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The one-electron state density is calculated by summing all the perturbation-theory diagrams in the case of 
nonoverlapping impurities with arbitrary scattering potential. The appearance of state-density peaks 
corresponding to resonant scattering by impurity complexes is predicted on the basis of the derived equations. 
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1. INTRODUCTION We define the right-hand side R, a s  the sum of dia- 

One-dimensional disordered systems a r e  among the g rams  located to the right of the point x. Considering 
a sma l l  displacement of the point x, we obtain for  R,(x) most  investigated models. A very important result  was 

the development, by ~erezinski; , '  of a method of deter-  in analogy with Refs. 3 and 4 (c i s  the density and P i s  

miningthe kinetics of aquantum particle in suchasys tem.  the F e r m i  momentum) 

This method has subsequently yielded many other results  -dR,(x)/dz=c x W,,,,.R,, ( x )  e"~""-""-cR "X (x )  , 
d S O  

(2 
for  one-dimensional disordered systems.' -5 

In this paper we use Berezinskii's method to  calculate Wm- = ~ c , ~ c ~ ~ ~ , " " ( I + ~ + ) ~ - ~ ( ~ - ) ~ ~ - ) ~ ~ ' - ~ .  (3) 

the one-electron state density. I t  must  be noted that k 

~ e r e z i n s k g ' s  technique has already been used to inves- The function (3) is illustrated in Fig. 2 (see also Ref. 4). 
tigate the s ta te  density3s4 in connection with a study of The combinatorial factors in (3) result  from allowance 
Dyson singularities in a model in which the impurities for  al l  possible methods of connecting the impurity 
a r e  arranged in a l a t t i ~ e . ~  Jus t  a s  in Berezinskii 's lines when m,  m',  and k a r e  given. The substitution 
paper, diagrams of a special type, which were found R , ( x )  --eZ'Pxm Rm 
to oscillate slowly when umklapp processes a r e  taken 
into account, were summed. In the present  problem, reduces Eq. (2) to the form 
the positions of the impurities a r e  perfectly random 
and we sum a l l  the diagrams. -2ipmR,=c W,,.R,~-CR,. C I. (4) 

The question itself of the state density of a one- 
dimensional disordered sys  tem was investigated in 
many studies.' These, however, always dealt with 
particular cases  of the scattering potential. The most  
investigated among them is the 6-function method (the 
Frisch-Lloyd method). We have solved this  problem 
for  an arb i t ra ry  scattering potential, and were  there- 
fore  able to predict new singularities in the behavior 
of the state density of a one-dimensional disordered 
system. 

2. DERIVATION OF THE FUNDAMENTAL 
EQUATIONS 

If impurities of a different type a r e  encountered, i t  
is necessary to include in (3) an additional averaging 
over their  distribution, with the corresponding weight 
P(f ). F o r  overlapping impurities there appears in (3) 
a contribution of fourth order  in the density. I t  will, 
however, be smal l  relative to the parameter  roc, where 
r, i s  the characterist ic  radius of the impurity potential. 
This contribution can be taken into account in principle 
by introducing the amplitude of scat tering by a potential 
made up of two impurities, and then averaging the scat-  
tering over the distance between the centers. 

The s ta te  density (1) is expressed in t e rms  of R, in 

We consider an electron situated in the field of ran- 
the form 

domly located centers. We calculate the s ta te  density 

where ( ) means averaging over the impurity positions, 
carr ied out in the usual c ros s  technique. A typical dia- 
gram for  G(x, x + O )  i s  shown in Fig. l. The Berezinskir 
technique of calculating such diagrams is well described 
in Refs. 3 and 4. The impurity lines must  be f i r s t  
gathered into total forward and backward scattering 
amplitudes f+ and f-, in which we include, following 
Ref. 4, the factor  i / v .  In the general case  i t  is neces- 
s a r y  to distinguish in the backscattering amplitude f- 
between f- and 7-, depending on the direction from which 

I 

the electron is incident on the scattering potential. FIG. 1. Typical diagram for the Green's function G (x ,  x +O). 
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k+m% liner We note that we have above 16 1 Q 1 a t  1 b- la 1. 

