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A general Schrijdiiger equation is obtained, describing the waveguide propagation of whistlers in channels 
(ducts) oriented along the magnetic field and having a density either higher (crests) or lower (troughs) than the 
density of the surrounding plasma. The self-focusing of the whistlers is considered on the basis of this 
equation and of the system of the plasma magnetohydrodynamic equations supplemented by taking into 
account the pondermotive force due to the high-frequency field. A one-parameter family of solutions of the 
complete system of equations is obtained and describes the stationary self-focused beams. It is shown that the 
beams accompanied by formation of ducts with plasma-density crests should be attenuated by the leakage of 
the wave due to wave tunneling. Thii explains why only ducts with troughs are produced by self-focusing in 
experiment, a result that agrees qualitatively with the solutions obtained. 

PACS numbers: 52.35.Fp, 52.40.Fd, 52.40.Hf 

1. INTRODUCTION 

The existing theories, based on the Schriidinger equa- 
tion, of whistler self-focusing in a plasma lead to two 
main conclusions: 1) formation of asymptotically sta-  
tionary wave beams a s  a result  of self-focusing i s  pos- 
sible only a t  W< &,/a (w, i s  the electron gyrofrequency); 
2) these beams should propagate in waveguide ducts hav- 
ing a density higher than the surrounding plasma (called 
hereafter crests). Both conclusions contradict qualita- 
tively the known experimental facts  (see,  e.g., Ref. I ) ,  
since formation of self-focusing troughs was  observed 
both a t  w c w c / l  and w > wc/%. 

Whistler propagation studies, based on WKB solutions 
of the complete system of Maxwell's equations in both 

and axisymmetrics geometries, have shown 
that, generally speaking, a number of effects a r e  
missed when the SchrMinger equation i s  used. One of 
them is the leakage of the wave from the c r e s t  a s  a r e -  
sult of i t s  tunneling into another This effect 
becomes particularly strong when the duct width i s  of 
the order  of the longitudinal It turns out 
a s  a result  that the linearly self-compressed c r e s t  
should rapidly "leak out." Another result  of the WKB 
solutions of Maxwell's equations i s  the feasibility of 
waveguide propagation in troughs not only a t  co< uc/2 
but also a t  w > wJ2. Clearly, self-focusing theory must 
take these circumstances into account. At the same 
t ime it must be simple enoughto yieldanalytic solutions. 

The present paper i s  devoted to  the development of the 
basics of such a theory. It consists of two parts .  The 
f i r s t  (Secs. 2 and 3) i s  devoted to the derivation of sim- 
plified electromagnetic-field equations on the basis  of 
Maxwell's equations under the assumption that the rela- 
tive change of the plasma density i s  small. We ar r ive  
a s  a result  to two different Schrsdinger equations. The 
f i r s t  describes beams with wave vectors "almost paral- 
lel" t o  the external magnetic field. This equation was 
f i r s t  derived in Refs. 7 and 8 and served s o  f a r  a s  the 
traditional one for  the investigation of the self-focusing 
of whistlers along a magnetic field. It leads to wave- 
guide propagation in c r e s t s  at  w< wc/2 and in troughs at  
W >  wJ2. The second SchrBdinger equation describes 

beams with wave vectors that a r e  grouped along a cone 
with apex angle 0 = arccos(2e/b,), where 0 i s  the angle 
between the wave vector and the external magnetic field 
B,. (The group velocity components, on the other hand, 
a r e  almost parallel t o  B, in both cases.) It i s  important 
here  that in the second case  the Schr'klinger equation 
describes waveguide propagation in troughs a t  cu < wC/2. 
Both Schradinger equations can be unified into one that 
can describe whistler propagation in troughs at both 
w < wJ2 and w > w J2, a s  well a s  in c r e s t s  at w > 0,/2 
(if tunneling i s  neglected). 

In the second part of the paper (Sec. 4) we add to the 
Schriidinger equations the plasma hydrodynamic equa- 
tions supplemented by t e r m s  containing the ponderomo- 
tive forces due to the pressure  of the R F  field of the 
whist lers  on the plasma. The system obtained permits  
a self-consistent treatment of whistler propagation and 
of slow plasma motion. We obtain next for this  system 
a family of solutions that depend on a single parameter  
a which describes stationary finite-amplitude wave 
beams propagating in the ducts produced by them. At 
o= 0 this family leads to a previously obtained solu- 
t i ~ n . ~ * ~  This  particular solution, however, holds only 
in the frequency region cu< bC/2 and descr ibes  station- 
ary beams in cres ts .  As  already indicated, such beams 
a r e  transformed into a defocusing branch because of the 
tunneling, which becomes quite intense when the chan- 
nel width i s  small  enough. Similar results  a r e  obtained 
for  all a< 1. The solutions at a>l describe stationary 
beams in ducts with troughs. These were  precisely the 
beams observed in experiment. 

