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The galvanomagnetic properties of two-dimensional two-component isotropic systems located in an external 
transverse magnetic field are considered. The effective conductivity tensor of an arbitrary system is expressed 
in terms of the function f that describes the conductivity of the same system in zero magnetic field. Iff as a 
function of two parameters (the concentration and the ratio of the conductivities of the components) is known 
in the entire range of variation of the parameters, then the formulas obtained in the paper furnish a complete 
solution to the problem of the galvanomagnetic properties of the systems considered. It is shown that, in 
systems that undergo the metal-dielectric phase transition, the dimension of the transition region (the 
smearing-out region) decreases with increasing magnetic-field intensity H, tending to zero as H--+a .  This 
leads to unusual magnetic-field dependences of the elements of the effective conductivity tensor in the critical 
region. New-as compared to the H = 0 case-critical exponents do not arise. It is found that the anomalous 
conductivity [A. M. Dykhne, Sov. Phys. JETP 32, 348 (1971)l can exist only in the neighborhood of the 
critical concentration and in a finite magnetic-field range. 

PACS numbers: 73.20. - r 

1. INTRODUCTION 

The study of the galvanornagnetic properties of in- 
homogeneous media is of considerable interest, but, a s  
in the case of the computation of the conductivity in 
zero magnetic field, their theoretical investigation 
meets with certain mathematical difficulties. Never- 
theless, a number of exact results have been obtained 
for two-dimensional two-component systems located in 
a transverse magnetic field.''4 

Dykhne' has found the effective conductivity tensor Ce 
for arbitrary magnetic fields H in the particular case of 
equal component concentrations. One of the conse- 
quences of Dykhne's results1 is the existence of an an 
anomalous conductivity -a change in the dependence of 
the diagonal element (ow) of 5, on the magnetic field a t  
sufficiently high H values: use a: H-' instead of the nor - 
ma1 dependence ox= H". Furthermore, Dykhne shows 
in his paper' that a medium that is slightly inhomogen- 
eous in zero magnetic field exhibits in H -  m certain 
properties of the highly inhomogeneous medium and 
markedly different electrical characteristics. Finally, 
Dykhne derives in Ref. 1 a general relation connecting 
the diagonal (use) and off -diagonal (o,,) elements of the 
& tensor, and valid for arbitrary concentrations and 
any H. The {ependence oS,a H-' for H - m has also been 
found by Dreizin and Dykhne' in an analysis of the per- 
turbatio9-theory series in the two-dimensional case. 
But Dreizin and Dykhne do not determine in their pa- 
pers''' the magnetic-field and concentration ranges in 
which the anomalous conductivity exists. 

The case of weak magnetic fields (the Hall effect) has 
bee! investigated in sufficiently great detail by Shklov- 
skii.' In the two-dimensional case we can, using 
Dykhne's general relation,' relate the effective Hall co- 
efficient R, with the effective H= 0 conductivity of the 
system. This allows us in principle to find Re in the 
entire range of variation of the concentration and, in 
particular, study the critical behavior of the Hall coef- 
ficient.' The case of arbitrary magnetic fields had been 

briefly considered in a previous paper by the author of 
Ref. 4 for systems with perfectly conducting and dielec- 
t r ic  inclusions, i.e., outside the smearing-out r e g i ~ n . ~  

In the present paper we establish an exact relation, 
valid for any concentrations and arbitrary H, between 
the galvanomagnetic properties of a two-dimensional 
two-component system located in a transverse magnetic 
field and the properties of the same system in zero 
magnetic field. Specifically , the effective characteris - 
tics use and o,, of the medium a r e  expressed in terms 
of the galvanornagnetic properties of the individual 
components and the function f that determines the effec- 
tive conductivity of a system of the same structure in 
H= 0. If for some system f as a function of two param- 
eters (the concentration and the ratio of the conductivi- 
ties of the components) is  known in the entire range of 
variation of the parameters, then the expressions ob- 
tained for o,, and o,, in the paper furnish a complete 
solution to the problem of the galvanornagnetic proper- 
ties of such a system. The study of the function f is one 
of the most important problems of percolation theory,=16 
and its form is known in a number in a number of lim- 
iting cases. This allows us not only to obtain all the re-  
sults (pertaining to the two-dimensional case) of Refs. 
1-4, but also to determine the regions of their applica- 
bility, a s  well a s  to obtain a number of new results. In 
particular, we a r e  able to consider within the frame- 
work of the scaling theory5 the galvanomagnetic proper- 
ties in the entire critical region of systems that undergo 
the metal-dielectr ic phase trans ition. 

To determine the galvanomagnetic characteristics of 
a two-component system, we reduce the original prob- 
lem to the problem of the conductivity of a system of the 
same structure (we shall call it the zero system) in H 
= 0. The zero system is actually the initial system 
(i-e., the system in H = 0) with, in the general case, al-  
tered component conductivities; their ratio is a f ree  pa- 
rameter. The solution to the problem of the conductiv- 
ity of the zero system is assumed to be known. Let the 
electric field in such a medium be E,(Y). The compo- 
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nents of the field E(r) in the original system (in H+O) 
a r e  sought in the form of linear combinations of the 
components of the field E,(r), this relation being chosen 
such that E(r) satisfies both the constant-current equa- 
tions and the corresponding boundary conditions. These 
limitations uniquely determine the linear transformation 
coefficients and the ratio of the conductivities of the 
zero system's components, which turns out in the gen- 
eral  case to be a function of the magnetic field. The 
computation of the quantities o,, and uae with the aid of 
the field E ( r )  thus found allows us to express them in 
terms of the properties of the individual components of 
the original system and the function f. 