We introduce for  R, a generating function defined by 

The equation for  R ( z )  is obtained from (10)  and (11):  

FIG. 2. General term of the sum for the transition probability 
W,,,,,,, in the case of impuritj scattering [see (3)]. 

In the foregoing I z  1 = 1 and the integration with respect  
t o  g i s  along a c i rc le  of radius ( g I = 1 +O. 

According to  the definition (12) ,  the function R ( z )  is 
analytic in the unit circle. Therefore the contribution 
to  the integral in the right-hand side of (13) comes from 
the two poles of the integrand. We obtain as a result  Equations (4 )  and ( 5 )  solve completely the state-density 

problem. The solution of Eq. (4 )  must be sought with the 
boundary condition R, = 1. 

Let us recall  some general properties of the sca t te r -  
ing amplitude. For  an  arb i t ra ry  scattering potential, 
the amplitudes f+ and f- o r  f - a r e  connected by the 
relation 

The right-hand side of ( 5 )  is m o r e  conveniently written 
with the aid of the function P ,  defined by 

The equation for  the generating function corresponding 
to P, which states the law of conservation of the number of 

particles o r  the unitarity condition. There i s  one other 
unitarity relation that connects a l l  three amplitudes: 

can be obtained from (14):  

The entire scattering process is thus characterized by 
three parameters. We shall consider next the ca se  of 
a symmetrical potential, for  which f-=f-, and i t  follows 
from ( 6 )  and ( 7 )  that4 

(l+f+)'=f-'-f-/f-: 

Equation (16)  should be supplemented by the normaliza- 
tion condition 

Consequently, the total scat tering amplitude can be 
described in this case  by two parameters,  which can be 
conveniently chosen in the form which is a variant of the boundary condition (10). The 

expression fo r  p(&) can be rewritten with the aid of (15) 
in the form 

where y is  the coefficient of reflection f rom an indi- 
vidual impurity 

3. TRANSITION TO FUNCTIONAL EQUATIONS The variable z in (16) is defined on the unit circle. 
We now express (16)  in t e rms  of a r ea l  variable. We 
define 

We change over in ( 4 )  from a difference to an integro- 
differential equation. We write fo r  c:,!!';-~ the following 
integral representation4: 

where the integration with respect  t o  z is along a c i rc le  
with a radius la rger  than unity, in the positive direc- 
tion. Substituting ( 9 )  in (3 ) ,  summing over k, and mak- 
ing the change of variables C = f 'I2z, we rewrite Eq. ( 4 )  
in the form 

sin a+ 7'" 
a=- 

sin a-7" , b - - .  
cos a cos a 

The expression for  p ( ~ )  and the normalizations in the 
variables (17)  take the form 
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Equations (17)-(19) constitute one of the main results  
of the present paper. Further analysis of (17) calls 
for  invoking the concrete dependences of y and a on the 
energy. We confine ourselves hereafter to general re-  
marks concerning the solution of (17) and point to cer -  
tain new facts  that follow from (17). 

4. STATE-DENSITY PEAKS 

Equation (17) has the simplest s t ruc ture  if yllz =s in0  : 

The condition ylfl = s i n a  is satisfied, in particular, in 
the Frisch-Lloyd model. In this case  

where v i s  the particle velocity and uo is the strength 
of the &function potential. Equation (20) contains two 
scales with respect  to the variable s. An analytic solu- 
tion of (20) can be obtained by considering different 
parameter regions in which limiting relations a r e  es-  
tablished between these two scales.  Equation (20) can 
in this case  be reduced to a differential one. 

If y1I2 # s in  a, Eq. (17) can also be reduced to the form 
(20). We introduce 

At sinz@< y we make the change of variables 

h+s t 
t=ln-, s--h th -. 

h-s 2 

In the new variables, Eq. (17) takes the form 

d 
2k- [ (ch t ch u+sh u)F]=F-F ( t - to ) ,  

dt (24) 

where to =2arctanh(a/~).  The integration in (25) is in 
the positive direction along a contour made up of the 
straight  lines Im t = O  and Im t = n. The present  equation 
(24) contains already three sca les  with respect  to the 
variable t, and its analysis is more  difficult. 