Understandably, a s  in any self-focusing theory based 
on the SchriMinger equation, our equations describe the 
main processes only in the stage when the self-focusing 
i s  still  weak (the beam width greatly exceeds the longi- 
tudinal wavelength). They can be regarded, however, 
a s  the starting point for strong self- focusing theories 
which should be based on the complete system of the 
Maxwell equations and on the equations of nonlinear hy- 
drodynamics (and possibly also kinetics). They should 
also make extensive use of numerical methods. These 
questions, however, a r e  way outside the scope of the 
present paper. 
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2. FUNDAMENTAL EQUATIONS 

We assume that the electromagnet ic  field is quasi- 
monochromatic, i.e., can  be represented in the f o r m  

'I.[% (r, t ) e - z w l + ~ . ~ . I  , (2.1) 

where 3 v a r i e s  slowly with the t ime  t ;  the dependence 
on r ,  however, is a s  yet a rb i t ra ry .  Maxwell's equa- 
tions reduce then t o  the equation 

where 2, is the dielectr ic  t ensor ,  and i t s  nonvanishing 
components in a cold p lasma take, in a coordinate 
f r a m e  in which the magnetic field is directed along the 
z axis ,  the fo rm 

We denote by N the part ic le  densi ty,  by No the density 
at  infinity, and by w, the p lasma frequency correspond- 
ing to  No: 

Neglecting the ion motion in the whist ler  frequency 
range w <  o,<< UJ,, we can  wr i te  the components of the 
tensor  (2.3) in the fo rm 

where v i s  the relat ive variation of the part ic le  density 

In the preceding papers2-= Eq. (2.2) w a s  solved approx- 
imately by the WKB method. Assuming that 

+ 4 

= x  w,=const, b = b ( x , z ) ,  (2.6) 

the WKB solutions of (2.2) a r e  of the fo rm 

where q2=q:, m = 1 , 2 ,  

q, , ,2 (x)  = ( 2 1 ~ ~ ) - ' ( ( 1 - 2 1 1 ~ )  p=-2yZ[1+v ( x ) ]  
+ ( - l ) " p ( p - 4 y Z [ 1 + v ( x ) ] ) ' " ) ,  (2.8) 

and 2,,(x) i s  the polarization vector  and v a r i e s  slowly 
with x. Given the dimensionless  longitudinal wave 
number p, Eq. (2.8) de te rmines  two branches of the 
dimensionless  t r a n s v e r s e  wave number q .  A detailed 
investigation of the p roper t i es  of the WKB solutions 
(2.7) (part icular ly of the polarization vec tors  go(x), of 
the energy flux, and of others) can  be  found, e.g., in  
Refs. 2, 5, and 6. We note h e r e  that relat ion (2.8) a t  
v = 0 is the consequence of the known dispersion equa- 
tion for  whist lers  in the quasi-longitudinal approxima- 
tion: 

k 2 0 .  COS e 
o =  

(o,tc)=+ka (2.9) 

a s  can be verified by putting in  (2.9) 

3. THE SCHRODINGER EQUATIONS 

We introduce a s  the main sought quantities the follow- 
ing l inear  combinations of the Car tes ian  field compon- 

ents :  

(when dealing with self-focusing of whis t l e r s ,  these  
quantities a r e  m o r e  useful than the previously employed 

The component %'= i s  easi ly  expressed  in 
t e r m s  of and %', with the aid of the  equation div(i3)  
= 0. 

We a s s u m e  f o r  simplicity that assumptions (26) a r e  
valid, with N varying slowly with x and with v(x) small .  
More  accurately speaking, we assume that v = v(x/a), 
where  a i s  the charac te r i s t i c  spat ial  density sca le  that 
is l a r g e  compared with the rec iproca l  wave number 
k-' ( k  - w,/c fo r  whist lers) ,  with 

where  h i s  a smal l  parameter .  

