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We obtain and investigate two-soliton as well as onesoliton states of a noncommensurate phase the transition 
to which is described by a two-dimensional irreducible representation that admits of the Lifshitz gauge 
invariant. The boundaries between the different phases are drawn on the phase diagram. We show that the 
boundary between the one- and two-soliton states of the incommensurate phase is not a phase-transition line. 
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The incommensurate phase observed in crystals, for 
example in certain ferroelectrics (see Ref. I ) ,  spans 
as  a rule an intermediate temperature region between 
the usual crystalline phases having high symmetry (ini- 
tial) and low symmetry (commensurate). The closer 
the temperature to the point of the transition between 
the incommensurate and commensurate phases, the 
more similar the incommensurate and commensurate 
phases become in structure if the latter contains regu- 
lar  In other words, the regions of almost 
uniform distribution of the order parameter a re  sepa- 
rated in the incommensurate phase by comparatively 
narrow transition regions, which will be called here 
solitons. It is well known, however, that several dif- 
ferent commensurate phases can correspond to one 
multidimensional irreducible representation of the 
symmetry group of the initial phase of the crystal. 
Consequently, an incommensurate phase that i s  adja- 
cent on the phase diagram to different commensurate 
phases will likewise have near these boundaries differ- 
ent structures close to those of the corresponding com- 
mensurate phases. Thus, for example, if the coninien- 
surate phase has two types of domain wall, the incom- 
mensurate phase can also be expected to have solitons 
of two types. In this paper, using a two-component or- 
der parameter a s  the example, we investigate the 
states of an incommensurate phase with solitons of one 
and two types, and assess the possibility of a phase 
transition between these states. 

We represent the thermodynamic potential in the form 

O, (I) =w2+~pk+cr'pL cos 4q+$'p8 eos' 49-apZv,+6 (pXLf pZcp=') 9 (1 ) 

where p(x), cp(x) a re  the polar coordinates of the two- 
component order parameter 77 =p  cos cp, 5 =p  sin cp, 
which transforms in accord with the two-dimensional 
irreducible representation of the symmetry group of 
the initial phase of the crystal. Account i s  taken in (1) 
of two degrees of the isotropic invariant p2 and of two 
degrees of the spatially isotropic components of the or- 
der parameter of the invariant pncosncp (we consider 
for the sake of argument the case n = 4), as well as  the 
Lifshitz gauge invariant4 p2cpx (the subscript x denotes 
a derivative with respect to x: cp, = acp/ax) and a gauge 
invariant of higher order. It is assumed that the coef- 
ficients j3 > 0, 6 > 0. 

The phase diagram corresponding to the thermody- 
namic potential (1) on the (a, a') plane is shown scheni- 
atically in Fig. 1 for small values of a': ) a' ) << j3 at 
> 0. The numbers 1, 2, and 3 denote the regions where 
different coniniensurate phases exist, and 0 denotes the 
region of the initial phase. The solution for p and cp in 
phase 1 i s  

where we have introduced for brevity the dilllensionless 
parameters 

We used in (2) an expansion in the parameters (31, 
which are  assullied to be sniall: c << 1, T << 1 (weak- 
anisotropy approxiniat ion). The solution in phase 2 dif- 
f e r s  from Eq. (2) in that the signs of 0' and cos 4cp are 
reversed. The solution for p and cp in phase 3 is 

The boundary between phases 1 and 3 i s  a second- 
order phase transition line (see Ref. 5 for details) 

(the boundary between phases 2 and 3 i s  the line c = - 7 ) .  
Phase 3 i s  stable if j3' 0. The case 0' < 0 will be con- 
sidered below. 

The solutions for p and cp in the incomnlensurate 
phase will be sought in the approximation with constant 
amplitude p, = 0 (Ref. 2). Varying the thermodynamic 

a' 

t 

FIG. 1. Phase diagram on the (a ,a') plane, corresponding to 
the thermodynamic potential (1) at P' > 1. Dashed linea- 
second-order phase transition lines. 
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potential (1) with respect to cp we obtain 

~ 9 = + ~ ' p t  sin 41q+2$'~* sin a9=0. (6) 

Multiplication by cp, and integration reduce this equa- 
tion to a first-order equation that can be solved by sep- 
arating the variables. The result is an elliptic integral 

- 

where u =cos 4cp, and c, and c2 are  integration con- 
stants. We consider those solutions (7) for which cp in- 
creases (or decreases) monotonically with increasing 
x ,  as near the point of the transition between the initial 
and incommensurate phases. This excludes from con- 
sideration "oscillatory" solutions for cp. There exist 
three solutions of this type, which we designate i, 2, 
and 5. 