At s inza  > y we make the following change of variables: 

1 A-is cp  
cp=-ln-, s--)ltg-. 

a A+& 2 

For  F given in (22), Eq. (17) can then be rewritten in 
the form 

d 
2k-  [ (cos cp  sh u-ch ufF)=F-F(cp-cp,), 

dcp 
(2 6) 

where po =-2 arc tan(a /~) .  Equation (26) is of a form 
typical of the theory of resonant p h e n ~ m e n a . ~  If cpo has 
a value close to a rational fraction M /N of 2n, the har-  
monics that a r e  multiples of N should be enhanced in F. 
This can be detected, for example, by solving (26) by 

successive approximations in the case  of smal l  values 
of y. According to (23), the smal l  parameter  in (26) is 
then sinhu. 

The resonance effect manifests itself more  clearly,  
however, in the Fourier  representation7: 

The  Fourier-transformed Eq. (26) takes the form 

ink sh u 
P. - 8  

2n - 
l-c-'"c+2ikn ch (F--i+F.+A, P = j;;z (Fn+F.+Ja, (28) 

-- 
where Fo = 1/2n. If y<< 1 ,  Eq. (28) can be solved by 
iteration. I t  is seen  from (28) that a t  sma l l  k = p / c  
<< 1 the individual harmonics become enhanced if cp,(&) 
= 2 n M / ~ .  The resonance effects can manifest them- 
selves in the state density in the form of peaks of finite 
height. 

We can propose a general  scheme for solving (16). 
Let  cp, =2nM/N + A ,  where A<< 1. Since the value of M 
i s  immaterial here,  we put IM = 1. We define 

F,=F[cp-2n(n-l)/N], (29) 

where n = 1 ,2 , .  . . , N and 0 s cp 6 2 n / ~ .  With the aid of 
(29) we can rewrite (26) in matr ix  form: 

h,-2k[sh ucos ( 9 - 2 n ( n - l ) / N ) - c h  u ] ,  

which should be supplemented by the condition for  the 
continuity of F and normalization. I t  is possible to 
change over to s imi lar  equations, but now of infinite 
order,  in (21) and (24), too. The solution (39) can in 
principle be written a lso  in the general case. I t  is 
impossible, however, to c a r r y  the calculations through 
to conclusion in this case. We shall  therefore study in 
detail only the case  cpo = rr. 

The value po = n  corresponds according to (23) to the 
choice a! =n/2. The system of equations (30) takes in 
this case ,  af ter  diagonalization, the form 

here  F, = F ( p )  and Fz = F(-cp), where 0 s p n. The 
solution of Eqs. (31) can be represented in the form 

(I-t)' j - P [ - $ ( P + P ' ) + $ ( ~ ~ )  I +,, ~cD,==C,+C, - 
2k 

-2, 1-7" cos (cp+cpl) 

The intermediate integration constants were chosen 
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above to satisfy the continuity of F; @,(n) =@,(n), @,(O) 
=@,(O). The integrand in (32) and (33) has a'singularity 
as  y - 1. It can be separated by making the change of 
variables 

tg )=tg cp/(l-y)'". (34) 

In the new variables, Eqs. (32) and (33) take the form 

With allowance for (34), Eqs. (27) can be rewritten as 
follows : 

1 cos g 
i=C 2n (l+e-"Y - :/ ~ B L ( ~ - ~  Y ( P ) } .  (37) 

Substituting (35) in (36) and carrying out partial integra- 
tion, we arrive ultimately a t  the following equations: 

cos 0 cos (0+6) 
Io(P)= Jd0 (*-ysin'O)"[,-ysin'(O+fi)]lI~ ' 

cos 0 cos (8+fi) 
I, (p) = J d8 sin2 8 

(i-y sin20)'"[1-ysinz(8+))]" ' (40) 
0 

cos 20 cos(0+)/2)cos(B-8/2) 
b ( $ ) = j  I*- 7 sinZ(0+)/2) ]'"[l-y sinv0-i3/2) ]"' ' 

