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It is shown that the average spectral characteristics of a highly excited polyatomic molecule 
(anharmonic shift, broadening, and integrated absorption cross section) can be determined from 
the constants of the vibrational spectra of low-lying levels. A study is made of the relationship 
between the intramolecular broadening of harmonic levels and the spectrum of IR transitions in a 
quasicontinuum of vibrational states. By way of illustration, a calculation is made for the v ,  mode 
of a CF31 molecule. 
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1. INTRODUCTION 

Studies of the vibrational states of polyatomic mole- 
cules are limited usually to the harmonic expansion of the 
Hamiltonian and to finding small anharmonic corrections 
by standard procedures of perturbation theory. Cases are 
encountered in which perturbation theory is inapplicable to 
some closely spaced levels of a molecule, i.e., levels exper- 
ience a resonance and a direct diagonalization of the Hamil- 
tonian has to be carried out. However, in the case of states of 
energy considerably greater than the average vibrational 
quantum the situation changes radically. A strong rise of the 
density of the vibrational states has the effect that the anhar- 
monic interaction overlaps many closely spaced levels. Con- 
sequently, strong mixing of the levels (stochastization of the 
vibrational motion) is possible and this may alter the struc- 
ture of the spectrum of IR transitions, from single lines al- 
lowed in the harmonic approximation to a so-called vibra- 
tional quasicontinuum. The existence of quasicontinuous 
transitions from any level in the case of a sufficiently strong 
vibrational excitation has been confirmed very convincingly 
by numerous experiments involving multiphoton IR laser 
excitation of molecules. ',' 

Clearly, the most important physical application of the 
multiphoton excitation of molecules is the experimental in- 
vestigation of nonlinear quantum systems in which a transi- 
tion from weak to strong excitation corresponds to conver- 
sion of linear motion into sto~hastic.~ Recent experiments4 
have shown that the stochastic range of motion of nuclei in 
molecules makes a considerable contribution to the energy 
spectrum even below the dissociation threshold D is reached. 
For example, in the case of SF, molecules the lower energy 
limit of the stochastic range, naturally somewhat arbitrary, 
is Es, ~ 4 0 0 0  cm-' and the dissociation energy is D=: 32 000 
cm-I, whereas in the case of CF,I molecules we have 
E,, ~6000 cm-' and D z  18 500 cm-'. 

It is at present hardly realistic to expect that detailed 
spectra of transitions from a fixed highly excited vibration- 
al-rotational state can be determined experimentally. There 
are at least two fundamental difficulties. First, for the ener- 
gies given above the characteristic separation between 
neighboring levels is considerably less than the Doppler 

spacing, and in the case of strongly excited molecules this 
separation is considerably less than the natural widths. Sec- 
ond, in real experiments we are dealing with a distribution in 
a gas over a large set of vibration-rotational levels. The pub- 
lished experimental results point to three characteristic fea- 
tures: 1) the vibrational modes remain individual in the spec- 
tra and this applies to IR linear absorption5 and fluorescence 
spectra,, as well as to the Raman scattering spectra7; 2) the 
band spectra shift toward longer wavelengths and this is nat- 
urally due to the anharmonicity; 3) in spite of the preserva- 
tion of the overall mode structure of the transitions, the spec- 
tra of the individual bands broaden. This aspect is 
quantitatively least informative and this is again due to the 
actual distribution between the levels. 

Our aim is to treat theoretically these features and to 
develop a method which would enable us to estimate the 
cross sections of IR transitions, their frequency depen- 
dences, and the evolution of these transitions on increase in 
the vibrational energy. We shall assume that the key to the 
understanding of the spectra of transitions between highly 
excited vibrational states of a molecule is the pattern of its 
intermode resonances3 We shall illustrate this approach by 
considering CF,I molecules and estimating the anharmonic 
interaction constants using the available spectral data.' We 
shall also mention another feasible way of determining the 
transition cross section to the vibrational quasicontinuum, 
which is essentially semiempirical because it is based on a 
comparison with the characteristics of the process of multi- 
photon excitation of molecules. This approach gives reason- 
able results which can be compared with the experiments 
carried out on the CF31 (Ref. 9) and OsO, (Ref. 10) mole- 
cules. We shall conclude our paper by considering briefly the 
correspondence between the two proposed approaches. 

