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A divergence-free conductivity of an electron gas in a quantizing magnetic field is found under the 
assumption that the mixing of the Landau levels by scatterers of finite but otherwise arbitrary radii is slight. 
The cases of different scatterer potentials are investigated: the screened Coulomb potential and small-radius 
centers. The temperature and field dependences of the transverse conductivity v (T, H) are found for these 
potentials. It is shown that at low temperatures the transverse conductivity in the case of the screened 
Coulomb potential is due to the resonance scattering of the electrons. It is found that even in the Born 
approximation the Adams-Holstein formula [J. Phys. Chem. Solids 10, 254 (1959)l for the case of the 
screened Coulomb potential of the scatteren contains a logarithmic error. It is shown that for centers of small 
radii the temperature and field dependences of the transverse conductivity provide direct information about 
the energy spectrum of the impurity in the quantizing magnetic field. For scatteren of zero radius the 
temperature and field dependences of the transverse conductivity coincide with the results obtained by 
Skobov [Sov. Phys. JETP 11, 941 (1960)l. The admissibility of the use of the Titeica formula [Ann. Phys. 
(Leipzig) 5, 129 (1935)] in the case of a non-Born interaction between the electrons and the scatterers is 
demonstrated. 

PACS numbers: 72.20.M~ 

1. T h e  t r a n s v e r s e  conductivity i s  usually computed in 
t h e  B o r n  approximation f r o m  the interact ion of the  cur -  
ren t  c a r r i e r s  with the s c a t t e r e r s .  In t h i s  c a s e  the  con- 
ductivity in a quantizing magnet ic  field exhibi ts  a char -  
ac te r i s t i c  logari thmic divergence a t  s m a l l  energies , '  
which i s  due to  the high density of e lec t ron  s t a t e s  a t  
these  e n e r g i e s  lg(c) - &-'I2 - m a s  c - 01, and which can 
be  eliminated by introducing s o m e  cutoff procedure.  
Gurevich and F l r sov2  have shown that  in the c a s e  of the 
electron-phonon sca t te r ing  mechanism the diverging 
in tegra l s  can naturally be t runcated a t  the  c h a r a c t e r i s -  
t i c  phonon energy.  Magari l l  and Savvinykh3 have shown 
that allowance f o r  the nonlinear dependence of a on the 
e lec t r ic  field E a l s o  r e s u l t s  in the elimination of the 
divergence.  Skobovi h a s  noted that in  the  c a s e  of small-  
rad ius  s c a t t e r e r s  [i.e., s c a t t e r e r s  whose potent ials  a r e  
6 functions with respec t  t o  the p a r a m e t e r  al-', where  
I = (cfi, e ~ ) ' ' ~  is the magnetic length] the divergence is 
autonlatically eliminated by forgoing perturbat ion theo- 

It is shown that p r o c e s s e s  in which the  e l e c t r o n s  a r e  
s c a t t e r e d  by sc reened  Coulomb c e n t e r s  c a n  be divided 
into two types: resonant  and nonresonant. At tempera-  
t u r e s  T - 0  the dominant contribution t o  the  t r a n s v e r s e  
conductivity is m a d e  by the  resonant  e lec t ron  sca t te r -  
ing p r o c e s s e s ,  t h e  contribution of the nonresonance 
sca t te r ing  p r o c e s s e s  being smal l .  F u r t h e r ,  as we  sha l l  
show, even in the Born  approximation the  Adams-Hol- 
stein'  fo rmula  f o r  t h e  c a s e  of t h e  sc reened  Coulomb po- 
tent ial  of the  s c a t t e r e r s  contains  a logari thmic e r r o r .  