The galvanomagnetic properties of the systems under 
consideration differ in their peculiarities. Thus, for 
example, in a medium with perfectly conducting impur- 
ities, when the concentration is sufficiently close to the 
critical value, the diagonal resistivity-tensor element 
(p, , ) ,  which in a homogeneous system is H independent, 
exhibits a significant dependence on the magnetic field. 
In a system with dielectric impurities there occurs also 
in the vicinity of the critical concentration a drawing 
out of the region over which the magnetic-field depen- 
dence of the quantity o, assumes the form o, aH-' (no ano- 
malous conductivity exists in either case). A characteris- 
tic of the H -- case is the fact that an isolated impurity of 
any conductivity make toGe the same contribution that a 
perfectly conducting impurity makes. 

In the critical region (i.e., for J r  1 << 1, where r char- 
acterizes the proximity to the critical point of the con- 
centration-related transition) the galvanomagnetic 
properties of the system a r e  characterized by quite a 
complicated dependence of a,, and a,, on the magnetic 
field and the concentration. In this case, since the en- 
t ire concentration dependence of the quantities ox, and 
a,, is determined by the function f, new-in comparison 
with the H = 0 case-critical exponents do not arise. 
Dykhne's results1 (with the exception of the above-men- 
tioned general relation between ox, and a,,) a r e  valid in- 
side the smearing-out region &,, which in the general 
case decreases with increasing magnetic-f ield inten- 
s ity, tending to zero a s  H- a. Consequently, the ex- 
pression obtained by Dykhnel for Se is valid for arbi- 
trary H only a t  one isolated point in concentration 
space: the metal-dielectric transition point. If, on the 
other hand, the concentration is different from the cri-  
tical concentration (but the system in H = 0 is within the 
smearing-out region), then the H-region of applicability 
of Dykhne's results' is bounded from above. From this 
it follows, in particular, that the anomalous conductiv- 
ity can, generally speaking, occur only in a finite mag- 
netic-field range. The measurement of the galvano- 
magnetic characteristics of such systems in the vicinity 
of the transition point a t  two fixed concentrations cor- 
responding to the cases r >  0 and r < 0 allows us, in 
principle, to investigate the entire critical region [in 
the (7, h) plane, where h is the ratio of the conductivi- 
ties of the components], reestablish the form of the 
function f in this region, and thereby verify the scaling 
hypothesis5 in the two-dimensional case. 

The general expressions for a,, and o,, allow us to 

consider the slightly inhomogeneous medium a s  well. 
As H- * such a medium possesses certain properties 
of systems that undergo the metal-dielectric transition. 
In particular, - 0, and the anomalous conductivity 
can exist only a t  concentrations close to the critical 
value and in a finite magnetic-field range. The asser-  
tion that the Hall parameter has its limiting value1 is 
valid under these same limitations. 

In the present paper we use a macroscopic approach 
with local Ohm's law, so  that the dimensions of the in- 
homogeneities a r e  assumed to be large compared to the 
mean free path of the carriers.  The properties of both 
the individual components and the system as a whole 
a r e  assumed to be isotropic. The results of the pres- 
ent paper a r e  directly applicable to thin two-component 
films, and can, with some provisos,' also be used to 
describe the transverse conductivity of a plasma in a 
strong magnetic field. 

2. PERFECTLY CONDUCTING IMPURITIES 

Let us consider a two-dimensional system [the (x, y) 
plane] located in an external transverse magnetic field 
H oriented along the normal to the (x, y) plane. Ohm's 
law in this case has the form 

Below it will be convenient to use the complex poten- 
tial @ ( z )  (here, a s  usual, z = x  +iy), which can be intro- 
duced as in the H= 0 case (Ref. 7 ,  63); the derivative 
of it gives the components of the electric field E: 

The components of the current density can, according 
to (1) and (2), be expressed in terms of @'(z) a s  follows: 

The equipotential surface a r e  given a s  usual by the 
equation 

but the lines of flow will now be determined not by the 
imaginary part of @(z), but by the expression 

The element a, of the conductivity tensor drops out of 
the equation for the potential, and enters into the prob- 
lem only through one of the boundary conditions: the 
continuity of the normal component of the current den- 
sity. 

Let us consider a system consisting of two compo- 
nents that differ markedly in their properties (o, << ol). 
Let us, to begin with, assume that the magnetic field 
is equal to zero. Let the concentration p of the f i rs t  
component be lower than the critical concentration: p 
<pc, 7 =(p -pc)/pc<O. Let us also assume that the sys- 
tem is outside the smearing-out region,'*= s o  that the 
impurities of the f i rs t  component can, in the f i rs t  ap- 
proximat ion, be considered to be perfectly conducting. 
Then we can limit ourselves to the consideration of the 
problem only in the region occupied by the second com- 
ponent and with the boundary condition E, =0, where E, 
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is the tangential component of the electric-field inten- 
s ity. 