It should be stressed that at present the published data 
are highly contradictory even in the case of the simplest of 
problems, which is a very rough (to an order of magnitude) 
estimate of the transition cross sections. In particular, some 
laser-chemical experiments are explained in Ref. 11 assum- 
ing an anomalously strong (by two orders of magnitude) in- 
crease in the cross section on increase in the vibrational ener- 
gy. It is not surprising that such subtle aspect as the band 
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profile is still subject to controversy. This will be discussed 
separately in Sec. 4. 

2. HAMlLTONlAN AND BASES EMPLOYED 

Let N be the number of degrees of freedom of a molcule 
and let the first mode be infrared active with a transition 
spectrum that will be considered later. We shall write down 
the Hamiltonian in its standard form separating the harmon- 
ic terms from the anharmonic part that mixes the different 
coordinates: 

N 

The oscillator functions that diagonalize the harmonic part 
will be denoted by ( v )  = Iv, ... v,  ): 

i = I  

We shall be interested, in particular, in the form of the ex- 
pansion in terms of a harmonic>asis of "true" functions 
Itrue) = It ) of the Hamiltonian H. 

We shall consider the dispersive nature of the coefficients 
C :, ... v, as a function of the energy and we shall frequently 
speak of the "width" of a level It ) as a characteristic energy 
interval, so that levels Iv) lying within this interval dominate 
the contribution to It ) . To avoid terminological confusion, 
we shall stress particularly that this width is in no way relat- 
ed to any finite lifetime of the regular states (if the spontane- 
ous decay is ignored, this time is naturally infinite). How- 
ever, the width of a level ( t  ) considered in a harmonic basis is 
most closely related to the observed widths in the spectrum 
of infrared transitions; this will be dealt with in later sec- 
tions. 

For the sake of convenience, we shall represent the an- 
harmonic part HA of Eq. (1) in the form of the sum 

h 

where the contribution HA , contains terms that include the 
coordinate of the selected mode an$ all the other anhar- 
monic interactions are included in HA,. We shall always 
speak of the first mode, bearing in mind that with a suitable 
change of notation the procedure employed can be applied to 
any mode. We can now rewrite the Hamiltonian in a form 
convenient for further operations: 

i.e., we shall distinguish between two subsystems, the first 
mode Y ,  a%d the interacting (N - 1) vibrations, and write 
down part H A ,  that mixes them. 

The Hamiltonian H ( - 1) describes a "molecule" with a 
truncated number of the degrees of freedom. We can define 
the "semitrue" basis of states (semitrue) = 1s) which dia- 
gonalize this particular part of the total Hamiltonian: 

The formulas in Eq. (6) are completely analogous to those in 
Eq. (3) if we bear in mind that the space of Is) is of lower 
dimensionality, but such a separation is highly convenient 
in, for example, further investigations of the behavior of an 
IR-active degree of freedom upon excitation. 

In writing down the Hamiltonian we have been forced 
to use the averaged form. This has been done not only to 
achieve considerable simplification. There is a fundamental 
difficulty that it is not possible to find all the anharmonic 
Hamiltonian constants, because it is not the separate con- 
stants but a complex combination of them that determines 
the shifts and forbidden bands observed in the linear spec- 
trum. If the average interaction constants %an be varied inde- 
pendently, it is necessary to write down HA separating the 
"natural" dependence on the frequencies and allowing for 
the symmetry properties of a molecule. 

In the most general form, we can write down 

i jk l m n p  

We shall adopt two simplifications: first, we shall consider 
only resonances of the third and fourth orders. The illustra- 
tive calculation given below for a CF,I molecule confirms 
that even allowance for the fourth-order resonances gives 
rise to a correction ofjust 10-20% compared with the proce- 
dure limited to the third order alone. 

Second, instead of a set of constants V r' and V I:,, we 
shall use two averaged constants V, and V,, expanding the 
Hamiltonian in terms of the factors w , i i  and retaining in the 
sum the scalar combinations for a given symmetry of the 
molecule, i.e., 

sim aim 

The sum in the above equation stands for combinations of 
coordinate products that are scalar in the symmetry group of 
the molecule. We can find them if we expand in terms of 
irreducible representations the direct product of the repre- 
sentations governing the coordinates occurring in a given 
term. The number of totally symmetric representations in 
this expansion determines the number of possible scalar 
combinations. In the case of equality of several indices in Eq. 
(8) we have to add a numerical factor which allows for the 
smaller number of such terms in Eq. (7). 