F o r  s c a t t e r e r s  of z e r o  r a d i u s  t h e  dependence o(T, H) 
coincides with Skobov's4 resu l t ,  differing only in the 
renormal iza t ion  of the interact ion constant. In the  c a s e  
of c e n t e r s  of smal l ,  but nonzero r a d i u s  the fo rmulas  
obtained allow the determinat ion of the energy spec t rum 
of the  neu t ra l  impur i t i es  in semiconductors  f rom the 
dependence of the  conductivity on tempera ture  and the  
magnetic-field intensity. 

rY. Titeica 's5 intuitive fo rmula  is often used t o  compute 

We d e r i v e  below a fo rmula  f o r  the  t r a n s v e r s e  conduc- 
tivity of noninteracting e lec t rons  sca t te red  by c e n t e r s  
of finite but otherwise a r b i t r a r y  r a d i u s  a in a quantizing 
magnetic field under the following assumptions:  a )  the 
mixing of the Landau leve l s  by a n  individual c e n t e r  
U( I r 1 )  is slight; b) ET-' << T, where  T is the c h a r a c t e r -  
i s t i c  relaxat ion t i m e  of the  e lec t ron  momentum; c )  the 
s c a t t e r e r  concentration )l i s  low: )la3<< 1. Let  u s  e m -  
phasize that  the potential U i s  not assumed t o  be  s m a l l  
compared t o  the charac te r i s t i c  energy of t h e  longitudin- 
a l  motion of a n  electron:  c - T. It i s  demonstrated that 
t h e r e  is no divergence' in  the c a s e  of c e n t e r s  with ar- 
b i t ra ry ,  but finite radius.  The  tempera ture  and field 
dependences of the t r a n s v e r s e  conductivity a r e  investi- 
gated f o r  the  c a s e  of the sc reened  Coulomb potential of 
t h e  impurity and the c a s e  of shallow ( U s  f i 2 / r t r  *d, 
w h e r e  a?* is the effective electron m a s s )  c e n t e r s  of 
s m a l l  r a d i u s  ( a  c l ) .  

t h e  t r a n s v e r s e  conductivity in  a quantizing magnetic 
field. Adams and Holstein' have demonstrated i t s  
validity in the B o r n  approximation in the ca r r ie r - sca t -  
t e r e r  interact ion s t rength.  We shal l  show by d i r e c t  
calculation that ,  in the approximation of slight mixing 
of the  Landau leve l s  by a s ingle  s c a t t e r e r ,  t h i s  formu- 
l a  i s  valid f o r  a r b i t r a r y  tempera tures ,  and not only in 
t h e  B o r n  approximation in t h e  c a r r i e r - s c a t t e r e r  inter-  
act ion s t rength.  

2. Le t  u s  cons ider  a sys tem of noninteracting elec- 
t r o n s  located i n  a quantizing magnetic field H [ [ z ,  in 
t h e  field 

V ( r ) =  ~ U ( I ~ - R I )  

of randomly disposed c e n t e r s ,  and in a weak e lec t r ic  
field E 11 y ( e ~ l / J i w , < <  1). 

T h e  diagonal e lement  of the  transverse-conductivity 
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tensor is given by Kubo's formulas: 

where i? is the total Hamiltonian of the system in the 
absence of an electric field, V is the volume of the 
semiconductor, 6, is the electron-velocity operator, 
and 5 is the electron density matrix. The sign (. . .) 
denotes averaging over the disposition of the centers. 

In the approximation fir-' << T << t iw, the current in the 
system i s  the product of the volume-averaged current 
from a single scatterer and the number of scat terers  in 
the volume. In determining the average current from a 
single scatterer,  we should replace the Hamiltonian fi 
by the Hamiltonian fi,, for the single-center problem. 
Then in the expression obtained from (1) we should take 
the trace over the complete system of functions for the 
single-center problem. Since the matrix elements of 
the electron-velocity operator t ,  a r e  nonzero only for 
the transitions N - N *  1 between the Landau bands, we 
construct the wave function for the single-center prob- 
lem with allowance for the assumption a): we solve the 
Schr'bdinger equation in the N =  0 band, neglecting the 
other bands, and then mix in the first  (i.e., N =  1) band 
with the aid of perturbation theory. For  an axially 
symmetric gauge of the magnetic field, the electron 
state i s  characterized by the numbers7 p,, 11, and in 
(p ,  i s  the momentum component along H; n and pi1 a r e  
the radial and azimuthal quantum numbers). Carrying 
out the indicated calculations, we obtain8 

the R a r e  the radial wave functions of the electron,' 
and y? i s  the solution to the one-dimensional problem 
of the scattering of an electron with momentum p by 
the potential U,(z). In deriving (2), we used the rela- 
tion for the matrix element of the potential U between 
the N =  0 and N =  + 1  bands: 

It i s  convenient to write the formula (2) in t e r m s  of 
the probability amplitudes for transmission (D,P) 
through, and reflection (R,P) from, the one-dimensional 
potential U,(z) of an electron with momentum p. After 
simple transformations, (2) reduces to 

Here n, i s  the electron concentration and c i s  the ener- 
gy of the longitudinal motion of an electron, the spec- 
trum of this energy being assumed to be quadratic. 

