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New inversion formulas are obtained for the classical scattering of a charged particle by a spherical or 
axisymmetric electric or magnetic field at a fixed impact parameter or angular momentum. For different 
cases, focusing fields are obtained similar to those previously considered for scattering by an electric field at a 
given energy, viz., of the backscattering (cat's eye), Maxwell fish eye, or Luneberg lens type. A 
magnetwlectric analogy is formulated, namely the existence of equivalent axisymmetric electric and magnetic 
fields that scatter charged particles in identical fashion. 

PACS numbers: 41.80. - y 

1. INTRODUCTION F o r  scattering of a particle by a magnetic field, the 
analog of a spherically symmetrical  potential is a field 

The trajectory of a particle scat tered by a spherically H directed along the z axis and symmetrical  with symmetric potential f ly)  is determined in the classical  
respect  to rotations about this axis ,  while the trajec- 

approximation by two parameters,  e.g., the particle 
tories of the incident charged part icles a r e  assumed to 

velocity v, a t  infinity and the impact parameter  b, o r  
lie in the ( x ,  y)  plane. else the total energy E and the angular momentum I .  

The deflection angle x is a function of these two param- An inversion formula for  this problem could be ob- 
e t e r s ,  and when solving the inverse problem we must  tained only for  the case  of a fixed generalized momen- 
reconstruct V(Y), given x and certain values of these tum Po = I. 
parameters. 

Inversion formulas can be used to obtain fields having 
There a r e  a t  present two quadrature solutions of the various focusing properties.= F o r  the Hoyt case ,  in 

inversion problem: the Firsov algorithm,' in which the electr ic  and magnetic fields, lenses were obtained of 
angle x i s  specified a s  a function of the impact param- the Luneberg type (which focuses a parallel particle 
e te r  b while the energy E i s  fixed, and the Hoyt algo- beam onto the edge of the lens), of the Maxwell "fish- 
rithm; in which 1 is  fixed and the deflection angle is eye" type (in which the source  and the focus a r e  a t  
specified a s  a function of energy. diametrically opposite points), and of the "cat's-eye" 

type (in which the particles a r e  scat tered strictly back- 
We shall show here  there exists  a l so  a thirdalgorithm 

ward). The possession of a part icular  focusing proper- 
with an explicit solution, with the impact parameter 

ty by a potential is undoubtedly connected with the inter- 
fixed and the deflection angle also specified a s  a func- nal symmetry in the corresponding classical  o r  quan- 
tion of energy. tum-mechanical problem.¶ 

The Firsov algorithm is most useful for scattering by In Sec. 3 we obtain the focusing potentials for  this 
a microtarget, for in this case  the only quantity that case. In Sec. 4 we derive an inversion formula for a 
we can fix is  the energy. Next, knowing the intensity of fixed impact Section deals with the in- 
scattering Of a wide beam with the target) Of version problem for an axisymmetric magnetic field at 
incident particles through various angles we can r e -  a fixed angular momentum, and the magneto-electric 
construct the function x(b) (if certain uniqueness condi- analogy. The focusing magnetic fields for this case 
tions a r e  satisfied). a r e  obtained in Sec. 6. 

When a macroscopic spherically o r  axially symmetric 
force field is  probed, the value of ~ ( b )  can be obtained 
by scanning the field with a particle beam that is  narrow 
compared with the field dimensions. This measure- 
ment calls for  the source to be moved. Another pos- 
sibility is to fix the source position (and accordingly 
fix the impact parameter)  and vary the particle energy, 
with x(E) measured a t  constant b. This method may 
prove to be more  convenient in some cases. 

It appears that there exist also inverse-problem 
formulations other than the three mentioned above. 
The deflection angle can in the general case  be speci- 
fied on some line located in the plane of the parameters 
E and 1 o r  v, and b. The question i s :  what conditions 
must this line satisfy to make a solution of the inverse 
problem possible? 