3. AVERAGED CHARACTERISTICS OF A MOLECULAR 
SPECTRUM 

Vibrational states in a quasicontinuum have been inves- 
tigated employing two approaches. In one of them, devel- 
oped directly in connection with experiments on multipho- 
ton excitation of molecules, a pumped mode interacting with 
the field is The anharmonic interaction 
between modes is then allowed for by introducing times de- 
scribing energy relaxation to a reservoir containing the other 
vibrational degrees of freedom. The other approach is not 
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based on eigenstates of a rn~lecule '~- '~ and is of interest also 
in cases other than multiphoton excitation of molecules. In 
this approach many levels are found to be dipole-coupled. 

We shall begin from eigenstates of a molecule as given 
by Eq. (3), and in the application of multiphoton excitation 
we shall formulate an intermediate approach when intro- 
duction of semitrue states of Eq. (6) makes it possible to avoid 
a phenomenological indeterminacy in the selection of relax- 
ation times and yet to allow, in the determination of the 
absorption-line profile, for the existing correlation between 
the various states of the reservoir which differ only by a 
quantum of the excited mode. 

A calculation of the exact values of the expansion coeffi- 
cients C :I,,.UN and C :  of Eqs. (3) and (6), containing the 
complete information on the eigenvalues and eigenfunctions 
of a molecule and of a "molecule" without one mode is unre- 
alistic and often unnecessary. For example, in the case of an 
SF, molecule the energy of lo4 cm- ' corresponds to a den- 
sity of states - 10, cm-', whereas an experimental estimate 
states is 10-100 cm-'. Therefore, the average parameters 
describing the form of smearing are of real interest. If we use 
sufficiently reliable experimental data (on the long-wave- 
length shift and broadening of the absorption spectra), the 
average parameters will include primarily the average an- 
harmonic shift of a transition and the characteristic width of 
transitions to a vibrational quasicontinuum. Undoubtedly, 
both quantities exhibit dispersion, depending on the actual 
occupation numbers of the harmonic states contributing to 
the states It) and Is). 

As for the anharmonic shift, the determination of the 
zeroth approximation for the shift obtained using the anhar- 
monicity constants is discussed in Refs. 9 and 10. The result 
of an absorption-spectrum shift that increases on increase of 
the enerev is 

where the summation is carried out over all the modes andg, 
is the degeneracy (the spectroscopic constantsx 1i are chosen 
with allowance for their sign). 

The most important is the problem of the information 
which can be obtained by representing the true wave func- 
tions of a molecule by a superposition of the states in the 
harmonic approximation. Since it is in the harmonic basis 
that the matrix elements of the dipole moment of transitions 
are simplest, it is clear that the expansion (3) is the simplest 
way to finding the IR spectrum. We have stressed already 
that in the case of real experiments the quantities of the 
greatest interest are the spectral characteristics averaged 
over many closely spaced true states. Naturally, the spec- 
trum of transitions from a single state It ) differs from the 
average spectrum. However, this applies mainly to small- 
scale (in respect to frequency) fluctuations of the intensities 
of the individual lines and not to the profile of the band as a 
whole. What should be the qualitative form of the profile? So 
far, we only know that the profile is strongly dispersive. A 
more detailed discussion is given in Sec. 4, so that here we 
shall simply formulate the intermediate question: what is the 

form of the quantities I C :I..,UN l 2  occurring in the expansion 

(3)? 
First, it is clear that they also are of strongly dispersive 

nature, i.e., they are important at E, =: Xvi ui . If this is SO, we 
can introduce the concept of level width in a vibrational qua- 
sicontinuum as a characteristic energy interval of harmonic 
levels which dominate the contribution to It ). Within the 
width of this interval the harmonics are strongly mixed and 
this is ensured by the intermode interaction terms from the 
anharmonic part of the Hamiltonian. 

Second, it is clear that the distant harmonic terms make 
a contribution to the true states which is given by perturba- 
tion theory (the criterion of distant and close states is gov- 
erned by the value of the actual matrix element of the inter- 
action). Therefore, we can make the case more specific by 
approximating the coefficient I C l 2  with a Lorentzian 
profile and thus allow for the asymptotics in the wings and 
for the strong mixing of the close (within the required width) 
levels. 