The formula (3) is valid in the case of the Boltzmam 
statistics for electrons, to which we shall limit our- 
selves below. 

3. Let us compute with the aid of (3) the transverse 
conductivity due to the scattering of the c a r r i e r s  by 
centers whose potential has  a long-range Coulomb 
character. The subsequent analysis will show that the 

long-range interaction in the case of the purely Cou- 
lomb potential results  in the appearance of a logarith- 
mic divergence in (3) when the summation over m is 
performed; therefore, we shall from the very begin- 
ning consider the screened Coulomb potential 

where x i s  the static permittivity and a is the screening 
distance. 

Analytic expressions can be obtained for the trans- 
verse conductivity in the limiting cases  of large and 
small values of the dimensionless parameter A =  T(f i /  
nl*d)-'. Let us begin the analysis with the high-tem- 
perature case: 

A B I .  (5) 

Besides (5), we shall assume that the cyclotron energy 
is high compared to the Bohr energy, which conforms 
to the condition for the mixing of the Landau levels to 
be slight, and that the screening distance i s  large com- 
pared to the Bohr radius a B  ( a B  = i?n/trr *c2): 

aBaBPI. (6) 

On account of the inequality (6) and the divergence 
that a r i ses  on performing the summation over rtr in (3) 
for the purely Coulomb potential, it i s  clear that the 
dominant contribution to(3) is made by the terms with 

>> 1, i.e., the coefficients R, and Dm in (3) change 
little in the transition nl - + 1. Therefore, let us  re- 
place the summation over IN by integration, and expand 
the coefficients R,., and Dm+, in powers of the differ- 
ence (trl+ 1) - nr up to t e r m s  of second order  in small- 
ness inclusive. After this, (3) assumes the form 

We shall, in computing the coefficients R, and Dm, 
take into account the fact that the dominant contribution 
to  the transverse conductivity i s  made by the electron 
states with angular momentum components ~tl , ,  1. For  
large  it1 the potential U,(z) obtained from (4) can be 
written a s  

If we make in (7) the change of integration variable 
1.11 -rr112, we can easily see  from (7) and (8) that the de- 
pendence of the transverse conductivity on the magnet- 
ic-field intensity in the case  in which (6) is satisfied 
has one and the same form in the entire temperature 
region: 

For the function x,(z) in the dimensionless Coulomb 
units of a, and c ,  = ti1*e4/fi2, we have the equation 

On the basis of the quasiclassicality parameter for 5 ,  
" 
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we find in accordance with the inequality (5) that the 
quasiclassical approximation is applicable on the entire 
z axis. In th is  case ,  a s  can easily be shown, the coef- 
ficient R ,  = 0 ( there i s  no reflection), while the coeffi- 
cient Dm = exp[iS(t,; c)], where 

Replacing the differentiation with respect  to, and in- 
tegration over ,  H I  in (7) respectively by differentiation 
and integration with respect  to <,, we have in the ap- 
proximation (11) the following formula: 

Let u s  consider part icular  ca ses  of (13). At temper- 
a tu re s  low compared to  the Bohr energy (i.e., for  
T<< c,), the inequality c << 1 can be assumed to be ful- 
filled in the ent i re  effective integration domain. Then 
S(<,; 0) - ti1', and 

n , , u - n / ~ ~ 2 ~  . (14) 

In the opposite limiting ca se  of high tempera tures  
(i.e.,  for  Tz> c,), the phase S(<,; c), (12), has  the fol- 
lowing form: 

If 2(t2+ s c,  i.e., if the point ( 5 , ;  &) in the plane 
of the variables (5,; C)  i s  located to  the right of the hy- 
perbola c = 2 /  5, ( s ee  Fig. I ) ,  then 

here  h', i s  a MacDonald function. To est imate the 
t ransverse  conductivity, let us  replace the phase S in 
(13) by (16) and the MacDonald function by i t s  asymp- 
totic value,g i.e., let u s  replace the phase S in (13) by 

Then the integration in (13) yields 

FIG. 1. Integration domain 
for the Born approxima- 
tlon. 