2. HOYT'S FORMULA 

We consider in the classical  approximation three 
types of inversion formulas that reconstruct a centro- 
symmetric field V(Y) from the deflection angle x of the 
particle: a t  a given particle energy E (Ref. I), a t  a 
given angular momentum I (Ref. 2) and a t  a given im- 
pact parameter b. We assume hereafter  V(r) is a r e -  
pulsive field, i.e., V> 0, and that v(-) =0 ,  although 
many results  hold also in a more  general  case. 

We consider f i r s t  the second inversion-formula type, 
i.e., a t  a given angular momentum I. For  the polar 
angle q, in the field V(Y)  we have (see, e.g., Ref. 5) the 
express ion 
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sphere of radius R. This focusing condition corresponds 
to the so-called Maxwell's fish eye (see Ref. 3). Here 

2 arc sin (b /R)  , b t R  
r ~ ) - (  O, b > ~  a 

where h 3 I / -  is fixed. 

Introducing now a new variable U a v + A'/? and chang- 
ing from r to U, we obtain Using the tabulated formulas7 

z sin z& n I-cosa 
=-- 1 i o s z z  (cosa z-cos2 2 cos2 a 

where r(U) is the function inverse to U(r). 

Formula (1) should be regarded a s  an integral equa- 
tion for  the function l/r(U) when the left-hand side is  
given. This is an Abel equation and can be solved 
analy tically6: 

and putting 5 = b / ~  3 cos x and am A/RlJ'I2 a cos a, we ob- 
tain from the inversion formula (3) 

From this we get the potential 

An inversion formula a t  fixed A in the form (2) was 
f i r s t  obtained by Hoyt.' 

Thus, the Coulomb potential (5), cut off at  r = R ,  Using now the formulas I =mv,b and E = m&/2, we 
focuses particles leaving an  arb i t ra ry  point on a sphere  

introduce the impact parameter b and note that under 
of radius R unto the diametrically opposite point of 

the conditions of our problem, when A i s  fixed and E i s  
this splere, if the particle orbital is 

varied, the impact distance is a variable quantity and z = x ~ .  Just a s  in the case  of the "fish-eye" poten- 
='/' Or The Hoyt (2) can then be tial,  we can continue this potential analytically farther  rewritten by introducing it in the impact parameter  b 

explicity. Changing in (2) from E to b and introducing than the radius R; the focusing property will be pre-  
served also for  trajectories that emerge outside the the particle deflection angle x =2q, - n, we get  ulti- 

mately sphere r =R. This focusing property of a Columb field 
reflects the known fact5 that a bundle of Coulomb t ra-  
jectories passing through two points diametrically op- 
posite relative to the force center corresponds to a 
constant angular momentum. 

U ( r )  =V ( r )  +A2/? 
2) Let  R ,  = = and R, = R ,  i.e., a plane-parallel beam 

i s  focused onto the surface of a sphere of radius R.  
Such a focusing system is  usually called a Luneburg 
lens.= In this case  

Equations (3) constitute in fact the solution of the clas- 
s ical inverse scattering problem if 1 =A$&- is fixed and 
the deflection angle is specified a s  a function of the im- 
pact parameter. 

arc sin ( b / R )  , b<R 
xO)=  I 0, b>R 3. FOCUSING POTENTIALS 

Using the cited tabulated values of the integrals, we 
obtain from (3) 

We construct now with the aid of the inversion for- 
mulas (3) spherically symmetric systems that have a 
radius R and focus particles with a specified angular 
momentum, in the s ame  manner a s  Firsov's  formula 
1 was used in Ref. 3 to construct systems having 
spherical symmetry and focusing particles with speci- 
fied energy. 

f rom which we determine the potential. If a centrifugal 
potential A'/? is added to the potential V and is analy- 
tically continued to the singularity r =2R, the potential 
becomes symmetrical  about the point r =R. This yields, 
e.g., an additional symmetry property for bound states 
of the corresponding quantum problem. We have 

The focusing condition (see Ref. 3) cal ls  here for  a l l  
the particles with specified A, emerging from a certain 
point on the symmetry axis a t  a distance R, from the 
force  center ,  to land a t  another point of the s ame  axis 
and located a distance R, from the center. 