This Lorentzian-profile approximation is used widely 
in the l i t e r a t~ re , ' ~ , ' ~  and it is this approach which has pro- 
vided an accurate description of the profile of an overtone 
observed in Refs. 20 and 21, while variation of the param- 
eters of the Lorentzian profile in a semiempirical excitation 
model gave results in good agreement with experiments on 
multiphoton excitation of m o l e ~ u l e s . ~ ~ ' ~  Such a form relat- 
ing two bases is known to be equivalent to exponential decay 
of a "prepared" harmonic state to true states (see, for exam- 
ple, Ref. 22)." 

Finally, we obtain 

bearing in mind that the true form of the smearing has the 
same asymptotics and a characteristic anharmonically shift- 
ed maximum. 

In the calculation of the broadening we note that the 
systematic contribution of the anharmonicity to the expres- 
sion for the transition rates and the inequality AEA ( v ,  in 
the case of a slower growth of the resultant broadening on 
increase in the energy will allow us later to ignore, for the 
sake of convenience, the regular anharmonic shifts and 
quantities such as AEA . 

Another natural simplification is obtained by using the 
concept of the average broadening a, (E, ). All this reduces 
the problem to finding a one-parameter form of the expan- 
sion of the true functions in terms of lu '....u, ). The above 
assumptions are sufficient for the determination of the broa- 
dening ocurring in Eq. (10). In fact, an exact calculation of all 
the terms from the Hamiltonian (8) gives the form (10). It  is 
clear that if this diagonalization ignores only one anhar- 
monic level li) of energy Ei ,  then (because of the large num- 
ber of the levels) the result is not affected. Therefore, we can 
now find the depth of a level Ji) due to its "decay" to a 
vibrational quasicontinuum. Figure 1 shows the selected lev- 
el li) and the "smeared" harmonic state related to ti) by 
terms from the Hamiltonian (8). The broadening of level Ji) 
is described, in accordance with the well-known formulas 
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FIG. 1.  Interaction of a selected harmonic state (i) with broadened har- 
monic states. By way of example, only two harmonic levels ( 1) and 12) are 
selected and these acquire a broadening u, because of the intermode an- 
harmonicity. Here, A# is the defect of a resonance between harmonic 
states ( A g  = Ei - E,). The level (i) spreads into a quasicontinuous spec- 
trum and acquires a width ui [See Eq. (13)l. 

for the rate of decay and for the existence of a quasicontin- 
uous spectr~m,~' by the formula 

Here, ti) and I j) are the harmonic states, i.e., the difference 
Ei - Ej between their energies is the known resonance de- 
fect. To use the term "decay" and consequently, Eq. (1 I), we 
must satisfy first the conditions 

Since the level li) is in no way distinguishable, we can use Eq. 
(1 1) to obtain an equation for finding a ,  subject to the condi- 
tion a, = LT, . It should be noted that the reasonable assump- 
tion that the energy dependence of a, is weak, which is used 
in writing down the same values of a ,  for different I j) in Eq. 
(1 I), is supported by the results of a specific calculation, dis- 
cussed below, for the CF,I molecule. One further point: 
since we have decided to use averaged widths, the quantity 
a, should be averaged over many closely spaced levels. Fin- 
ally, the problem has been reduced to an equation which is 
simple in the case of numerical calculations: 

It is worth stressing the self-consistent nature of Eq. 
(13). Beginning from the assumption of the possibility of the 
expansion (lo), we have found the dacay width of a level (1 1) 
which is not distinguished in any way. It remains then to 
close the chain of reasoning by writing down Eq. (13). 

A similar expression can be obtained also for a "mole- 
cule" without one mode [see Eq. (7)]: 

where 

FIG. 2. Energy level scheme of a vibrational quasicontinuum. The energy 
level E, is quasidegenerate. The harmonic approximation is used to sepa- 
rate the system into subcontinua differing in respect of the occupation 
numbers of the mode v,. In the presence of anharmonicity, which does not 
affect the mode v,, the levels in each quasi~ontinuum broaden (the width 
us is independent of u,). If the interaction H A ,  for, the "semitrue" states 
become coupled and decay into neighboring subcontinua. The decay 
width of a semitrue state 6(E, ,v,) = 6- + 6 ,  [see Eq. (24)] denoted by a, 
represents the width of the "true" states when the energy is E,.  