L,,..,, = - 

Zce :,, -- 
r8"o. t 

T 

In deriving the las t  formula, we performed the integra- 
tion over the region indicated in Fig. l. 

The formula obtained for  the t ransverse  conductivity 
by Adams and Holstein' in the  Born approximation in the 
interaction with the Coulomb centers  at  T>> E B  has  [with 
the  s ame  coefficient of proportionality that occurs  in 
ou r  formula (17)) the form 

en'. Es 
I 

a,,-H-'T-" In-In- - H-LT-" I,, e,l. In a 
T ha,, T 1 '  

where E ,  = k 2 / m * d  and c;,, i s  some  minimum energy 
a t  which the logarithmically diverging integral is trun- 
cated. In Adams and Holstein's formula the minimum 
energy c,!,,,, i s  not determined, and the 5 and c integra- 
tions a r e  performed independently, which, a s  shown 
above [see (17)], i s  inadmissible and leads t o  an incor- 
r ec t  choice of t,,,. 

Let u s  now consider the opposite-to (5)-limiting 
c a s e  of low temperatures:  

A s  we shall  show below, when th is  inequality i s  ful- 
filled, the t ransverse  conductivity is essentially due to 
the resonance scat tering of the slow part icle by a deep 
potential. It is convenient to choose the dimensionless 
variables slightly differently: 

The  quasiclassicality parameter  K increases  from 
~ - ( a , / a ) " ~ < <  1 a t  1 5 1s a,/a through a value of the or -  
d e r  of unity a t  1 ( 1 - ln(a/aB) t o  K - c,''~>> 1 at  

and then dec reases  back to K<< 1 ( s e e  Fig. 2). In other 
words,  the motion of the part icle has  a quasiclassical 
charac ter  in the regions I, 111, and V,  and i s  not quasi- 
c lass ica l  in the regions I1 and IV ( see  Fig. 2). 

The electron energy in the regions 11 and IV can be 
neglected in the SchrBdinger equation. Fur ther ,  the 
phase accumulated by the wave function in these re-  
gions i s  smal l  compared to unity. As  for  the depend- 
ences  of the amplitudes of the coefficients of t ransmis-  

FIG. 2. The potential and the quasiclassicality parameter: I) 
and V) regions of f ree motion; 111) region of quasiclassical 
motion; 11) and IV) reflection regions. 
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sion through, and reflection from, a deep potential of 
the type existing in the regions I1 and IV, they a r e  in- 
sensitive to the form of the potential in these regions; 
thus, for example, regardless of the dependence on the 
specific shape of the potential, the amplitude Dm of the 
transmission coefficient is proportional to the square 
root of the electron energy.'' Taking the foregoing into 
account, and joining the solutions in the regions I-V, 
we have for the amplitudes of the transmission and re-  
flection coefficients the expressions 

Here S, is the phase accumulated by an electron be- 
tween the nonquasiclassicality region: 

bm 

S.,(jo": J [U(E;  E m )  1"dE. U(Sal"; 6 m ) = B m .  

The constant p, in (19) has been chosen s o  a s  to obtain 
the correct  value for the magnitude of the a r e a  of the 
energy barrier.  

We can, allowing for the rapid decrease of the one- 
dimensional potential U r n ( [ )  with increasing [, write the 
scattering phase roughly in the form 

Recognizing that the inequality ce s P i s  also fulfilled, 
we obtain the following approximate expressions for the 
amplitudes of the transmission and reflection coeffi- 
cients: 

The resonant character of the dependence of the trans- 
mission and reflection coefficients on the phase S,([,) 
can clearly be seen from these formulas. The effective 
depth and width of the one-dimensional potential U,(z) 
depend on the value of the angular momentum component 
m; therefore, the scattering of an electron with given 
energy will, depending on tn ,  have a resonant o r  a non- 
resonant character. Let us estimate the contribution 
made to the transverse conductivity by those t e r m s  
with different m which respectively describe the reso- 
nant and nonresonant scatterings. Resonance se ts  in 
a t  2Sm([,3 = 2m. Hence we have for the number of 
resonant t e rms  in the sum over m the expression 