Let @,(z) be the complex potential of such a problem. 
Since the potential is prescribed only in the region oc- 
cupied by the second component, to compute the effec- 
tive conductivity oe of the system, we cannot use the 
usual method7 in which oe is determined as the coeffi- 
cient of proportionality between (j) and (E). Here (. . .) 
denotes averaging over the entire area  of the system. 
Let us use another method to compute oe. Let the sys- 
tem under consideration be a square film with dimen- 
sions 2L (L --) along the x and y axes. Let us locate 
the coordinate origin a t  the center of the film. Let us 
assume that the mean field (E,) is oriented along the 
x axis. Then, to compute u,, we must find the poten- 
tial difference U, applied to the film along the x axis 
and the total current I ,  in the same direction. The 
quantity U, is determined with the aid of (4); I,, with 
the aid of (5), in which we must se t  ox= o, and a, =0: 

(6) 
Since U, and I, clearly do not depend on y and x ,  we 
can, for example, se t  x = 0 and y = 0 in (6). The effec- 
tive conductivity can be expressed in terms of U, and 
I ,  from (6) a s  follows: 

Here f, = f,(r) is the function that gives the dependence 
of ue on the concentration for r < 0  outside the smear- 
ing-out region. In particular, f,- (rl-a for 171 <<I 
(Ref. 5). 

Let us now place the system under consideration in a 
transverse magnetic field. If the condition $,<< is 
still fulfilled in H#O, then the impurities of the first  
component can be considered a s  before to be perfectly 
conducting impurities with the same boundary condition 
E, = 0. As mentioned above, the quantity o, does not 
enter into the equation for the potential (the Laplace 
equation). It also dropped out from the boundary condi- 

- tion. Thus, we arrive a t  the conclusion that, for the 
system under consideration, the complex potential @,(z) 
in the magnetic field virtually coincides with @,(z) 
(more exactly, this coincidence obtains for the fields 
E, and Em): 

@/(z) =A@,:(z) .  (8) 
The constant A, as follows from the boundary condition 
E, = 0, is real, and will be se t  equal to unity below. 

The complex potential (8) with the help of (4) and (5), 
and with allowance made for (6), allows us to express 
the total currents in the directions x and y and the cor- 
responding voltage potentials in terms of I, and U,: 

According to the integral Ohm law following from (I) ,  
the elements of the effective conductivity tensor Ce a r e  
defined in the following manner: 

s o  that from (lo),  (91, and (7) we finally obtain the ex- 
pressions 

The expressions (111, which a r e  valid for any shape 
and an arbitrary distribution of the perfectly conducting 
impurities, were derived earlier in Ref. 4 by another 
method. These same formulas describe the galvano- 
magnetic properties of systems that undergo the metal- 
dielectric transition in the "dielectric" ( ~ < 0 )  phase 
outside the smearing-out region. 

Below we shall use for making estimates the following 
model expressions for the quantities a,, and u,,, which 
a r e  valid in the isotropic case and in the r approxima- 
tion for arbitrary H (Ref. 8): 

Here o i a n i p i  is the conductivity of the i-th component 
in H=O, ni and pi being the carr ier  concentration and 
mobility; B i m  piH. The condition of applicability of the 
formulas ( l l ) ,  $,<<̂ a,, imposes limitations on the quan- 
tities ni and pi. In the case in which the components 
have equal mobilities, i. e., in which y = IJ., (or  in which 
p1 and p2 a r e  comparable in order of magnitude), the 
condition of applicability has the simple form n,<< n, 
for arbitrary H. If, on the other hand, the carr ier  con- 
centrations a r e  comparable, i.e., if n,"n,, but p,<< pl, 
then for  fliS 1 we have $,<<C1. But for fli>>l 

~ . ~ z o ~ $ . - ~ a n , / p ;  and o,,=o,Bi-'ani, 

s o  that in strong fields ox,>> ox,, o,,- u,,, and the condi- 
tion of applicability of (11) [as well a s  of (20)] is no 
longer fulfilled. This case will be considered in Sec. 5; 
in Secs. 2 and 3 we shall assume that pl-  p,. 

According to ( l l ) ,  the H dependence of the elements 
of the ?ie tensor for the system under consideration is 
the same a s  for $,. The only difference between and 
$, is the presence of the factor f, = f,(r) in the first  
equality in (11). This leads to the result that, for ( r  ( 
<< 1,  oxe >> or,. But following from this circumstance is 
an unusual behavior, a s  H increases, of the elements of 
the effective resistivity tensor &. Writing the tensor 5 
in a form similar to 6 from (1) (with the sign of pa 
changed), we obtain for the elements of ji, with allow- 
ance for (11) the expressions 

If we use the model expressions (12), then (13) assumes 
the form 

where p,=o,-'. We then have for the elements of the 
express ions 

The dependence of pro and pa, on H is more complicated, 
and here for 17 ( << 1 we can distinguish three magnetic- 
field regions (f, = ( T  

The effective Hall coefficient R,  for arbitrary H coin- 
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cides up to a constant factor with pa, (Re = p,,/H), and 
therefore its dependence on the concentration and the 
magnetic field follows directly from (13)-(15). 