Equation (6) specifies in fact  the potential that real izes 
a Luneburg lens for  particles with a given angular mo- 
mentum. 

In this case,  as shown in Ref. 3,  

arc sin (b /Ri )  +arc sin (b/R.) , b<R 
x ( b ) -  { 

0, b>R. 
The inversion problem has also a n  exact solution in 

the ca se  of scattering a t  a constant angle, i-e., x =cn, 
where c is an  arbitrary rea l  positive quantity. 

We consider two interesting particular cases of (4), 
in which a l l  the calculations can be carried through to 
conclusion. 

The inversion algorithm (3) yields for  this case  
1) Let  R, =R, = R ,  i.e., the "source" and "sink" of the 

particles a r e  a t  diametrically opposite points on a 
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If the field V(Y) is specified in al l  of space,  R must  be 
extended to infinity. The potential is then 

At c = 1 we obtain the so-called cat 's  eye (backscatter- 
ing). The corresponding potential is 

For  a field cut off a t  Y = R  i t  is  easy to obtain from (7) 
for  V a quadratic equation that becomes linear a t  c =1 
and yields for  the potential the expression 

The cut-off field (10) is  thus capable of reflecting par- 
ticles incident on i t  with an angular momentum 
1 = ~fi. 

4. INVERSION FORMULA FOR A GIVEN IMPACT 
PAR AM ETER 

We obtain now a simple inversion formula a t  a fixed 
particle impact parameter b. We assume that the de- 
flection angle x is given a s  a function of the energy E. 
From Ref. 5 we have 

bdr 
"(')=I rZ[l-Jr'/e-b2/?l". 

rm 

- 
bdr 

V,/E"~= J 
r ( ~ - @ ) ' ~ [ ~ - f  v / (?-b2)  ] j h  ' 

.I 

We introduce now I J ( ~ ) ~ ? ~ V ( Y ) / ( T ~ -  b2)  and change from 
Y to U in the integral. Then 

I,,, 
- bdr dU d 

q,lE'"= =J---- arc sin - b 
r(?-bZ)"[E-U(r)] '" (E-U)'"dU r ( U )  ' 

(11) 

This is an Abel integral equation for  the function 
arcsin (b/r(U)) at  a given angle p0(E). Introducing the 
particle deflection angle x ( E )  and using Eq. (6), we ob- 
tain 

b 1 " x-x(E) 
arc sin - = - 

r ( u )  2 n ! k m d E .  

From this we get ultimately 

The inversion formulas (12) solve in fact  the foregoing 
inverse problem. 

I t  is thus known, for  example (Ref. 5, p. 72) that for  a 
field V =a /?2 with CY > 0 the deflection angle is 

We apply to this case  the inversion algorithm (12). Sub- 
stituting (13) in (12) and carrying out elementary inte- 
gration, we obtain 

U ( r )  =a / (? -bz ) ,  V = a l f ,  

a s  it should be. 

5. INVERSION FORMULA FOR A MAGNETIC FIELD 

Consider the scattering of a classical nonrelativistic 
particle of mass  m and charge e in an axially symmetric 

field H directed along the z axis. The vector potential 
is 

A= (0 ,  A , (p ) ,  0) - (0 ,  A ( P )  , 0). 

The component of the vector H a r e  

H,=O, H,=O, Hz--H=rot, A-A ( p )  /p+aJ ( p )  . 

The Coulomb gauge condition div A = 0 is found to be 
automatically satisfied. We consider only planar (at 
p, = m i  = 0) motion of the particle, and replace p with Y. 