For  the maximum values of dR,/d[, and d~, /d[ ,  in 
the case  of resonant scattering we obtain from (15) 

while for the nonresonant scattering we have 

To find the width of the resonance peak (23), let  us 
consider the denominators in the formulas (22) near the 
resonance point 5,". Expanding Sm((,) in powers of the 
difference A[,"= [, - tmn, we have 

from which we obtain for the peak width the expression 

From the formulas (24) and (26) we find that the con- 
tribution of the resonant scattering to the integral over 
HI in (71, which determines the transverse conductivity, 
is a quantity of the order of 

dR" = a 1 
I,=AE:N; (h.) - -- 

f n  re* a~ e;L ' 

At the same time, the nonresonant part of the integral 
(7) i s  a quantity of the order  of 

Comparing (27) and (281, we find that the contribution 
to the transverse conductivity of the nonresonant scat- 
tering i s  small  compared to the contribution of the 
s ta tes  arising from the resonance scattering in the ra- 
tio 

In deriving the last estimates (27)-(29), a s  well a s  
the formula (7) from (2). we expanded the an~plitudes of 
the transmission and reflection coefficients in powers 
of the small quantity ))I-', which presupposed the small- 
ness  of the derivatives: 

It i s  not difficult to show that for the case under con- 
sideration by us the inequalities (30) a r e  equivalent to 
the inequality 

Furthermore, in computing the resonance component of 
the transverse conductivity, we assumed that each 
resonance peak contains a large number of t e rms  with 
different vr. This i s  valid when the following condition 
i s  fulfilled: 

Taking account of the smallness of the contribution to 
the transverse conductivity of the t e rms  describing the 
nonresonant scattering, and retaining in (7) only the 
resonance terms,  we obtain oyy a K 2 T - 2 .  

4. Let us  now compute with the aid of the formula (3) 
the transverse conductivity due to the scattering of the 
c a r r i e r s  by centers of small  radius, i.e., with radius 
a<< 1 .  In the case in which the potential of an individual 
center i s  a delta function about al-', and i s  not very 
deep (i.e., u 2 k2/n7 *aZ), setting U,,, = 0, and sub- 
stituting a plane wave for x,, we arr ive  at the formula 
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which differs  f rom the formula  obtained by Skobov4 only 
in the value of the dimensionless interaction constant 
a. In the approximation of slight mixing of the Landau 
levels  ff = fB(0)/I (Ref. ll), whereas  for  the exact solu- 
tion to  the scat ter ing problem in a magnetic field with 
summation over all the upper Landau bands a, = f/l 
(Ref. 12). Here  f,(O) and f a r e  respectively the Born 
and the exact amplitudes of the zero-angle scat ter ing 
of an electron with z e r o  energy by a single sca t te rer .  

Let u s  again note the physical meaning of the las t  
formula. Standing under the integral  sign i s  the pro- 
duct of the following quantities: the densi t ies ,  &-'/* 

and c - " ~ ,  of the  initial and final electron s ta tes ,  the 
coefficient (1 + $~~fiw,/c)- '  of penetration of an electron 
through the one-dimensional potential, and the d is t r i -  
bution function density (-ap/ac). 

If we do not assume the potential of an individual im- 
purity t o  be a del ta  function with respec t  to  the parame- 
t e r  al-', then, finding the corresponding wave functions 
of the one-dimensional problem with the aid of the pro- 
cedure employed in Ref. 11, and substituting them into 
(2) ,  we a r r i ve  at  the following formula fo r  the t rans-  
ve r se  conductivity: 