3. DIELECTRIC IMPURITIES 

Let us now consider the "metallic" phase (7> 0) out- 
side the smearing-out region, when the impurities of 
the poorly conducting component can be assumed to be 
dielectric impurities ($,= 0). In this case the boundary 
condition i s  the equality to zero of the normal compo- 
nent of the current density (i.e., jn= O), which condition 
can, with allowance made for (31, be written in the 
form 

Here n is the unit vector along the normal to the bound- 
ary of an impurity. Let @,,(z) be the complex poten- 
tial, satisfying the boundary condition 

in H= 0 in the region occupied by the f i rs t  component. 
Then the derivative of the complex potential @,(z) ,  
satisfying the boundary condition (l6), in HZ0 in the 
same region can be expressed in terms of @:,(z): 

The determination of the effective characteristics of the 
medium with the aid of (17) is carried out in much the 
same way a s  was done above. Thus, the potential dif - 
ference and the current for H=O a r e  given by the ex- 
pressions (6) with the subscript 2 replaced by 1. For 
the conductivity a, in zero magnetic field, we have in 
place of (7) the expression 

where fd = fd(r) gives the dependence of a, on the con- 
centration outside the smearing-out region. In particu- 
lar,  for 7 << 1, fd- 7' (Ref. 5). For the currents and the 
voltage potentials in H# 0, instead of (9), we obtain 
from (17) with allowance for (18) the expressions 

Substituting (19) into (lo), we finally obtain 

The expressions (20), which a r e  valid for an arbitrary 
shape, and any distribution, of the dielectric impuri- 
ties, were derived earlier in Ref. 4 by another method. 
These same formulas describe the galvanomagnetic 
properties of two-dimensional systems that undergo the 
metal-dielectric transition in the metal (r>O) phase 
outside the smearing-out region. 

At low concentrations c of the second component (with 
the conductivity tensor i?,), using the method expounded 
in Ref. 7, we easily find that for a two-dimensional 
system with circular inclusions in the approximation 
linear in c 

For H=O and i?,=O we find from (21) with allowance for 
(18) the function fd for c << 1: 

The expressions (20) with fd given by (22) in the approx- 
imation linear in c coincide with (21) (for $, = 0). Mak- 
ing in (21) the substitution i?, -- i?,, and going over to the 
limit GI - -, we obtain (11) in the same approximation 
in c (in this case fa=  1 + 2c). 

If fo r  the quantities ox, and o,, we use the model for- 
mulas (12); then the expressions (20) assume the form 

According to (12), in the conducting (first) component 
the transition with respect to the magnetic field from 
the dependence a,,= o , a H O  to o , , " ~ , 8 , ' ~ a H ' ~  (and sim- 
ilarly from a,,= o,B, a H to  a,, = u,B,'~ a H -') occurs a t  
8,- 1. But for the system a s  a whole there occurs in 
the case in which 7 << 1, when fd- r t ,  a "drawing out" of 
such a transition into the region of higher magnetic 
fields: B1"Qt>>1. 

For 8, << T'~,  from (23) we have 

aZ,=a,tt,  U ~ , = ~ , T ~ ~ ~ , .  (24) 

It follows from (24) that the effective Hall coefficient 

of a two-dimensional system with dielectric inclusions 
does not depend on the concentration of the nonconduct- 
ing c ~ m p o n e n t ~ * ~ :  

R,=R,. (25) 

Outside the smearing-out region, the expression (25) 
is  valid also in the case in which 6,+O (but i?,<< GI). 

For 8, >> T", we find from (23) that 

The dependence of a,, on H in the magnetic-field range 
under consideration is normal: a,, = H-2. It should, 
however, be noted that in this case o, is high compared 
to ox,: u,,/u,, E T ' ~  >> 1. According to (26). a,, for the 
same H coincides with o,,. It is noteworthy that the ex- 
pressions (26) a r e  similar to the formulas (11) (for high 
H). This, apparently, is not accidental. The boundary 
condition a t  the surface of a dielectric inclusion is the 
equality to zero of the normal component of the current 
density, i.e., j,,=O. For low H this corresponds to En 
5 0. But for He,-, when the diagonal element a, is neg- 
ligible compared to a,, the condition Et=O follows from 
the condition jn=O. Thus, in a sufficiently strong mag- 
netic field the boundary condition for a dielectric in- 
clusion is the same a s  for a perfectly conducting inclu- 
sion. This evidently explains the similarity between the 
formulas (26) and (11). As can be seen from (21) (see 
also Secs. 5 and 6), a s  H- - these conclusions a r e  val- 
id also for an isolated inclusion of any conductivity, ex- 
cept in the case of equal carr ier  concentrations, i.e., 
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the case in which n, = n, 

In conclusion of this section, let us give the expres- 
sions for the elements of the effective resistivity ten- 
sor ,  which follow from (20): 

From here, using the definition of the Hall coefficient 
for arbitrary H (R  =p,/H), we again arrive a t  the result 
(25). Thus, the equality (25) is valid for any magnetic 
fields. The same conclusion can be drawn from 
Dykhne's general relation [see, for example, the form- 
ula (10) of Ref. lo]. Let us also note that it follows 
from the expression for p,, that the magnitude of the 
relative magnetoresistance does not depend on the con- 
centration of the nonconducting component ( i. e., bpX,/ 
p, = AP,../~,.~), a fact which was observed in the model- 
ing experiment performed by ~evinshtern et aL9 

4. THE GENERAL CASE 

Using the method expounded in the preceding sections, 
we can also consider the galvanomagnetic properties of 
two-dimensional systems in the general case, in which 
both components have finite nonzero conductivities. 
This can be done by reducing the original problem to 
the problem of the effective conductivity of a system of 
the same structure, located in zero magnetic field, and 
whose components have some conductivities A, and A, 
(the zero system). The zero system, like the original 
system in H=O, is characterized by a scalar conductiv- 
ity, but the quantities A, and A, do not, generally speak- 
ing, coincide with the conductivities of the components 
of the original system in H = 0; the ratio A = A,/A, c 1 is 
a free parameter. 