We shall use the following notation: t and s are the in- 
dices referring to the discrete true and semitrue levels;p, and 
p, are the densities of states of a molecule and of a "mole- 
cule" without allowance for the mode v,; E, and Es are the 
corresponding energies. When summation over all the states 
is made, one can use the representation of the sum in the 
form of integrals with state densities p, and p, : 

The use of Eqs. (1 3) and (14) allows us to check the correct- 
ness oLthe proposed procedure. In fact, we shall ignore the 
term H A ,  in the Hamiltonian of the molecule. Then, the 
energy level scheme can be represented as shown in Fig. 2 
without the terms giving rise to the interaction between the 
various subcontinua. All the levels ( t  ) of energy E, are ob- 
tained in the form of wave functions of the type 

\u ,=O)  1s; E,=E,>;  ( v , = l > { s ;  E , = E , - v , ) ; . .  . (15) 

Iv,=k> Is; E,=Et-kv,); .. . 

In the case of the level it ) we can determine a ,  from Eq. (1 3) 
and for each quasicontinuum we have Jv ,  = k )Is and 
Es = E, - kv, in accordance with Eq. (14). (A change in the 
numbe~of quanta of the first mode in the case of zero inter- 
action HA, does not alter the width!). A mutual agreement of 
the results can be obtained if 

In the case of the example used below, Eq. (1 6) is valid to 
within 5-1 5% for all the energies ranging from the boundary 
of the stochastic region to the dissociation energy 
(Es, Z ~ X  10' cm-' and DZ 1 8 . 5 ~  lo3 cm-' for CF,I). 
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4. TRANSITIONS 

The operator describing the interaction of a molecule 
with the radiation field is 

wherep is the dipole-moment operator. The rate of absorp- 
tion from a state E, under the action of radiation of frequen- 
cy R can be found in the standard way from the expression 

In our case the operator .i/ acts only on the coordinates of the 
first mode and, therefore, in finding the matrix element of 
this operator it is convenient to expand the true states not as 
in Eq. (3) but so as to single out the mode v,. The wave func- 
tions Iv,) IS) form a complete set in the space of vibrational 
coordinates of the whole molecule and, therefore, it is natu- 
ral to use an expansion of the type 

where the main contribution to the state It ) with an energy 
El is made by the wave functions Iv,) Is) of energy v,v, + E, 
z Et . Therefore, Eq. (19) represents an expansion of the true 
states in terms of semitrue states, i.e., in terms of those states 
@ which only the interaction H A ,  is ignored. Obviously, if 
HA , = 0, the coefficients C:, ,  in Eq. (19) are given by 

This is the main convenience of the use of the bases Is) and 
( t  ), i.e., the interaction which does not affect the mode v, 
makes no contribution to the width of a transition. 

We shall now turn to calculation of the matrix element 
in Eq. (18). The integrated value of the transition force con- 
stant (which is independent of the basis) is given by 

To continue the discussion we shall specify the nature of the 
expansions of the wave functions used: 

(-1) ' 8"  

x & [ (F-E8--vtu,) '+6'(Et, u,) 1'" Iv,) Is), (24) 

where notation of the type ( - 1)"" is used for the phase fac- 
tors ( + 1). The widths employed are not independent. In 
particular, substituting Eq. (23) in Eq. (24) and comparing 
with Eq. (22), we obtain the relationship 

Naturally, the formula (25) should be valid, strictly speak- 
ing, only if one width is used for each of the levels (22)-(24). 
However, if we are interested only in averaged widths, Eq. 
(25) should reduce to 

and this relationship should be checked in each specific cal- 
culation. Allowing for the regular anharmonic shift in the 
substitution of Eq. (24), we find that the matrix element be- 
comes 

The main conclusion which follows from the above dis- 
cussion is that the absorption spectrum is determined not by 
the widths of the true states when they are expanded in a 
harmonic basis but by decay widths of semitrue states. Fig- 
ure 2 shows an energy level scheme illustrating the proce- 
dure of finding the states in a vibrational quasicontinuum. 
The decay is understood here to be t&e broadening of a level 
(v,) 1s) because of its interaction via HA , with other subcon- 
tinua [u; ) Is'). 