0 

The integrals (39)-(4 1) are  not singular. From (38)-(41) 
we obtain the following expressions for p ( & )  in two 
limiting cases: 

In (38), interest attaches to the expression for  p(&) 
in the region of small k. We note that in this case, at 
k<< 1, the main contribution to (38) comes from integra- 
tion with respect to p near zero. Although the integrals 
(39) and (40) cannot be expanded here in small  powers of 
j3, since the integrand becomes nonanalytic as  y - 1 ,  
they can be estimated. For example, Zo(fl) =Io(0) - Jo(j3), 
where Jo(p) -C P .  The main contribution to (38) from I,(@) 
comes from integration of Io(0). The contribution from 
~ ~ ( 6 )  is then small in terms of the parameter k. As a 
result we have 

It is known: for example, from the Frisch-Lloyd mflel  
that the state density in the fluctuation region decreases 
exponentially. I t  follows from (42) that the peaks de- 
duced above in this region may turn out to be fully ob- 
servable. If y i s  chosen a s  in the Frisch-Lloyd model 
(21), we find from (42) that the amplitude of the peak 
remains finite also as E -  0 

5. CONCLUSION 
We note in conclusion that the state-density peaks 

observed above differ entirely in character from the 
Dyson s ing~lar i t ies .~- '  The latter a r e  due entirely to 
the fact that the distance between the impurities, while 
haphazard, is not always a multiple of a certain con- 
stant. As a result, states with wavelengths that a r e  
multiples of this constant will be preferred. In our 
problem the impurities a re  perfectly randomly dis- 
posed, and the singularities observed a r e  due to reso- 
nant scattering by impurity complexes. 

The state-density peak considered above (po  =n) cor- 
responds to the appearance of a resonance level in the 
field of a complex of two closely lying impurities. In- 
deed, the amplitudes of the scattering by the potential 
barr ier  made up of two impurities located at the points 
x=O and x = l  a r e  equal to 

From (43) follows the existence of a virtual level in the 
field of two closely lying impurities1) (pic 1). The 
position of the level corresponds to o(EO) = ~ / 2 .  Putting 

we have 

i+jT 3 - l-yo 
i-y,+ih(e-eo) ' 

It follows from (43) and (44), as well as from the exact 
(28) and (38), that the amplitude of the corresponding 
state-density peak depends on the values of the para- 
meters 1 - yo and ko =p0/c.  The first  of them determines 
the width of the virtual level, while the parameter ko 
specifies the statistical weight of the corresponding im- 
purity complex, since the resonance level appears in 
complexes in which the distance between the impurities 
is small: I<< I/$,. On the other hand, 1 cannot be less 
than the impurity-potential radius. Thus, the corre- 
sponding peaks may turn out to be noticeable only in the 
fluctuation region of the spectrum. We note that for a 
particle with energy & = E, such a complex turns out to 
be transparent. 

Writing (43) a t  p1<< 1 in the form 

2y"cosa sin Za 
P=.(i+yz+~ycosa)'h ' tgg-cosaa+r* 

we note that a t  cos 212 =-y the phase factors in (45) co- 

713 Sov. Phys. JETP 55(4), April 1982 V. N. Prigodin 713 



incide with the corresponding phase factors 1 +f+ and 
f, at a =n/2 .  In this case,  therefore, the resonance 
level appears in the field of a complex having already 
four closely lying impurities. The condition cos 2a 
=-y corresponds according to (26)  to the appearance 
of the next peak in the state density, with (p, =n/2.  

 his situation can be easily visualized. If the potential con- 
taining the specified virtual level is spatially broken up into 
individual potentials, a virtual level in the given energy 
region will then exist already in each of these potentials. 
Only by expanding these potentials together do we reproduce 
the given level. 
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