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The conductivity of electrons in a random potential is investigated. The Green's functions are written in the 
form of integrals over supefields whose components are classical boson and fermion fields. This makes it 
possible to carry out the averaging over the random potential from the very beginning, without using the 
replica technique. Through the use of the generalized Hubbard-Stratonovich transformation, the problem 
reduces to a nonlinear supertensor o model. The supertensors are of rank 8 x 8 and contain both commuting 
and anticommuting elements. The magnetic and spin-orbit interactions lower the symmetry. 
Renormalizability is proved for the two-dimensional case, for which the Gell-Mann-Low function is 
calculated and makes it possible to determine the dependence of the conductivity on the frequency or on the 
size of the system. 

PACS numbers: 72.10.Bg, 05.50. + q 

1. INTRODUCTION lem reduces to a study of the effective Lagranaian of 

When describing the behavior of a part icle in a ran- 
dom potential field, it i s  important to take into account 
the quantum nature of the phenomenon. A sufficiently 
strong degree of d isorder  in a three-dimensional metal 
can lead to localization of al l  the states.' In one-dimen- 
sional and two-dimensional spaces ,  localization i s  pos- 
s ible a t  arbi trari ly weak degree of disorder.'-' These  
phenomena a r e  connected with repeated scat tering of 
the part icles by one and the s ame  scattering center .  
Localization becomes eas i e r  with decreasing dimen- 
sionality because of the increase in the probability of 
re turn  of the part icle to the initial point. 

The localization manifests itself most strongly in a 
one-dimensional disordered  hai in.^*^ Analysis of per-  
turbation theory for  a chain shows that deviations from 
the two- and three-dimensional c a s e s  occur even in the 
f i r s t  o rde r s .  F o r  example, in the three-dimensional 
case ,  only non-intersecting d iagrams a r e  significant.' 
In the ca se  of a one-dimensional chain al l  the d iagrams 
a r e  of the s ame  order ,  which leads ultimately to local- 

The analysis  of the situation in the two-dimensional 
c a s e  and in thick wi re s  i s  more  complicated. Formal-  
ly, in  these sys tems,  the contribution of individual in- 
tersect ing d iagrams i s  l e s s  than in non-intersecting 
ones. The summation of the specially chosen ladder 
diagrams,  however, leads to the appearance of diffusion 
modes that a r e  gapless a t  zero  frequencies, and whose 
contribution in the one-dimensional and two-dimensional 
c a s e s  i s  divergent.' Large  correct ions to classical  
conductivity theory result  from the existence of these 
modes and their  interaction. To  study the localization in 

the diffusion modes. Quite a number of methods of such 
a description have been proposed.'-9 All these studies 
a r e  based on the use of the replica technique, in which 
the initial system i s  replaced by n thermodynamic sys-  
t ems ,  after  which the partition function i s  averaged 
over the random potential. To  obtain the final result  it 
i s  necessary to  let 11 go to  ze ro  in the answer. A par-  
ticularly fruitful idea was that of Wegnerlo concerning 
the violation of the symmetry between the replicas. 
Th i s  idea led subsequently to a r igorous derivation of 
the  Lagrangians of the interacting modes.''J2 SchXer 
and Wegner" used the representation of the Green's  
functions with the aid of a continuum integral over  Bose - 
fields, while Efetov, Larkin, and Khmel'nitskii used 
the continual integral over F e r m i  fields.'' As a result ,  
the symmetry of the collective variable Q , ,  that de- 
s c r ibes  the diffusion turned out to be different. In par-  
t icular ,  the symmetry group corresponding to the vari- 
able Q ., obtained in Ref. 11 i s  noncompact, while that 
corresponding to Q , ,  of Ref. 12 i s  compact. It appears  
that this  difference should vanish in the limit a s  11 -0. 

Despite the progress  made, the methods based on the 
replica technique a r e  not fully satisfactory. The main 
reason i s  that no procedure has  yet been developed for 
an analytic continuation from integer rz t o  11 -0. There  
was  therefore no assurance  that the resul t s  a r e  cor-  
rec t  (the only exception s e e m s  to be perturbation theo- 
ry) .  Within the framework of the proposed methods1'*'' 
i t  i s  necessary to work with matr ices  Q,, have dimen- 
sionalities 2n x 211, which i s  a r a the r  difficult problem. 
In addition, the approximations made, the applicability 
conditions of which a r e  satisfied at  finite 11, a r e  f re -  
quently not valid on going to  ,I - 0. 

low-dimensional and possibly a lso  three-dimensional 
We propose below a method of describing diffusion 

sys tems it i s  therefore very important t o  have a con- modes, based on writing down the Green's functions 
venient description of the interaction of diffusion modes. with the aid of a continual integral both over F e r m i  and 