It  remains to find the widths S (E, ,vl). For example, let 
us assume that as a result of partial diagonalization we ob- 
tain semitrue states Ivl) IS). Thus, for a fixed energy El of a 
molecule we have quasidegeneracy (Fig.2). We shall now 
consider a specific level Iv,) Iso) interacting with a quasicon- 
tinuous set of levels Iu, - 1) Is'). The square of the matrix 
element of this interaction can be written down introducing 
V2k,A ) to denote the sum of the squares of matrix elements 
of HA between all the sublevels of the degenerate levels 
v = (v ,... u,) and v + A = (v, - 1, v; ... v,) whereA is one of 
the resonances under discussion. Since in the case of summa- 
tion with respect to v' we encounter nonzero values only for 
some (coupled by resonance to a level v) terms of the sum, we 
can go over to a summation over resonances A .  If for a given 
A, we use thevalue averaged over themany states V2(u,A ),we 
then find that 

X 
0. (Em) +0. (Ear) 

(E.r-E,,-~l+A)2+ (0. (E,,) +a. (E,.) ) ' (28) 

where g(v) represents degeneracy of the level v. If the decay 
width of a level lvl) Iso) to a subcontinuum Iv, - 1 ) Is') given 
by 

6-=np, (&I) <vlsO) HAl ( v1 - l ,  s')' 

satisfies the inequality 
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we can use the resonance approximation assuming that 
E,. = E, + Y, .  The decay to a subcontinuum S (E,,u,) is 
found in the same way and also the condition on the decay 
width 6,. Finally, the width6(Et ,v,) of Eq. (24) is found to be 

6 (E ,  v,) =6-4-6, = ( 
& v;:";)B) )" 

Here, the first term allows for resonances of the (v, ... v, ) 
(v, - l...v,) type, and the second for resonances 
(v ,... v,)+(v, + l...~,). Then, 

5. EXAMPLE OF A CFIl MOLECULE 

We shall now give the results of a numerical calculation 
for a CF31 molecule. We shall estimate the constants V3 and 
V, using the results of Ref. 8 reporting an investigation of the 
band shifts and of the forbidden bands of this molecule. The 
constants f,,, and XI, given in Ref. 8 can be used to estimate 

flzs= (~,u,a~)"'V,/8'"=8.2 cm-', V,=1.5. ~ m ' ' ~ ,  

X,z=o,ozV,/4=l cm-', V,=U.S. lo-' cm. 
(31) 

The normalization factors are selected in accordance with 
the general formula for the Hamiltonian (8) and for the ma- 
trix elements of the coordinates in the harmonic basis. 

We must stress here the illustrative nature of the calcu- 
lation designed to determine the orders of magnitude of the 
cross section and the dependences of the levels widths on the 
energy of a molecule. Naturally, estimates made using other 
anharmonic constants can give other values of V3 and V, so 
that the question of the correct average interaction constants 
has not yet been answered. 

In writing down the Hamiltonian (8) we have confined 
ourselves to the terms corresponding to resonance defects up 
to 200 cm-I. Allowing for the symmetry of the molecule 
(C,, ), we find there are 10 such resonances of the third order 
and 32 of the fourth order. The molecular frequencies were 
also taken from Ref. 8. All the terms of the Hamiltonian 
were written down in scalar combinations in the group C, ,  
and for these it was easy to determine the sums of the squares 
of the matrix elements of the interaction between the sublev- 
els coupled by a resonance between the levels. We shall not 
give the table of resonances or details of the calculations. 
These calculations are easily reproduced using the values of 
the frequencies and the known symmetry properties. 

Figure 3 gives a plot of the level widths in the quasicon- 
tinuum. We can see that they become considerable, amount- 

FIG. 3. Illustrative example of a CF,I molecule. The level widths in the 
quasicontinuum are shown as a function of the energy of vibrational 
excitation. V3 = 1.5X ~ m " ~ ,  V, = 0.5 X cm. 

ing to several hundreds of reciprocal centimeters. The pow- 
er-law dependence of the level of the energy can be 
represented in the form a(E) a E  This is naturally ex- 
plained by the order of the resonances under discussion (see 
also the Conclusion). 

In finding the average level width it is easy to calculate 
also the dispersion, which ranges from 50% for energies 
E z 5 X  lo3 cm-' to 25% for E z 2 5 X  lo3 cm-'. However, 
the influence of such a large deviation from the average value 
may not be observed in real experiments when the source 
emits a line of finite width. 