The function u(x) can be obtained from (7) by reducing 
in standard fashion the elliptic integral (7) to normal 
form and using Jacobi elliptic functions. Replacing c, 
by a new constant 1 and choosing the value of c2, which 
depends on the choice of the null point of x ,  we can rep- 
resent solution i in the form 

CO3 4~' 
cn (2 ,  k) -1 dn (z ,  k) 
t ln (z ,  k) -1 cn  (z,  k) ' 

a'p' 1-7 
~ - 4 q 1 ,  q2=-(I-fy), k2-1-, 

261 1-11 

where k is the lllodulus of the Jacobi elliptic functions. 
Here and elsewhere we use the notation 

The solution (8) exists if a' > 0 and y s 1 s 1. The solu- 
tion 2 differs from (8) in that the signs of CY' and cos 4q 
a re  reversed. 

The solution 9 i s  given by 
cn (:, k )  -1 , . 

cos 'IT' ~ = 4 q r ,  q'= k'=lr-1 
1 - l c n ( z , k )  ' 261 

(10) 
It exists in the interval I1 1 mint1 71, l / ly l ) ,  and the 
sign of 1 must be the same a s  the sign of a'. 

The solutions obtained contain the arbitrary param- 
eter  1 (or the uniquely related quantity k ) ,  as  well as  
the quantity p, which by virtue of the employed approx- 
imation p, = O  can also be regarded as a parameter. It 
i s  natural to determine these parameters6 from the 
minimum condition for the thermodynamic potential (11, 
in which the solution for cp, (8) or  (101, is substituted 
and integration i s  carried out with respect to x. The 
results of this calculation are relegated to  the Appen- 
dix. We present here only the main consequences con- 
cerning the phase diagram (see Fig. 1). The boundary 
between solutions 1 and 3, i.e., (8) and (101, i s  defined 
by the equation 

I ' b  4 2 

"=Ii-\;) a, I -c(c) 
(shown dotted in Fig. 1). On this boundary k=O, hence 

The parameter 1 runs through values from I = 0 at the 
point A to 1 = 1 at the point C. The coordinates of these 

Points a re  a = a o ,  a' = O  for A and a =-4aO/E0, = P L ; ~  \ 
for C. \ 

The equations for the boundaries of the existence of 
the incommensurate phase are  determined from the 
condition k = 1. For the solution i [Eq. (E)]  the bound- 
ary takes the parametric form 

where 8 ranges from 0 to lr/2 at the point C. For solu- 
tion 3 [Eq. (10) we have correspondingly 

a 4 

Ea cos B+B sin 0 

with 8 ranging from rr/2 at point C to 0 at point B (see 
Fig. 1). 

We note that Eqs. (A.1) to  (A.5) describe the transi- 
tions i-1 and 3-3 a s  first-order phase transitions. 
Actually, the values k' = (1 - k2)If2 corresponding to the 
condition for the loss of stability (app@,, -@; = 0) of the 
incommensurate solution (8) or (10) and to the condition 
that the thermodynamic potential be equal for solutions 
(8) and (2) or for (10) and (4) differ from the value k' 
= 0 corresponding to the condition that the incommen- 
surate solution vanish (the character of the dependence 
of @ on a or  CY' in the vicinity of the transitions i-1 
and j-3 is similar to that considered in Ref. 6). How- 
ever,  these differences of the values of k' are exponen- 
tially small relative to c and co (3) and are  therefore 
outside the scope of the employed constant-amplitude 
approximation A = 0. This approximation i s  valid when 
the anisotropy in the space of the components of the 
order parameter i s  small: E << 1, Eo<< 1. The solutions 
for p and cp are then valid only accurate to the first 
term of the expansion in powers of E and co (for details 
see Ref. 7). Therefore Fig. 1 does not show details 
that exceed the inaccuracies of the employed approxi- 
mation. Thus, for example, the lines defined by Eqs. 
(11) and (13) likewise intersect at a point whose coor- 
dinates differ from those of C by terms of higher order 
ih c,. 

The boundary between the initial and incommensurate 
phases is given by 

and is a second-order phase-transition line. On this 
boundary k = 1 = 0. 