Let the complex potential for the zero system be equal 
to @,,(z) in the region occupied by the f i rs t  component 
and @,(z) in the region occupied by the second. Let us 
write the boundary conditions-the equality of the tan- 
gential components of the electric field and of the nor- 
mal components of the current density-in the form (H 
= 0): 

Here n is the unit vector along the normal to the inter- 
face. Let us write the effective conductivity u, of the 
zero system for all r in a form similar to (18): 

Here, a s  above, Uo and I, a re  the potential difference 
and the total current in the direction of the x axis. Let 
us write the effective conductivity of the original sys- 
tem in H = 0 in the form u, = ul fo(r, h), where h = u,/u, 
a 1. It is not difficult to see  that f ( r ,  A) is obtained 
from fo(r, h) by replacing h by A, i.e., the function 
f(r,A) is determined by the properties of the original 
system in zero magnetic field. 

We shall seek the derivative of the complex potential 
of the original system in Hf 0 in the first  (with conduc- 
tivity tensor 8,) and second (3,) components in a form 
that generalizes (8) and (17): 

Let us choose the real  constants Ai and Bi and the pa- 
rameter A such that the boundary conditions in the orig- 
inal system in H + 0 will be satisfied. 

The continuity of the tangential component of the elec- 
t r ic  field[the f i rs t  equality in (27) with @,, replaced by 
chi] gives the two relations 

The condition for the normal component of the current 
density in a magnetic field to be continuous can be writ- 
ten with allowance for (3) in the form 

Substituting (29) into (31), and using the equalities (27) 
and (301, we obtain the following homogeneous system 
of equations: 

The condition for the system (32) to be solvable yields 
an equation for the determination of the parameter A. 
Let us write the solution to this equation in the form 

If for the quantities uxi and uai we use the formulas (12), 
then we obtain from (33) the expression 

The constant A, can, without loss of generality, be se t  
equal to unity. Then from (29), (30), and (32) we finally 
obtain for the derivative of the complex potential of the 
original system the express ions 

@,'(z) = ( l + i B )  (D to l ( z ) ,  Q z r ( z )  = ( l+ ihB)  Q z o r ( z )  ; 
(35) 

B=(o.,-o.,) /(0,,-X.ox9), 

where the parameter A is given by the expressions (33), 
(34). 

The formulas (35) and (28) allow us to express the 
sought axe and a,, in terms of the function f. Let us use 
for this purpose the method used in Secs. 2 and 3. Let 
us note beforehand that, to compute, for example, the 
potential difference, we must integrate the electric 
field E along a contour joining the opposite sides of the 
film. It is convenient to choose this contour such that it 
lies wholly in the region occupied by one of the compo- 
nents. We then obtain an expression of the type of the 
f i rs t  formula in (6). Let us proceed in the same man- 
ner in finding the total currents. According to the per- 
colation theory: such paths, which thread the entire 
sample, can, in the two-dimensional case, be drawn 
only through the first  component when T > 0 and through 
the second when T<O. Therefore, in computing the vol- 
tage potentials and the currents with the aid of formulas 
of the type (6), we must use the complex potential @,(z) 
when T>O and the potential @,(z) when 7<0 .  

Let us f i rs t  consider the metallic phase ( ~ > 0 ) .  Using 
the expression for @;(z)  from (35) and the relation (28), 
let us compute the total currents and the potential dif- 
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f erences: 

I  a - a )  f I,=- (o,lB+o.,) UO; 

u,=lio, u,=-BjU,. 
(36) 

Substituting the expressions (36) into (lo), we obtain 

It can be shown that the same expressions (37) a r e  ob- 
tained for ox, and u,, in the r <  0 case, so  that they a r e  
valid for arbitrary r. Substituting into (37) the explicit 
form of the'coeff icient B from (35), and using the iden- 
tity 

which follows from the equation for A, we finally obtain 
for the elements of the effective conductivity tensor the 
express ions 

Here the parameter A is given by the expressions (33), 
(34), while the function f = f ( r ,  A)(A f 1) is defined in 
(28) for all A. The formulas (38) and (39), which a r e  
valid for any shape, and arbitrary distribution, of the 
inclusions, solve the formulated problem, expressing 
u,, and a,, in terms of the function f, i.e., in terms of 
the properties of the system in question in zero mag- 
netic field. Let us note that a change in the magnetic 
field H leads, according to (33), to a change in the pa- 
rameter A. Consequently, the measurement of the gal- 
vanomagnetic properties of the systems under consid- 
eration a t  fixed r values will, in principle, allow us to 
find the dependence of the function f (7, A) on A, or,  
equivalently, the dependence of f0(r, h) on the parameter 
h. 

