zi(cpl). 

By eliminating by means of the relation ( p , )  = xA, where 
x is the magnetic susceptibility of the model (A1.6), we find 
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Again, before the topological transition the concentra- 
tion of monomers in closed contours is 

(M> 
Uc=arn 

( N f > + ( M ' ,  ' 
and the concentration of monomers in open contours is 

( N,> 
Uf=Urn ( N , > + ( M )  ' 

These formulas retain meaning also after the transition. For 
h =O, we have in the scaling region, in accordance with 
(A1.7)-(Al.9), 

In the range where scaling considerations are inapplica- 
ble, expressions for a, and a, can be obtained by the method 
of the self-consistent field.'' The situation is somewhat more 
complicated with the calculation of a ,  . Below, we set forth 
a method by which this can be done. We consider a partition 
function in which we introduce two different fields, p and #, 
for separate description of finite contours and of infinite 
lines: 

Here 

@=(@ . - .  i i ~ ) ,  CP'(CPI . . T.v), h-0, Q-tO, N - t l .  (A1.12) 

In the limit U+U, the partition function (Al. 11) coincides 
with (A1.6). Here we have introduced two different poten- 
tials, U and U, for "monomers" belonging to ring and to 
open lines, respectively. The configurations with closed 
lines, obtained an integration over the fields @, drop out by 
virtue of the condition Q = 0. The partition function (Al. 11) 
can be put into the form 

where C (...) is the number of different configurations con- 
taining LC monomers in closed lines and Lf in open; 2Nf is 
the number of ends of open lines. In analogy with (A1.2) and 
(A1.31, 

In the region where the fluctuations are small, the partition 
function 8 can be calculated by the method of steepest de- 
s c e n t ~ , ' ~  - and after the differentiation in (Al. 14) one can set 
U =  U. 

APPENDIX 2 

We shall now describe the lattice variant of the partition 
function (2.14). In gauge theories on lattices, instead of a 
vector potential A ,  one introduces a gauge field A ,  (r,, r,) 
defined on the edges of the lattice (the segments of the poly- 

mer). The gauge transformation (2.13) in the discrete variant 
has the form 

A ,  (r,,, rb) + A ,  (r,, rb) f XG (ru) -Xu (rb). 

The gauge-invariant Hamiltonian on a lattice has the form 

Here the summation over (abcd ) means sumamtion over all 
faces of the cubic lattice with vertices abcd. On passing to the 
continuous limit in (A2.1) and (A2.2), we get the Hamilton- 
ian (2.14). We further calculate a mean of the form (p:...p :) 
with the Hamiltonian (A2.2). After integration over p, we 
get 

Here the sum over configurations means a sum over all pos- 
sible subdivisions into products of pair means according to 
Wick's theorem, i.e. over all possible configurations of 
closed contours passing through the points at which the 
fields p on the left side of (A2.3) are prescribed. The integral 
over A must be calculated, let us say, for a transverse lattice 
gauge. '' 

On each contour, 2" different combinations of signs 
plus or minus are possible before A,  in the exponent; this 
corresponds to 2" possible states of n currents on the con- 
tours. On calculating the integral over A ,  we get 

where the sum, as in (1.4), extends over the possible direc- 
tions of the currents (1.1) passing through the points a, ..., g. 

Finally, on calculating with the Hamiltonian (A2.2) the 
mean of 

we get the expression (1.7). Thus we have shown that (1.7) 
agrees with (2.14). 

Replacing (A2.5) by 
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(here 8,, are the 8, Pauli matrices, acting on the a-th index 
of the spinor p"') and introducing an integration over the 
fields $, with weight exp( - Za), where 

we obtain an expression for the partition function of immov- 
able frustration lines and of movable thermal vortices, which 
can pass only through points not occupied by frustrations 
but can begin and end on frustrations, with conservation of 
the corresponding currents. In the continuous limit, we ob- 
tain (3.9) for this partition function. 

"We once more recall that "heat capacity" in our case is the second deri- 
vative with respect to the concentration of negative bonds c (with respect 
to 7). 
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