Figure 4 gives, for a fixed total molecule energy E, , the 
broadenings of the semitrue levels os(E,) and the corre- 
sponding decay widths to the adjacent quasicontinua (i.e., 
v,,E,--tu, + 1, Es - v, and v,, E,-v, + 1, E, + v,). Figure 
4 also shows a plot of the sum a, (E, ) + 6 (E, v,). We can see 
that for the majority of subcontinua with different values of 
u, the relationships of Eq. (25) are satisfied, though this is not 
self-evident. Moreover, we can ea~ily~imagine a situation 
when this is not true. For example, if HA , = 0, then 6 = 0. 
As pointed out earlier, we can in general expect Eq. (26) to be 
satisfied and this provides a check on the calculation meth- 
od. Clearly, Eq. (25) follows from Eq. (26) so that the condi- 
tions 

FIG. 4. Illustrative example of a CF,I molecule. The decay widths 
6 (E, ,vl) of the subcontinuum (1) with different occupation numbers v,. 
Broadening of "semitrue" levels a, (2) with increase in the energy 
E, = E, - v,u,. The excitation energy of the molecules In 
E, = 16.6X 10, cm- l. Curve 3 represents the sum CT, (E, ) + S(E, ,u,). 
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0 s  ( E s )  +6 (El ,  v,)  =CT, ( E , ) ,  

E,+v,u,=Et 

make it much easier to calculate the levels widths S from the 
relations S (E, ,v,) = a, (E, ) - o, (E, ), rather than from the 
cumbersome formulas in Eq. (30). 

Equation (25) can now be used even though it no longer 
holds for large values of v, (Fig. 4). This is because these 
terms make a negligible contribution to the cross sections of 
the transitions of Eq. (27) due to a rapid fall of the density 
p, (E, - v,v ,) on increase in v,. Physically, this is equivalent 
to the fact that the majority of states near the energy E, have 
occupation numbers of the mode v, close to the average val- 
ue and not v,,, - E, /v,. 

The same fact makes unimportant the deviation from 
inequality (29), which has to be satisfied in the calculation of 
the decay curves. This condition may be violated again only 
for the mode occupation numbers for those harmonic states 
with a given energy whose number is relatively small. 

We shall now consider the profile of an absorption line 
and the energy dependence of the characteristic width. The 
formula (27) is a sum of several Lorentzian profiles and it is 
difficult to obtain an analytic expression for the effective 
width. However, in the far wing of the absorption line the 
relation (34) naturally gives the same asymptotic behavior as 
the Lorentzian profile. Introducing Swing for the width of a 
Lorentzian distribution which ensures this behavior, we find 
that the calculations yield 

Gwing(lOCcm-l) =110 cm-I, Guting(2. lo4 cm-I ) ~ 2 7 0  cm-I. 

(32) 
The true line profile (Fig. 5) is characterized by a somewhat 
narrower intensity distribution than that given by a Lorent- 
zian curve the given widths. However, in estimates we can 
assume that 

If we introduce the half-width at midamplitude for the ab- 
sorption cross section [27), we find that 

a,, . I O ~  cm2 

FIG. 5. Illustrative example of a CF,I molecule. Behavior of the absorp- 
tion cross section in the quasicontinuum: 1)  E = 1 1 . 2 X  lo3 cm-I; 2 )  
E = 1 6 . 6 ~  lo3 cm-'; 3) E  = 2 2 ~  lo3 cm-'. The curves are symmetric 
relative to the frequency v ( E )  and 0 = lo3 cm-'. 

Calculations indicate that the energy dependence of this 
characteristic transition width is linear. 

6. CONCLUSION 

We shall now try to establish the relationship between 
the calculated values and those found in a specific experi- 
ment. The concept of the average width of smearing of har- 
monic states in the formation of eigenlevels of a vibrational 
Hamiltonian (vibrational quasicontinuum levels) has made it 
possible to represent in a simple form the true wave functions 
as expansions in harmonic functions. Therefore, all the ob- 
served characteristics-provided only that they are not re- 
lated to the interference between the various terms in Eq. 
(3)--can be calculated by the procedure described above. In 
particular, the linear absorption spectrum in the vibrational 
quasicontinuum range for a group of states of energy E, is 
described by Eq. (27). Therefore, when the procedure is ap- 
plied to experiments on multiphoton excitation of mole- 
cules, it can be used to calculate the rates of excitation in the 
vibrational quasicontinuum region and to give explicitly the 
kinetic equations whose solutions (see Refs. 1 and 2) give 
such observable characteristics as the absorbed energy, dis- 
sociation yield, etc., for molecules excited to the stochastic 
range. 