Eliminating the function f from (38) and (39), we ob- 
tain Dykhne's general relation in the form given in Ref. 
4. We can write the expressions (18) and (19) of Ref. 4 
in a more compact and symmetric form if we introduce 
the off -diagonal element pa = u4/(ux2 + uU2) of the resistiv- 
ity tensor: 

It can also be verified that ax, and a,, from (38) and (39) 
satisfy the reciprocity relations of Ref. 4. The exact 
expression obtained in Ref. 3 (see also Ref. 10) for the 
effective Hall coefficient follows from (381, (39) for H - 0. Using the method expounded in Ref. 7 ,  we easily 
find that, for low second-component concentrations c 
<< 1, 

The substitution of this formula into (38), (39) yields in 
the approximation linear in c the result (21). 

For a system with dielectric inclusions (6,- 0, T > O), 
A-  0, f - fa(r), and the expressions (20) follow from 
(38), (39). For a medium with perfectly conducting in- 
clusions (& - m, 7 < O), f - ~f , ( r ) ,  and the passage to the 
limit 6, - Q, in (38), (39) leads to the formulas (11). 
Finally, if the concentration is equal to the critical 
concentration (i.e., if r=O), then for a randomly in- 

homogeneous medium (or, for example, for a system 
with a chessboard structure), f (0, A) = A 4  (Ref. l l ) ,  and 
we obtain from (38),(39) Dykhne's result1 in the form 
given in Ref. 4: 

One of the most interesting consequences of the result 
(40) is the change in the H dependence of ox, in a strong 
magnetic field ( i.e., to anomalous conductivity1) a s  
compared to the homogeneous case. It is easy to verify 
that ox, a H-' for H- m, except in the case of equal car-  
r i e r  concentrations (i.e., the case in which nl =n,), 
when ox, has the "normal" asymptotic form: u,, a He2.  

In conclusion of this section, let us note that the for- 
mulas (38) and (39) can be derived by the standard 
method, i.e., without the use of the complex potential. 
Let us try to express the field E in the original system 
(H # 0) linearly in terms of the field E0 in the zero sys- 
tem: 

The electric field E0 in each component satisfies the 
constant-current equations curl  EiO = 0, divEiO = 0. The 
field E i  should satisfy similar equations (uai drops out 
of the equation div ji = 0, and enters into the problem 
only through the boundary condition), whence it follows 
that Ci = -Bi and Di =Ai. A comparison of (41) with (29) 
and (2) shows that the coefficients in (29) were chosen 
such that they satisfy precisely such relations. The re -  
quirement that (41) satisfy the boundary conditions 
leads to (30), (32), and (33). In order to compute the 
effective conductivity tensor Ge by the standard meth- 
~ d , ~  we must find the averaged quantities (j)  and (E) 
(( j) = C,(E)). Let us note that 

( E o ) = p ( E o ) , + ( l - p )  < E n ) ,  and ( jo)=h,p(EQ),+h,( l -p)  (EQ) , ,  

where (. . .), denotes averaging over the area of the i-th 
component and p is the concentration of the first  com- 
ponent. Similarly, ( j)  and (E) can be expressed in 
terms of the four quantities (E:), and (EL), (cu=x, y ) .  
Two of these quantities (say, a:), and a;),) can be ex- 
pressed with the aid of the relations 

in terms of a:),, a:),, and the function f. The elim- 
ination of the second pair (@:), and leads to a re-  
lation between ( j , )  and @,) of the form (j) = ?re$), i.e., 
yields the explicit form of a,, and a,,. The correspond- 
ing, rather tedious calculations lead to the expressions 
(38) and (39). 

5. THE CRITICAL REGION 

The general formulas (38) and (39) obtained in the 
preceding section allow us to fully investigate within the 
framework of the scaling theory5 the galvanomagnetic 
properties of two-component systems in the vicinity of 
the metal-dielectric transition point in the critical re- 
gion. In the process we determine an important char- 
acteristic: the hitherto undetermined size of the transi- 
tion region (the smearing-out region), which then al- 
lows us to determine the limits of applicability of 
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Dykhne's results (40). 

Let the components of the system under consideration 
have markedly different conductivities in zero magnetic 
field (i.e., let h = oJo, << I), s o  that a strongly pro- 
nounced metal-dielectric phase transit ion occurs in the 
system in H = 0. The scaling theory postulates that the 
function f0(q h), defined with the aid of the relation a, 
= a, f,(r, h), has in the critical region ( ] 7 1 << 1,  h << 1) the 
following 

Here, as above, r characterizes the proximity to the 
transition point in concentration space. It is assumed 
that the smearing-out region is symmetric about the 
point 7'0, and that its dimension A, can be determined 
from the requirement that the argument of the function 
JI be equal to unity: 

The function f, has the following asymptotic forms: 

The critical exponents t, s, q, and m a r e  connected by 
the two relations5 q =  t ( l  -s)/s and m = s / t ,  i.e., to de- 
scribe the behavior of f,(r, h), it is sufficient to know 
only two of them, say, t and s. According to Ref. 11, 
for a randomly inhomogeneous two-dimensional medi- 
um fo(O, h) = hf ; therefore, s = $ and q = t. In this case 
we have only one independent critical exponent t a 1.3 
(Ref. 3). It should be pointed out that in this case the 
relation in (46b) is an exact equality. As noted in the 
preceding section, the function f (7, X) entering into the 
expressions (38) and (39) is  obtained from fo(7, h) by re -  
placing h by A, where A is  given by (33). If X << 1 (and 

I T  I << 11, then all the results of the scaling theory a r e  
valid for the function f(r,X) as well. 