We consider  asymptotic solutions of (2.2) in the f o r m  

EP,=E (Ax, hZz)  esp [i ( o l c )  ( Q x + P z ) ]  , 

EP,=G(hx, AZz) exp [ i ( o / c )  ( Q x f P z )  j , 
(3.3) 

where  Q and P a r e  p a r a m e t e r s  that will be  determined 
below. 

We s e e k  now E and G in the f o r m  

E=EO+hE'+hZE"+ ..., G=G@+fhG'+h2G"f ... . (3.4) 

We substitute (3.3) and (3.4) in (2.2) and equate t e r m s  
of like o r d e r  in A,  confining ourse lves  to  t e r m s  up to 
h2 inclusive. Leaving out, for  l ack  of space,  the cal- 
culation detai ls  (they a r e  described in Ref. lo ) ,  we 
presen t  h e r e  only the final resu l t s .  In zeroth o r d e r ,  
the condition f o r  solvability of the inhomogeneous sys- 
t e m  of equations f o r  E0 and Go yield fo r  Q an expres-  
sion that coincides with (2.8), if we make in the la t ter  
the substitutions q -Q and p - P ,  and s e t  v = 0. Solv- 
ing next the sys tem f o r  E0 and GO, we obtain 

where  R a polarization factor  fo r  which the  final ex- 
p ress ions  a r e  given below. We next obtain f o r  E f  and 
Gf ,  in f i r s t  o r d e r  in A, a sys tem of equations which can 
be solved if P, Q, and R have the following values: 

We have thus  two c a s e s .  In the f i r s t  the polarization 
in the ze ro th  approximation is c i rcu la r  (R = 0) and the 
wave vector  is directed along the magnetic field. 

In the  second c a s e  R P O ,  i.e., the wave is elliptically 
polarized even in the zeroth approximation, and the two 
branches m e r g e  and can propagate only a t  u < $, a s  
seen  f r o m  (3.9). A s  for  the wave vector  k, i t s  direction 
and magnitude in  the zeroth approximations a r e  given by 

cos 9 = P ( Q 2 + P Z ) - ' 1 1 = 2 ~ ,  k = o p / c .  (3.10) 

We note that in both c a s e s  the group velocity v, c o r r e -  
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sponding to the wave vector k is directed along the mag- 
netic field, a s  follows directly from the general 
equation 

Finally, comparing the t e r m s  with X2, we obtain for  
E" and G" a system of equations, the solvability condi- 
tions for which can lead in both cases  to a certain dif- 
ferential equation for  E,, which takes the Schr'ginger- 
equation form: 

where the wave vector k,, i s  determined from the condi- 
tion v,,(&) = 0. It i s  clear  from the preceding that this  
takes place either at  8 = 0, i.e., under conditions (3.6) 
and (3.7), o r  e l se  if (3.10) i s  satisfied, i.e., under 
conditions (3.8) and (3.9). 

Thus, the SchrSdinger equation (3.12) describes the 
diffraction of the wave beams in all c a se s  when they 
propagate with a group velocity almost parallel to the 
external magnetic field.') For  the two characteristic 
directions of k,, we have 

~ ' ~ = 2 ~ ~ ' ~ ( i - ~ ) ' ~ : ~ i y ,  s = ( I - Z U )  ( ~ - u ) c ~ I ~ ~ ~ ,  ( e = o ) ,  (3.14) 
v,=c/2y, S=-(1-4u2)  ncz!yzo, (cos 0=2u) .  (3.15) 

Thus, in both ca ses  S - 1 - 2u a s  zt ' a. 
We have assumed s o  far  that the medium i s  stationary 

and homogeneous along the external magnetic field. We 
can obtain similarly also a more general equation, 
when the wave amplitude, the density, and the average 
magnetic field have a weaker dependence on the coor- 
dinates and on the time, and the derivative i s  of the or-  
der  of X with respect to x and of X2 with respect  to t 
and z.  In this case,  generally speaking the plasma 
must be assumed to move with velocity V. A detailed 
analysis, which we omit here,  shows that Eq. (3.12) 
i s  replaced here  by 

where we write E in lieu of p; the quantities v, and S 
in (3.16) a r e  given a s  before by expressions (3.13), and 

Here No and B, a r e  the constant values of the density 
and of the magnetic field at  1x1 = w (the z axis  i s  direct- 
ed along B,), b =  (B - B,)/B,, and it is assumed that 
b-v-V-A'. 