Let us explain the differences between the incommen- 
surate-phase structur_es corresponding to the solution 
i (8) and the solution 3 (10). Figure 2 shows schematic- 
ally the function cos 4cp(x) for these solutions near the 
1-1 and 3-3 phase-transition lines, when k i s  close to 
unity. In this case the period K / ~  of the function cos 4$ 
i s  large and the structure of the incommensurate phase 
is similar to that of the corresponding commensurate 
phase if the latter contains regular domains. For the 
solution (8) we have cos4cp=-1 [cf. Eq. (211, and the 
transition regions (at q x / ~  = 0, i 1 ,  i2 ,  . . .) are solitons 
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FIG. 2. Plots of cos* vs x near the boundaries i - 1 (a) for 
the solution (8) and 3-3 @) for the solution (10). 

of one type, i.e., the state 1 (as well a s  3) of the incom- 
mensurate phase is one soliton. For the solution (10) 
we have inside the domains cos4q=-I  =-dl [cf. (411, 
and transition regions exist-solitons of two types (at 
qx/K=*l, *2 ,... and at q x / ~ = i i , d  ,... ), i.e., the 
state 3 of the incommensurate phase is two-soliton. 
The difference between states i and 3 of the incommen- 
surate phase corresponds to the difference between the 
domain structures of the commensurate phases 1 (four 
domains of the same type) and 3 (eight domains of two 
different types). 

The boundary between the two states of the incom- 
mensurate phase i s  the line (111, which i s  shown by an- 
alysis not to be a phase boundary. Indeed, any deriva- 
tive of the thermodynamic potential with respect to a or  
a' is continuous on this boundary. The point i s  that the 
value k2 =0, which determines the boundary between the 
solutions i and 5, i s  not singular for elliptic functions 
and integrals, which remain real also at k2 < 0, i.e., at 
pure imaginary k (we note that all the equations contain 
k2 and not k). The transformation k2- -k2 (i.e., k- ik) 
permits a change from Eqs. (81, (A.11, and (A.3) to 
Eqs. (lo), (A.4) and (A.5) and conversely, i.e., the 
functions contained in them are in essence different 
representations of the same analytic functions of k2. 

The transition from the one-soliton to the two-soliton 
state is thus continuous, similar to the transcritical 
gas-to-liquid transition. The anomalies of the heat 
capacity and of other quantities, which exist on the line 
(5) that determines the 1-3 phase boundary, become 
smoothed out on going through the point C (see Fig. 1). 
We emphasize also that the solutions and 3, a s  i s  
seen in particular from Fig. 2 [see also Eq. (1211 have 
equal periods, i.e., with respect to the translational 
and hence also the total symmetry the solutions i and 
correspond to the same phase. 

We consider now briefly the case P' < 0. Strictly 
speaking, for the thermodynamic potential to be bound- 
ed a s  p- - it i s  necessary to add @&) (1 ), for exam- 
ple, a term finp', assuming 0' + f in > 0, but this term i s  
of no significance for the results that follow. If j3' < 0, 
the solution 3 i s  unstable. The phase transition 1-2 i s  
of first order and takes place on the line a' =0, while 
the line (5) is the stability boundary of phase 2. 

The commensurate phase has no solution 5, only the 
solutions f [which is of the same form a s  (811 and 2. 
Equations (A.l k(A.3) remain valid. Now, however, kZ 
> Z2, and this leads to a different behavior of the ellip- 

tic integral n of the third kind (A.l), especially a s  k 
-- 1. The equation for the i- 1 boundary therefore does 
not coincide with (131, but takes the form 

(16) 

where z runs through values from 0 to  00 at a triple 
point with coordinates 

The bourjdary a' = O  between the two incommensurate 
solutions 1 and 2 i s  shown by investigation not to be a 
phase-transition line. With increasing a, on going 
through the triple point, the hysteresis vanishes and all 
the anomalies become smoothed out. We note that the 
absence of a phase-transition line between the incom- 
mensurate states i and 2 agrees with the Gibbs phase 
rule, since three phase-transition lines converge al- 
ready at the triple point. 

APPENDIX 

After substituting (8) in (1) and integrating with re- 
spect to x we obtain for the solution i 

where K, E, and n are complete elliptic integrals of 
first ,  second, and third kind, respectively, with modu- 
lus k, and 

From the conditions a@/ap=o, aa/az=o for Q, (A.I )  
we obtain 

a'p' 
a+2ppz- -[ (3-4ly+P)K-3(1-ly)E+(l-1%) n]=O, 

~ h '  (A.3) 
,(I-kz) a 

E+(I-x.)  (II-K)-.[-- =o, n = n ( - P ) .  
.(I-P) a'p2 

These equations determine p and I for given values of 
the constants of the thermodynamic potential (1). 

For the solution we obtain similarly 

rr 1-1: 1' 
- = I -  - K [-aoa'ps] 21 " . n-II (=) (A.4) 

and from the conditions a+/ap=o, a@/az = O  we get 

a'p: 
a+2pp'- -[ (3-411+l2) K-3(I-lL)E+fl]=O, 

2/R 
l(1-P) a n+ (I-c;) (E-K) -Z [-L]"' 2 a'pa =o, 
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