The formula (33) ref lects ,  in part icular ,  the follow- 
ing general  circumstance:  for  a potential of a rb i t r a ry ,  
but finite rad ius  a 9  1, it follows from the matching 
conditions that, in the general  c a se  of low energ ies  
c -0, the wave function xm i s  proportional to  the square  
root of the longitudinal electron energy (i.e.,  x r n ~  c1I2) 
in that range of action of the potential U,(z) which con- 
t r ibutes to the t r ansve r se  conductivity (2) .  This  leads,  
f o r  a potential of finite radius,  to  the elimination of the 
divergence found in Ref. 1. In i t s  tu rn ,  this  circum- 
stance indicates that a l l  the tempera ture  and magnetic- 
field dependences predicted by the Born-approximation 
theory' for  the t ransverse  conductivity will be different 
in the low-temperature region. The la t te r  circum- 
stance i s ,  apparently, of considerable experimental in- 
t e r e s t ,  in view of the possibility of studying the energy 
spectrum of impuri t ies  in a quantizing magnetic field 
by investigating the dependence of o on H and T. Let u s  
demonstrate th i s  in the part icular  c a se  of the formula 
(33) for the t r ansve r se  conductivity for  shallow im- 
puri t ies ,  assuming that the  potential of each individual 
center  a l so  ha s  a sufficiently sma l l  rad ius  a c 1 .  In this  
c a se  0,  > a,,+,, and we can limit ourse lves  in (33) to 
the f i r s t  (i .e.,  ,)I = 0) t e r m ,  it being, however, neces- 
s a ry  to retain both fac tors  with uo and u, in the denom- 
inator of the integrand in the formula. Assuming, a s  
before, that the distribution function of the electrons i s  
a Boltzmann distribution, we obtain different H and T 
dependences fo r  a in the various tempera ture  regions: 

( s ee  Ref. I) ,  

( s ee  Ref. 2), 

It i s  shown in Ref. 12  that the energ ies  - &tm2tiw, are 
in fact the bound-state energ ies  of an electron with a 
given m in the field of an isolated at tract ing shallow 
center .  Thus,  the tempera ture  and field dependences 
of the  t r ansve r se  conductivity provide d i rec t  informa- 
tion about the energy spec t rum of the at t ract ing center  
in a quantizing magnetic field. 

Let  u s  again note that, in contrast  to  Skobov's4 for- 
mula,  the  integrand in (33) contains the  product of the 
coefficients of penetration of an electron through the 
one-dimensional b a r r i e r s  U,,(z) and Urn,-,(z). 

5. Let  u s  consider  the  question of the admissibility 
of the use  of Titeica 'ss  formula for  the computation of 
the  t r ansve r se  conductivity. Adams and Holstein have 
proved the co r r ec tnes s  of Ref. 5 in the Born approxi- 
mation in the interaction of an  electron with the  scat- 
t e r e r s .  According to  Titeica' ( s ee  a l so  Ref. 13), the 
t r ansve r se  conductivity in the ultraquantum l imit  

0 -- 
where  y o  and y; a r e  the Landau numbers characterizing 
the  position of the  center  of the electron orbit7 and 

Wyo- Y;) 
i s  the probability for  transition of an electron 

f rom y o  to  y; during a collision with a sca t te rer .  In the 
Born  approximation th is  probability i s  computed with 
the Landau functions of the zeroth band.' 

F o r  a scat ter ing potential of a rb i t ra ry  shape i t  tu rns  
out to  be possible to  c a r r y  out the integration over the  
Landau numbers  yo and ~6 in (34) in the Born approxi- 
mation. The  expression for  oyy thus obtained for  a 
spherically symmetr ic  potential U(r) can be represent-  
ed in the fo rm of a s e r i e s  in 711, (2) ,  if the  functions X, 
and x,., in our  formula (2) a r e  replaced by plane waves, 
which cor responds  to the Born approximation,' which i s  
valid when the following inequalities a r e  satisfied: 

Our  formula (2) requi res  the satisfaction of only the in- 
equality (35a). If (35a) i s  valid (but the relation between 
U and T i s  a rb i t ra ry) ,  then the electron transition 
probability WYO-Y6 in (34) can be expressed in t e r m s  of 
the  functions xrn of the one-dimensional problem and the 
Landau functions.14 The integration over the numbers 
11, and y; in (34) reduces  the Titeica formula (34) to the 
following expression: 

The formulas  (2) and (36) a r e  identical, a fact which 
can easi ly be verified by, for  example, going over t o  
the  scat ter ing operators," and then expressing (36) in 
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terms of the  coefficients R, and Dm. 