Let us f i rs t  consider the case in which the carr iers  
have the same mobility, i.e., in which c(, = p2 = c((& = Bz 
= B), but markedly different concentrations (n, << n,). 
Then for all H we have 62<<31, and from (33), (38), and 
(39) we obtain 

The expression for a,, in (45) coincides in form with 
(20), with the important difference, however, that in 
(45) the function f depends not only on r (and 7 can be of 
either sign), but also on A, i.e., on the magnetic field. 

According to (45), the parameter X is  small, s o  that, 
when Ir 1 << 1, we can use the scaling-theory results 
(42)-(44) for the function f. Let us, to begin with, de- 
termine the dimension A, of the smearing-out region in 
a magnetic field. The quantity A, is obtained from (43) 
by replacing h by A: A, =Xm. Substituting the expres- 
sion for X from (45), and using the model formulas (12), 
we obtain for A, the expression 

where A, and m a r e  the same quantities figuring in (43). 
Thus, the dimension of the smearing-out region essen- 

tially depends on the magnetic field. As H is in- 
creased, the quantity A, decreases, tending to zero a s  
H-*. Consequently, if the system in H=O is within the 
smearing-out region (i.e., if 17 ( <<A,, r#O), then there 
ar ises  in sufficiently high fields a situation in which 
17 1 >> A,, i.e., in which the system "leaves" the transi- 
tion region. It is the narrowing of the smearing-out r e -  
gion with increasing H that determines all  the peculiari- 
ties of the galvanomagnetic properties of systems that 
undergo the metal-dielectric transition in the vicinity 
of the point 7 = 0. 

The expressions (40) a r e  obtained from (38) and (39) 
in the case in which fz  A*, which can be done when Ir 1 
<<A". From this it follows that Dykhne's results (40) 
a r e  applicable in the entire range of magnetic fields 
only a t  the isolated point r = 0. If, on the other hand, 
7 f 0 (but I T  1 << A,), then the (magnetic-f ield) region of 
applicability of the express ions (40) is bounded from 
above: fiZm << A,/ 1 r 1. When 17 1 2 the formulas (40) 
a r e  inapplicable; the conductivity is not anomalous in 
this concentration region. 

Let us now investigate the dependence of a,, and o,, 
on H in the critical region. According to the foregoing, 
if the system in zero magnetic field is in a state lying 
outside the smearing-out region (i.e., if \ r  1 >> A,), then 
for all  H#O we shall have 17 ( >> A,. In this case the 
galvanomagnetic properties of the system located in a 
magnetic field of arbitrary intensity H a r e  described by 
the expressions (11) ( 7 ~ 0 )  or (20) (r>O), and a r e  con- 
sidered in detail in Secs. 2 and 3. Of greatest interest 
a r e  the properties of the system located in H=O, and 
in a state lying inside the smearing-out region ( ( r  ( 
<<A,,T#O). In this case, according to (45), when r > 0  
we can distinguish four magnet ic-f ield regions [we use 
for a,, and oai the model formulas (12) with 8,=8,=8]: 

The stepwise dependence of ox, on 8 (i.e., on H) and the 
"double-humped" dependence for a,, a r e  noteworthy. 
The anomalous conductivity ox,= 8"*H" occurs in the 
magnetic -f ield range indicated in (47 b). 

The results (47) have a simple meaning. The expres- 
sions (47a) and (47b) correspond to the case in which 
the system is in a state lying inside the smearing-out 
region (7 << A,), and can be derived from (40). The 
formulas (47c) and (47d), on the other hand, correspond 
to the case in which r >> A,, when the system has al- 
ready "left" the smearing-out region, and coincide 
(when 8, = B )  with (24) and (26). Similarly, we can dis - 
tinguish three magnetic-f ield regions when r < 0. In the 
f i rs t  two regions o,, and a,, a r e  given by the formulas 
(47a) and (47 b) (with r replaced by 1r 1); in the third, in 
which 8 >> 1 r ~-'(u,/u,)~, by the expressions (11). 

Let us now consider the case in which the carr iers  
have markedly different mobilities, but a r e  of nearly 
equal concentrations, i.e., in which k,<< / L ~ ,  but 6 = (n, 
- n,)/n, << 1; for definiteness we set  n, > n,, SO that 6 
> 0. When k2 << kl and 6 << 1, in weak magnetic fields 5, 
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<<GI, while in strong fields ox,>> ox, and u,,'ua2, s o  
that the results obtained in Secs. 2 and 3 a r e  directly 
applicable here. In the case under consideration we 
obtain from (34) for the parameter A the expression 

It follows from (48) that in sufficiently strong magnetic 
fields, ie . ,  for 8,6>> 1, the quantity A, <<A,, and, a s  
in the p1 = p 2  case, the system, which in H= 0 is in a 
state lying inside the smearing-out region, leaves this 
region when H- w, 

When r > 0 ,  r e  A,, we can again distinguish four mag- 
netic-field regions in the H dependence of ox,: 

The quantity a,, under the same conditions varies in the 
following manner: 

The expressions (49a)-(49c) and (50a) correspond to r 
<< A,,, and can be derived from (40), while (49d) and 
(50b) correspond to r >> A,,, and coincide in form with 
(47d). The anomalous conductivity occurs in the mag- 
netic-f ield region indicated in (49c). 