From the Lagrangians of such a particle in a mag- 
netic field of the indicated configuration (c =1) 

rn 
L = - (  

2 
i8+P@') +eripA ( r )  

we obtain two integrals of motion: the generalized 
angular momentum 

l=p,=mr"@+erA ( r )  

and the energy 

Now, using these two conservation laws, we easy 
construct a quadrature expression for  the particle t ra -  
jectory and the deflection angle. We have = ( I -  m ~ ) /  
m P  and from the energy integral we get 

Eliminating dt  with the aid of the angular-momentum 
conservation law and integrating, we obtain ultimately 

In analogy with the c a s e  of a central electric field, such 
a trajectory is  symmetric about a straight line drawn 
f rom the symmetry center to the closest trajectory 
point. The polar angle is 

Using (15), we construct now an inversion algorithm 
that allows us to reconstruct the potential A(?-) given 
the function x(E), where x =2p0 - n,  a t  a fixed particle 
angular momentum 1. We assume hereafter that 

rA ( r )  +O, r- tm.  

We introduce in (15) new variables 

With allowance for  (16), we have 

Expression (17) is  a nonlinear integral equation with 
a boundary condition for the function g(s) a t  a specified 
po(x) [or X(x)]. I t  can be solved by various means. One 
is to transform (17) into 

where f (s) =2/g2(s) ,  and changing from the variable 
s to  f .  The resultant Abel-type equations in te rms of 
the antiderivative of the function l /g(s)  is inverted, the 
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r e s u l t  of the inversion is differentiated with respec t  
t o  s, and a f i r s t -o rder  differential equation in g(s) is 
obtained and c a n  be  direct ly  integrated. 

Another possible solution procedure is considered 
in Ref. 5. The  final solution of the problem (17) i s  

1 
g(r )  =exp - ( E )  arch ( l / r g 1 2 m E ) d ~ ,  

0 

g(r )= l / ( l - e rA  ( r ) )  =bu/rvv, 

where  v is the part ic le  velocity. 

We note now that under our  conditions, when the 
angular momentum of the part ic le  is specif ied,  the 
impact  dis tance b is the varied quantity and E =h2/b2, 
where  X~ 3 l 2  /2 m. 

We sha l l  need below an inversion formula that con- 
tains the impact  parameter  explicitly. Changing in 
(18) f r o m  E to b and integrating by p a r t s ,  we obtain the 
variant  of in te res t  to u s  

This  equation is mathematically equivalent to  the 
known Fi r sov  formula, '  s ince  it  coincides with the l a t t e r  
when g(r )  is replaced by n( r )  =[I - e @ ( r ) / ~ ] " ~ ,  where  
9 ( r )  i s  the centrosymmetr ic  scat ter ing field. 

F r o m  the physical point of view the equivalence of 
these  two formulas l i e s  in the fact  that if charged par -  
t ic les  with specified energy E move in an e lec t r ic  field 
+ ( r )  along cer ta in  t ra jec tor ies ,  then the s a m e  part ic les  
with specified angular momentum I will move in the 
magnetic field 

along the s a m e  trajector ies .  This s ta tement  can  be 
called the magneto-electric analogy. 

The weak-field approximation can  be considered in 
(19) when e r ~ / l < <  1 and x<< 1 (in analogy with the F i r -  
sov problem). In fac t ,  expanding the exponential in a 
s e r i e s ,  we have 

where  g is replaced by unity in the integrand and a t  the 
l imits .  Next, in  the left-hand s ide  g = (1 - erd / l ) - '  
= 1 + e r A / l ,  and we ultimately obtain a s imple  explicit 
formula in  the weak-field approximation: 

6. FOCUSING MAGNETIC FIELDS 

We sha l l  use the inversion algorithm (19) f o r  the 
magnetic field to  construct  planar focusing s y s t e m s  of 
radius R ,  of the type already considered in Sec. 3 of 
this paper and in Ref. 3 f o r  the c a s e  of a s c a l a r  field 
V(7 ). 