The results of our investigation have drawn attention to 
two principal aspects: 1) the feasibility of calculating the 
average widths of vibrational quasicontinuum levels using 
constants that can be deduced by standard spectroscopy [Eq. 
(13)l; 2) the complex relationship between the widths of the 
absorption spectra and the characteristic broadening of the 
harmonic levels a, [Eqs. (27) and (30)l. The latter is con- 
firmed by the following trivial example. Let us consider a 
molecule for which the anharmonic part of the Hamiltonian 
does not contain the coordinates of an infrared-active mode. 
Then, the majority of levels in the harmonic approximation 
is undoubtedly mixed and the true energy spectrum of the 
molecule can be very far from harmonic. However, the ab- 
sorption spectrum is 6-like for an initial distribution of the 
populations (naturally, without allowance for the notational 
width). In other words, if the matrix element (t  ' l i l t  )' is 
found using Eq. (22), the cross terms cancel the diagonal 
terms and the reszlt has the form of Eq. (20). This limiting 
case (6 = 0 when HA , = 0) is also included in our analysis in 
a natural way. 

It should be pointed out that the whole procedure of the 
calculation widths given above is explicitly based on the as- 
sumption that in writing down the anharmonic part of the 
Hamiltonian we can confine ourselves to the third- and 
fourth-order terms. The validity of this assumption in our 
case in confirmed by the small contribution to the result of 
even the terms of the fourth order compared with the third, 
but this must be justified in each specific case. 

Our example of the v, mode of a CF,I molecule is suffi- 
ciently "average" i.e., the simpler relationships (25) are ap- 
plicable to it, but this cannot be expected in the most general 
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case. The degree to which the characteristics of formation of 
the transition spectra are manifested in each specific case can 
be found only by considering the specific pattern of inter- 
mode resonances. 

The following comments can be made about the irregu- 
lar ("accidental") frequency dependence of the cross section 
in the case of excitation in a vibrational quasicontinuum. In 
fact, if we assume that an isolated high vibrational-rota- 
tional state can be excited we should find that in the case of 
an infinitely narrow line there should be abrupt jumps of the 
absorption between neighboring transitions and the relative 
dispersion should be - 1. However, we are always dealing 
with a source of finite width Av so that we always excite 
simultaneously many states [n z p ( E  )Av]. An obvious esti- 
mate then gives the relative dispersion of the absorption 
cross section as - 1 / 6 .  Therefore, in real experiments we 
cannot expect an abrupt irregular frequency dependence. 

The energy dependence of the broadening in a vibra- 
tional quasicontinuum points to an obvious fact. The depen- 
dences of the widths of harmonic levels in the formation of 
true eigenstates obtained in the case of CF31 (OK E are 
self-evident from the following physical considerations. In 
the case of the third order resonances which govern mainly 
the widths in the example under discussion we can expect the 
dependence cr cc E 3 f 2  because of an increase in the harmonic 
matrix element of each of the terms 2$,2, on increase in the 
energy. This is the dependence assumed in Ref. 9 in deriving 
a semiempirical model of multiphoton excitation of 
CF,I. However, an estimate obtained for the widths (33) of 
the transition lines gives a somewhat weaker dependence. 
This must be allowed for in considering other specific exam- 
ples. However, it should be pointed out that in a comparison 
with the experimental results our clculations were purely 
illustrative) we must determine more accurately the average 
constants of the V, and V, type or, possibly, vary them inde- 
pendently and this should naturally affect the energy depen- 
dence of the cross sections. 

The procedure proposed above for the calculation of the 
average widths (13) is essentially the zeroth approximation 
for further iteration in the determination of the widths of 
specific levels. However, in many situations it is sufficient to 
know the average value and it is diffucult to obtain higher 
approximations, so that the above method may be sufficient. 
The authors are grateful to V. S. Letokhov for his interest 
and to V. N. Sazonov for valuable comments. 
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