The derivatives aw/aN, and aw/aB, a r e  determined 
from (2.9). To calculate ab/aV we must s ta r t  from the 
dispersion equation in a moving medium. In the ques- 
tions considered here  this t e rm turns out to be inessen- 
t ial  ( see  Sec. 4). 

We shall call (3.16) the general nonstationary Schrij- 
dinger equation for  whist lers  propagating along the 
magnetic field. Fo r  8 = 0 i t  was  considered ear l ie r  in 

many studies of the self-action and diffraction of 
whistlers, beginning with Refs. 7 and 8. 

To  cast  light on how informative the generalized 
Schrijdinger equation can be, we use it to consider sta- 
tionary waveguide propagation of whistlers. We assume 
for simplicity that b = 0 and that the relative variation of 
the density v(x) i s  an even function with one e x t r e m ~ m  
v(0) >< 0. Assuming that E i s  proportional to 
exp[i(w/c)~pz], we obtain from (3.12), (3.14), and (3.15) 

aZE - + p2 (5; A p )  E=0, 
axZ 

(3.18) 

p"=x [ v ( x )  -2hplP1,  (3.19) 
2o;u 

X = ------ 0; (O=O); r.=------- (cos 0=2u) .  (3.20) 
( I -2u )cZ  (1-4u" cZ 

A discrete spectrum of Ap, which determines the wave- 
guide modes, exists  obviously only at  wv(0) >O. It fol- 
lows therefore that in the waveguides with c r e s t s  

and in the waveguides with troughs 

The f i r s t  of these conditions i s  realized at  8 = 0 and 
zi < $, and the second at 8 = 0, u > $ and 8 = a r c c o s 2 ~ ,  
u < $. Thus, the value z l =  $ i s  critical: it corresponds 
to  a transition to another waveguide propagation regime. 

It follows from (3.18)-(3.20) that the general SchrS- 
dinger equation i s  valid only under the condition 

Indeed, at  (1  - 2 ~ 1 ) ~ -  140)  I it follows from (3.18)-(3.20) 
that a ~ / a x  - I v I l l 4 ,  whereas in the derivation of the 
Schr'bdinger equation it was  assumed that a ~ / a x  - I v I 'I" 
[see (3.3)]. 

We continue the analysis by comparing the WKB solu- 
tions of Eq. (3.12) 

with the WKB solutions (2.7) of Maxwell's equations. It 
i s  easy to verify that if we put in (2.7) and (2.8) p = P  
+ Ap, where P  corresponds to 8 = 0 [see (3.6)], we find 
in f i r s t  order  in the small  parameter  v/(l - 2u)' that 
a t f 3 = 0  

( ! c ) q p  ( I )  ( o / c ) r lZ=p  ( I ( > ' / ~ ) .  (3.25) 

In the case  9 = arccos2u, putting P =  2y [see (3.8)], we 
obtain in the same order of magnitude 

where Q, i s  defined in (3.9). 

It follows therefore that the phase factors of the WKB 
solutions (3.24) [with allowance for  (3.3) and (2.7)] a r e  
equal in f i r s t  order  of magnitude. It can also be shown 
that, to the same accuracy, the polarization vectors 
a r e  equal in both solutions. 

It must be noted that all the solutions of Maxwell's 
equations a r e  contained in the generalized SchrSdinger 
equation. This  i s  seen, for  example, f rom Figs. 1 and 
2,  where q(x) is plotted for both values of 8 that follow 
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we have under  condition (3.23) 

-/--q---.-- - 52 

FIG. 1. Plots of q 1 , 2 ( ~ )  a t  w < wc/2 for waveguides with 
v k )  > 0 (8 = 0). The solid lines are  described by solutions of 
both the Schriidinger and the Maxwell equations; the dashed, 
only by the latter. 

f rom (2.8). The plots that a g r e e  approximately with 
(3.25) and (3.26) a r e  shown by solid l ines ,  and the "ex- 
t ra"  ones a r e  dashed. Thus,  a t  0 = 0 and u < $ the 
Schradinger equation contains no solution corresponding 
to the branch q,, and a t  cos0 = 2u (u <$) i t  contains no 
solution corresponding to the "dumbbell" of Fig. 2. At 
u > $ the Schradinger equations yield approximately the 
s a m e  r e s u l t s  a s  Maxwell's equations: q,(x) = p(x)(c/w) ; 
the q,(x) plot i s  an oval symmetr ic  about the coordinate 
axes,  and q: < 0. 