6. T h e  situation with a quantizing magnetic field and 
s l ight  mixing of the  Landau l e v e l s  by the  s c a t t e r e r s  is 
rea l ized  in semiconduc tors  owing to t h e  s m a l l  effective 
mass of the  carriers and the  large permit t ivi ty  values. 
For the  typical III-V semiconductor  InSb t h e  corre- 
sponding p a r a m e t e r s  i n  t h e  case of shallow impur i t i es  
have t h e  following values: a,= loe5 c m ,  U= eV 

= c ~ ,  m * =  0.013m, and n =  10. For H =  6 x  lo4 C, we 
have U/tiw,= 0.03, 1 = c m ,  and a,/l = 10. For shal-  
low impur i t i es  in Ge  and a magnet ic  field of t h e  same 
intensity, or iented along the pr incipal  axis of one of the 
energy  el l ipsoids,  a,= 0 . 5 ~  c m ,  a,/l = 0.5, and U /  
A@,= 1, i.e., the situation is significantly worse .  

Let  u s  now d i s c u s s  t h e  case in which the  t r a n s v e r s e  
conductivity is due t o  the sca t te r ing  of the  e l e c t r o n s  by 
ionized impur i t i es  [see the  f o r m u l a s  (5)-(320. Nor- 
mally,  the t r a n s v e r s e  conductivity is measured  by 
measur ing  the o(H) dependence a t  a fixed s a m p l e  tem- 
perature.'' A s  we  have shown [see (9)], when the in- 
equal i t ies  a>> a,>> 1 are fulfilled, the  dependence is the 
s a m e  a t  a l l  t empera tures :  o(H)  -Hz, but the  t empera-  
t u r e  dependence of o t a k e s  different  fo rms .  T h e  char -  
a c t e r  of the  t e m p e r a t u r e  dependence o(T) is qui te  sen- 
s i t ive  to t h e  value of t h e  p a r a m e t e r  A = T(ti2/?)1 *a2)-'. 
For A>> 1 the conductivity is given by the  f o r m u l a  (14) 
or (17), according as the p a r a m e t e r  T/c, is g r e a t e r  or  
smaller than unity. For A<< 1 the  t r a n s v e r s e  conduc- 
tivity cry, is given by the fo rmula  given in Sec. 3. T h e  
p a r a m e t e r  A is determined by t h e  value of the sc reen-  
ing d i s tance  a f o r  an individual impuri ty .  

If t h e  sc reen ing  is due t o  the t h e r m a l  e l e c t r o n s  
thrown into the  conduction band, then the sc reen ing  djs-  
tance c a n  b e  computed, using t h e  method of Eleonski i  
et d." T h e  condition f o r  the  applicability of t h e  l inear-  
sc reen ing  theory h a s  in  t h i s  case the  form17 

But using the express ion  f o r  a (Ref. 17), we c a n  w r i t e  
t h e  condition a>> a, as 

and the condition A<< 1 as 

which contradicts  (37). Thus,  when the  impuri ty  i s  
shielded by t h e r m a l  electrons,  the  situation A >> 1, (5) ,  
is real ized,  and the t r a n s v e r s e  conductivity o(T) is de- 
scr ibed by the  fo rmulas  (14) and (17). 

In slightly doped semiconductors  with a s m a l l  d e g r e e  
of compensation, i.e., with KO<< 1, t h e  sc reen ing  can  
be real ized as the  r e s u l t  of the  e lec t ros ta t i c  interact ion 
between the 0 and 2 c ~ m p l e x e s . ~ ~  In t h i s  c a s e  the 
sc reen ing  dis tance at low t e m p e r a t u r e s  is de te rmined  

only by the concentrat ion of the i m p u r i t i e s  and t h e  de- 
gree of compensation1': 

a-0.58~;" K;"". (40) 

which a l lows  u s  t o  realize the  condition A << 1. But, 
experimental ly ,  t h i s  case is significantly m o r e  com- 
plicated, s i n c e  t h e  theory of l i n e a r  sc reen ing  of a 
la rge-sca le  potential in  the  case of a s m a l l  d e g r e e  of 
compensation is valid a t  v e r y  s m a l l  d e g r e e s  of com- 
pensation," i.e., when 
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