Corresponding to one such exactly solvable s y s t e m s  
i s  the focusing condition (4a), where  the "source" and 

"sink" of P a r ~ l c l P s  of charge  e l i e  on a c i rc le  of radius 
R. This  is a s y s t e m  of the Maxwell "fish-eye" type. 

Substituting (4a) in (19) we obtain ( see  Ref. 3) 

s o  that the magnetic potential is 

I t  is easy  to  verify that this vec tor  potential c o r r e -  
sponds to  a homogeneous magnetic f ie ld H = - l /eR2, and 
a l l  the t ra jec tor ies  a r e  thus c i r c l e s  in this case.  

We now extend the homogeneous magnetic field H = H z  
over  a l l  of space. The charged par t i c les  move in such  
a field in c i r c l e s  a t  constant velocities proportional to  
the r a d i i  of these c i rc le .  On the bas i s  of the magneto- 
e lec t r ic  analogy obtained in the preceding sect ion we 
conclude that this c a s e  cor responds  to  the Maxwell 
"fish eye" problem considered in Ref. 3. Class ica l  par -  
t ic les  of energy,  in a "fish-eye" field 

specified in a l l  of space ,  have c i r c u l a r  t r a j e ~ t o r i e s . ~  
If these c i r c l e s  pass  through a point r ,  they pass  a l s o  
through the point -R2r/r '  obtained f r o m  the initial point 
a s  a resu l t  of inversion in a s p h e r e  having a radius R 
and a cen te r  a t  z e r o ,  as well a s  reflection a t  the or igin,  
with r a n  a r b i t r a r y  point in  space.  Charged part ic les  
with specified generalized angular momentum I a l so  
moves along the s a m e  t ra jec tor ies  in a homogeneous 
magnetic field H = - l / e ~ ~ .  The c i r c l e s  passing through 
diametr ical ly  opposite points ( relat ive to an a r b i t r a r y  
chosen force  cen te r )  correspond to one and the s a m e  
angular momentum. The particle-focusing property in 
such  a magnetic field can be  easi ly  proved by a purely 
geometr ic  method. 

Another sys tem for  which a l l  the calculations can be 
c a r r i e d  through t o  conclusion is  defined by condition 
(5a). In the s c a l a r  c a s e  i t  corresponded to the so-called 
Luneburg lens. A plane-parallel beam of charged par -  
t ic les  is focused h e r e  into a c i r c l e  of radius R .  

The inversion procedure (19) yields f o r  this c a s e  

and the potential is 

1 
A ( r )  = - (1 -1 / [2 - rZ /RZ] '") ,  r<R. 

er (22 

The inversion problem is solved just a s  accurately 
in the c a s e  of backward reflection of charged part ic les  
with a given orb i ta l  momentum I. H e r e  

and we obtain f r o m  (19) 

Hence the magnetic cat ' s-eye lens 
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The magnetic potentials (21)-(23) can be obtained by the 
indicated magnetoelectric analogy from the correspond- 
ing scalar potentials V(7) obtained in Ref. 3. 

7. CONCLUSION 

The new inversion formulas and new focusing fields 
obtained here extend greatly the earlier results in this 
field. They can be of interest for research in electron 
optics, as well as tor the heretofore little-investigated 
connection between the focusing properties of electric 
o r  magnetic fields and their internal symmetries, the 
existence of additional integral of motion etc. in the 
problem of particle motion in these field (this question 
has been elucidated fully enough only for the Maxwell 
"f ish-eye" problem, Ref. 4). 

As already noted, it is of interest to ascertain how 
many different explicit inversion formulas exist. I t  
should be noted, finally, that when using a fixed angular 
momentum we come closest to the quantum formulation 
of the inverse problem of reconstructuring the potential 
from the scattering phase shift. It appears that i t  is 

precisely here that it is easiest to track the transition 
from the classical to the semiclassical and further to 
the quantum inverse problem. 
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