The presence of the q ,  branch at  v(x) > O  leads to  the 
possibility of the tunneling q l  -92 and to the ensuing 
damping of the ql branch trapped in the waveguide. 
The logarithmic damping decrement  along the z ax i s  i s  
determined in the WKB approximation by the formula2*" 

where L, and v,, a r e  the group-velocity components, 
E: ' x ,  i s  the turning" point (ql(x,) = O), and xl  i s  the point 

c losest  to the r e a l  ax i s  in  the upper hemisphere,  
where qi(x1) = qz(x1). 

F o r  the charac te r i s t i c  profile 
~ ( x )  = \ ~ o s ~ c ~ I ~ ( x / ~ )  

FIG. 2. Plots of qlPz(x) at  w < w,/2 for waveguides with 
vCt.) < 0 (8 =arccos(2w/wC)). The solid curves a r e  realized a t  
(1 - 2 ~ ) ~  > I v (0) 1, and the dashed one a t  (1 - 2u)' < Iv(0) I and i s  
obtained only from Maxwell's equations. 

where  T(Ap) is the exponential in (3.27), calculated for  
the considered profile in  Refs. 4 and 5. Equation (3.28) 
will  be  used in the next sect ion t o  es t imate  the damping 
of a self-focused beam with v(x) > O .  

We note fu r thermore  that f r o m  the genera l  conditions 
of whist ler  waveguide propagation5 it  follows that a t  
v(x) < O  and I v(x) I << 1 a two-oval configuration is real-  
ized a t  f requencies  

and a "dumbbell" type configuration a t  

( 1 - 2 ~ ) ~ i l v ( O )  1 .  

Comparing th i s  with (3.23), we s e e  that a s  u ' 8 the 
Schradinger  equation c e a s e s  t o  be valid before the 
t ransi t ion f r o m  the ovals  to  the dumbbell t akes  place. 

We note finally that the Schrijdinger equation does not 
depend on the sign of Q;  we can  therefore choose a s  the 
complete solution any l inear  combination of express ions  
(3.3) with Q and -Q. To  obtain best agreement  between 
the r e s u l t s  of the planar  geometry considered h e r e  and 
the axial one of Ref. 6, we must assume that the solu- 
tion i s  of the f o r m  

8 , = E  ( x ,  z, t)exp[i(o/c)Pzl {C, exp[i(olc)Qxl 
+C, exp [ - 1  ( d c )  Qx] }, &,=R&,; (3.29) 

C,=C,='l, (Q=0) ; I C, 1 = 1 Cl 1 =2-'" (Q=Qa), 

where E ( x ,  z ,  t )  is the solution of the generalized 
Schradinger equation (3.16). 

4. STATIONARY SOLUTIONS OF THE 
SELF-FOCUSING EQUATIONS 

So f a r  we  have assumed that the p lasma p a r a m e t e r s  
(density, magnetic field) a r e  given. In this  section we 
consider  the self-consistent problem, i . e . ,  i t  i s  as -  
sumed that the p lasma s ta te  averaged over  the R F  os- 
cillations is al tered by the ponderomotive force.  In a 
col l is ionless  p lasma with smal l  f l =  ~ ? ~ N T / B '  the general  
express ion  for  th i s  fo rce  p e r  unit volume is1' 

1 
f =- 16n ( ( ~ i ~ - 6 r , )  v (EP,'&,)+MkBB,+[BX rot kl]] 

H e r e  8 is connected with the total e lec t r ic  field 
s t rength by Eq. (2.1). M is the density of the p lasma 
magnetic moment induced by the R F  field13: 

B i s  the averaged (over  the R F  oscillations) mag:etic- 
induction vector ,  2 is the d ie lec t r ic  t ensor ,  and I is a 
unit mat r ix .  

We confine ourse lves  to  self-focusing in the Schr8- 
dinger-equation approximation. We express  ES; and gY 
in t e r m s  of 8'1 and g2, assuming that the l a t t e r  a r e  giv- 
en by (3.29), and obtain 8'* f r o m  the equation div(23) = 0. 
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Substituting now g i n  (4.1) and taking (2.3) and (2.4) into 
account, we obtain f o r  the ponderomotive-force compo- 
nents  the express ions  

t.=-n,a I E  l z /ax ,  f,=o, 

where  

and R is determined by (3.6) o r  (3.8). 