The case of equal carr ier  concentrations, i.e., the 
case in which n, =n,, o r  6 = 0, is a distinct one. Accord- 
ing to (48), in this case the parameter h (and, conse- 
quently, A,) does not depend on the magnetic field, and 
the system is in a state lying either inside o r  outside 
the smearing-out region for all H. The anomalous con- 
ductivity does not occur in this case. 

In conclusion of this section, let us note that the mea- 
surement of the galvanomagnetic properties of the sys- 
tems under consideration in the vicinity of the transi- 
tion point (i.e., in the region ( 7  1 << A,, 7 + 0) a t  two fixed 
concentrations corresponding to the cases 7 > 0 and r < 0 
allows us to investigate the entire critical region, and 
thereby find the function J, from (42). On the other hand, 
the results of such measurements can be used to verify 
the scaling hypothesis5 in the two-dimensional case. 

6. THE SLIGHTLY INHOMOGENEOUS MEDIUM 

If the properties of the components a r e  close to each 
other, then the function f,(r, h) can be found, using the 
method expounded in Ref. 7,  for arbitrary concentration 
c up to (1 - h)'<< 1 inclusively: 

Here p is the concentration of the first  component. The 
parameter X in this case can, according to (331, be 
written in the form 

The expression (52) has been written up to terms of 
first order in (Sl - G,), which is sufficient for our pur- 
poses. The substitution of (51) (with h replaced by X)  
and (52) into (38) and (39) yields the expressions 

The formulas (53) can also be derived directly by the 
method expounded in Ref. 7. 

In sufficiently strong magnetic fields the last  term in 
the square brackets in the expression (53) for om is, 
generally speaking, proportional to H2, and increases 
without restriction a s  H-w. This means that the next 
terms of the expansion become fairly large, and we 
should sum an infinite series.'v2 Dykhne's result1 [see 
(40)], which is valid for p = $ ( r  = 0), and the analysis of 
the perturbation theory ser ies2 give u,aH-', i.e., an 
anomalous conductivity. Here it is not clear whether 
the anomalous conductivity exists in the case in which 
p # $. It can be asserted that it does not occur a t  low 
concentrations of one of the  components. Thus, if the 
inclusions have a circular shape, then the summation 
of the perturbation theory ser ies  in the approximation 
linear in the concentration c = 1 -p  << 1 of the second 
component will give for axe and o,, the express ions (21). 
It can be seen from (21) that the correction term that 
ar ises  in ore for H- is finite and small  (-c << I ) ,  s o  
that the anomalous conductivity does not occur. 

For  the a-nalysis of the behavior of ox, in strong fields 
in the case of arbitrary P values, let us use the expres- 
sion (38). To begin with, let us note that the correction 
term in (52) also increases without restriction as H 
- 0 0 ,  and the expansion (52) becomes inapplicable, s o  
that for X we must use the expression (33) o r  (34). Let 
us consider the case in which 

Then, when 86 << 1, the parameter A is close to unity 
and the formulas (52) and (53) a r e  valid. But for 86>> 1 
we find from (34) that 

i. e., X << 1. It is not difficult to see  from (38) that the 
anomalous conductivity ar ises  only when fz  X , which is 
possible only when 171 << 1. Under these conditions f 
<<I, and from (38) we have 

In the express ion (55) uXln urZx uop2, where a, ul a,, 
while the function f, as for systems that undergo the 
metal-dielectric transition, is given by the formulas 
(42), (44) with h replaced by A. From (55), (54), and 
(44) we obtain 

The anomalous conductivity exists in the magnetic-field 
region indicated in (56a). Notice that the concentration 
region where the anomalous conductivity occurs is 
broader in the case of a slightly inhomogeneous medi- 
um ( ( T  1 << 1) than in the case of systems that undergo 
the metal-dielectric transition ( I T  1 << << 1; t 
= I ,  3). 
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The quantity u,, does not possess such anomalies, and 
when the small corrections "6 << 1 a r e  neglected, we 
have a,,= a,,= u,, for all  H. Consequently, the satura- 
tion of the effective Hall parameter 8, = u,,/u,,, .pre- 
dicted in Ref. 1 for r = O ,  occurs in the case in which 
T #  0 in the magnetic-field region 6-' << 8<< 17 l'tb-l. In 
the case of equal carr ier  concentrations, i.e., for  n, 
=n,, the parameter X = o,/u, does not depend on H, and 
u, does not exhibit anomalous properties. 

Thus, it follows from the results of the present and 
the preceding sections that the anomalous conductivity 
predicted in Ref. 1 can exist only in systems with com- 
positions close to the critical composition ( p ~  p,) and 
(for p #p,) in a finite magnetic-field range. The situa- 
tion most favorable for the observation of the anoma- 
lous conductivity is the one in which (y, - y , ) /~ , "  1 and 
(n, -n,)/n,"l. We have in this case the broadest con- 
centration range 17 1 << 1 and the magnetic fields a r e  
not too high: 1 << 8 << 17 1 -'. 

In conclusion, I express my profound gratitude to 
A. L Larkin and Yu. N. Ovchinnikov for a discussion of 
the present paper. 
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