We now wr i te  the p lasma equations of motion in the 
magnetohydrodynamic approximation with account taken 
of the ponderomotive force. Since it  is assumed 
throughout that the relat ive deviation of the density v(x)  
is small ,  we neglect t e r m s  of o rder  v2. The  equations 
that descr ibe  the p lasma motion and the magnetic-field 
evolution take then the form13 

ab. av. 
---= 

ab, av. 
0, -+-=O. 

a t  a z  a t  az ' 

H e r e  V is the p lasma velocity, c,  is the ion-sound 
speed,  and po i s  the p lasma unperturbed m a s s  density. 
The sys tem (4.4) does  not contain the project ions of the 
basic  equations on t h e y  axis; the l a t t e r  descr ibe  the 
pure  Alfven branch, which does  not interact  with the 
magnetosonic motions described by the sys tem (4.4), 
s ince f, = 0. 

We consider  now the c l a s s  of motions of the station- 
ary-wave type, when IE 1 and al l  the sought quantities 
of the sys tem (4.4) a r e  functions of one independent 
variable q: 

where  n, and U a r e  a r b i t r a r y  parameters .  The solution 
of the sys tem (4.4) t akes  then the fo rm 

where D is the determinant of the corresponding 
algebraic  system: 

The equation D = 0 is equivalent to  the dispersion equa- 
tion of the f r e e  magnetosonic oscillations. In the limit- 
ing c a s e  ,9= c,2/cA2<< 1 we obtain f r o m  it the following 
relat ions fo r  the velocities U, and U ,  of the fast  and 
slow sound: 

UL=cA, U2=caxo (4.10) 

We consider now those solutions of the sys tem (4.4) 

which d o  not depend on t and z (they correspond to ducts  
oriented along the external  magnetic field). T o  th i s  end 
it is necessary  to put formally U-0  and ng-0  in (4.6)- 
(4.9). We encounter here ,  however, a n  ambiguity that 
depends on the ra t io  u/K#. At different values of th i s  
r a t i o  we  obtain, generally speaking, different limiting 
solutions. It  i s  important that th i s  c ircumstance is 
preserved  a l so  in the c a s e  when the left-hand s ides  of 
the MHD equations a r e  not linearized ( a s  can be easily 
verified). This  phenomenon i s  caused by s ingular i t ies  
in  the behavior of the charac te r i s t i cs  of the MHD equa- 
tions and will be discussed in detai l  e lsewhere.  

F o r  the p resen t ,  confining ourse lves  to  the study of 
solutions that depend only on 7, we a s s u m e  that 
n, - 0 and 

where a is an a r b i t r a r y  non-negative p a r a m e t e r ,  with 
a# 1 [to avoid resonance with the slow magnetosonic 
waves-see (4.10)]. 

Substituting (4.11) and (4.2) in (4.6)-(4.9) and then 
letting n, - 0,  we obtain 

F r o m  these  expressions we get 

and it i s  seen  f rom (4.3) that A, > 0 and A, > 0. Equations 
(4.15) and (4.16) a r e  quite genera l ,  s ince c,/c,>> 1. It 
i s  useful to  note in th i s  connection that (4.16) can  be  
obtained by assuming that a - .o but - 0,  such that 
U-0. 

The express ions  obtained allow u s  to  e x p r e s s  Aw of 
(3.17) i n  t e r m s  of I E 1 '. An ana lys i s  of the dispersion 
equation for  a moving plasmalo shows that 

Using (4.14), we can easi ly  verify that th i s  t e r m  i s  
negligibly smal l  compared with the remaining t e r m s  in 
(3.17). A s  a resu l t ,  using (2.9) and recognizing that 
b, = 0,  we can  wr i te  

A m = - o ( o ,  cos 8-b))v/ta, cos O f o h , .  (4.17) 

Substituting (4.17) together with (4.15) and (4.16) in 
(3.16), we  obtain a c l o s e d  equation f o r  the field E. The  
s tat ionary solutions of th i s  equation, which a r e  propor- 
tional t o  exp [i(w/c) Apz], descr ibe  the homogeneous 
whis t l e r s  that resul t  f r o m  the self-focusing. 

These  solutions together with the corresponding ex- 
p ress ions  f o r  the variation of the density a r e  of the f o r m  

E=E, s e c h ( x / a )  e x p [ i ( o / c )  A p z ]  , v=v, sec l i2(x /a) ,  (4.18) 
a Z = S o ,  cos O / v a o  ( o ,  cos 0 - o ) ,  A p = S / 2 u p Z ,  (4.19) 

wherein v is c o ~ e c t e d  with E by (4.15) o r  (4.16). We 
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have thus obtained an en t i re  family of s ta t ionary solu- 
tion of a sys tem that consis ts  of the generalized SchrS- 
dinger equation and the hydrodynamics equations; th i s  
solution depends on the  parameter  o. The requirement  
a" > 0 and Eqs. (4.15) and (4.16) lead to the conditions 

It i s  seen f rom (3.15) that 

We conclude f r o m  (4.20) and (4.21) that a t  w< wc/2 the 
self-focusing can lead to formation of channels with both 
c r e s t s  (v > 0) and t roughs (v < 0). In the f o r m e r  c a s e  
f?= 0 and u < l ,  and in the l a t t e r  cos8 = 2w/w,, o > l .  At 
o >  wc/2 the second relation of (4.21) i s  not rea l ized ,  
therefore self-focusing at  o >  wc/2 can lead only to  
troughs; in this  c a s e  8 = 0 and a> 1.  

The solution obtained e a r l i e r  in Refs. 8 and 9 i s  ob- 
tained at a =  0;  it descr ibes  the beam in the c r e s t  a t  
21 < $. We s e e  that it covers  by f a r  not a l l  possibilities.  

It must next be kept in mind that a t  v>O (i.e. ,  a <  1) 
the electromagnetic field should gradually "leak out" 
of the waveguide because of the tunnel-transformation 
effect. A s  a resu l t ,  the amplitude should attenuate 
along the z ax is  with a logari thmic decrement  p ,  which 
i s  determined in the WKB approximation by Eq. (3.28) 
under the condition (3.23). F o r  the soliton solutions 
(4.18) and (4.19) the condition (3.23) t akes  the fo rm 

and the condition for  the applicability of the WKB ap- 
proximation i s  not satisfied. Equation (3.28) can be 
used in th i s  case ,  however, f o r  a n  order  of magnitude 
est imate,  by substituting in it  Ap f rom (4.19) and T 
from Refs. 4-6 at  p =  P+ AP. A s  shown in the cited 
re fe rences ,  

F r o m  (3.28), (4.19), and (4.23), with allowance for  
(4.22) we obtain the following es t imate  fo r  p:  

If the condition (4.23) is not sat isf ied,  the >> symbol 
must be replaced by 2. 

These resu l t s  remain  qualitatively vaiid a l s o  fo r  
axisymmetr ic  solutions. However, an additional in- 
vestigation, which we omit h e r e ,  shows that the axi- 

symmetr ic  analogs of the solutions (4.18) and (4.19) a r e  
unstable t o  self-compression (a t  l eas t  fo r  channels with 
v >  0). The compression s tops  when the duct width be- 
c o m e s  of the o r d e r  of the longitudinal wavelength, i.e., 
a-c/o,. It i s  seen  f r o m  (4.24) that in  th i s  c a s e  the de- 
c rement  p becomes  l a r g e  ( p -  a-l) , i.e., the waveguide 
" leaks out," s o  that a t  v>O the self-focusing c e a s e s  be- 
f o r e  a stationary ( o r  quasi-stationary) duct is produced, 
in  qualitative agreement  with experiment.15 

On the b a s i s  of the foregoing, i t  s e e m s  t o  u s  that the 
solutions of principal in te res t  a r e  those with u >  1, 
which descr ibe  wave beams  in troughs. They exis t  both 
a t  w< wc/2(cos0 = 2w/wc) and a t  w > oc/2(0 = 0), in  agree-  
ment with experiment .  It i s  possible that an investiga- 
tion of the stability of these  solutions will lead to  fur- 
t h e r  res t r i c t ions  on the values of the parameter  o. 
T h i s  question is under study a t  present .  

 he fact that the group velocity is  parallel to the magnetic 
field not only at  0 = 0 but also a t  0 = arccos 2u is clearly seen 
from the geometric optics of whistlers (see, e. g.. Ref. 11). 
It is natural therefore that we arrive a t  this face when de- 
riving the SchrGdinger equation from first principles. 
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