Direct calculation on the bas is  of standard perturba- over Bose fields. This  procedure, with the aid of 
tion theory i s  not convenient, s ince it is necessary to mixed integration over super-fields that contain F e r m i  
integrate in al l  the d iagrams both over the diffusion and and Bose variables a s  components, make i t  possible to 
over the electron lines. A reasonable approach i s  one average-over the random potential without using the 
that permi ts  integration over the electron l ines pr ior  method of replicas.  The derivation of the Lagrangian 
t o  integration over the diffusion lines, s o  that the prob- of the diffusion modes i s  schematically s imi l a r  to that 
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represented in Refs. 11 and 12. Jus t  a s  ea r l i e r ,  a col- 
lective variable appears  and s e r v e s  a s  the analog of the 
order  parameter  in the theory of phase transitions. 
Now, however, th is  variable Q has  dimensions 8 x 8,  
and half the elements a r e  Bose fields while the other 
half a r e  F e r m i  fields. The obtained Lagrangian con- 
taining th is  variable belongs to the c l a s s  of generalized 
u models and has  a high symmetry S P U ( ~ ) / S P U ( ~ )  
x SPU(4), where SPU(N) i s  the group of superunitary 
transformations. In the method developed, the exist- 
ence of gapless diffusion modes i s  the consequence of 
violation of the supersymmetry.  An effective Lagrangi- 
an i s  obtained and takes into account the external mag- 
netic field, scat tering by magnetic impurities, and 
spin-orbit interaction. The conductivity in two-dimen- 
sional space i s  calculated by way of example. 

2. CHOICE OF MODEL AND AVERAGING OVER THE 
IMPURITIES 

The behavior of the electron in a random potential 
can be described by a correlation density function 
dr, t ) :  

where the angle brackets  denote averaging over the 
positions of the impurities. The quantity K(w)  in (1) i s  
the averaged two-particle Green's function, which i s  
expressed in the usual manner in t e r m s  of the retarded 
C K  and advanced G A  single-particle Green's functions: 

In th is  equation, x = r, a, where r i s  the coordinate 
and a i s  the spin variable; El  and cp, a r e  the eigenval- 
ues and eigenfunctions of the electron in the impurity 
field: 

The problem of obtaining the behavior of an electron 
in a random potential consists  in solving Eq. (3), ob- 
taining the single-particle Green's functions from the 
wave functions and the energies,  and then averaging the 
product of two Green's  functions (2).  Since it i s  impos- 
sible to obtain the exact solutlon of Eq. (3) ,  approxi- 
mate methods a r e  frequently used, in which the inter- 
action with the impuri t ies  i s  accounted for  by perturba- 
tion theory.'e6 Averaging over the impurities i s  car r ied  
out In each t e r m  of the ser ies .  Wlth thls approach, the 
diffusion appears after  the summation of ladder dia- 
grams.  

The methods that turn out t o  be convenient a r e  those 
which permit averaging over the impuri t ies  from the 
very beginning, and reduce the problem to  an investi- 
gation of field-theoretical models. Such methods, how- 
ever ,  a r e  based on the use of the method of replicas.13 
If distances that exceed the mean f r ee  path play a ma- 
jor  role,  the problem then reduces to the Lagrangian of 
the interacting diffusion modes. We propose below a 
method that avoids the use of the method of replicas 
but yields nevertheless the effective Lagrangian of the 

interacting modes. The method is based on writing 
down the Green's functions with the aid of integration 
over  superfields whose components a r e  classical  Bose 
and F e r m i  fields. 

F o r  the calculations that follow it is necessary to 
present  the basic formulas that define the classical  
F e r m i  fields and the integrals  over these  fields. By in- 
tegra ls  over Bose fields will be meant ordinary inte- 
gra ls .  The classical  fermion fields a r e  described by 
two s e t s  X ,  and Xt of Grassmann anticommuting var i -  
ables14-l6 satisfying the relat ions 

By virtue of the property (4), the square  of any vari- 
able i s  ze ro  

It is convenient t o  define the operation of complex 
conjugation for  the Grassmann variables. Th i s  opera- 
tion s e t s  in correspondence each variable X ,  t o  a vari- 
able x:.  By definition, we a s sume  that the inverse op- 
erat ion i s  described by the formulas 

The definition (6) differs  in sign from the concept of 
complex conjugation for  ordinary numbers. F o r  anti- 
communting quantities, however, it t u r n s  out to be rea-  
sonable. F o r  example, the quantity X ~ X ,  i s  not changed 
by the action of such a conjugation operation: 

Integration with respect  to Grassmann variables was 
f i r s t  defined by Berezin and i s  described by the formu- 
1 a s  

Integrals  of severa l  variables a r e  understood a s  re -  
peated integrals. It i s  assumed that the differentials 
dxi also  satisfy the anticommutativity conditions. 

F rom the definition (8) followed directly an important 
formula for  the integration of the Gaussian exponential1' 

and a formula for  the integration of an exponential with 
l inear  t e r m s  

I exp(-X*.4X-X'xr-xrX)dnZ*d"~= detA e x p ( ~ ~ A - ~ x , ) ,  (10) 

where 

A i s  an n x n matrix.  

We emphasize that the integral of a Gaussian expo- 
nential over fermion fields (9), (10) differs  from the in- 
tegra l  of the s ame  exponential over boson fields. In the 
case  of integration over boson fields the right-hand 
s ides  of (9) and (10) contain (detA)-'. This difference 
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allows u s  t o  wr i te  down the denominator in the expres- 
sion fo r  the Green's  function (2) in the form 

Using the representation ( l l ) ,  we exp res s  the Green's 
function GRvA (2) in the form of a continual integral over 
boson and fermion fields: 

The advantage of expression (12) for  the Green's  
function l ies  in the fact that it ha s  no weighting denom- 
inator. This  permi ts  immediate averaging over the 
random potential. In principle, the exponential in (12) 
can be preceded by boson ra ther  than fermion fields. 
The possibility of writing down a single-particle 
Green's function with the aid of an integral over  fermion 
and boson fields was  noted in Ref. 17. Another exam- 
ple of a disordered system that can be investigated with 
the aid of boson-fermion fields, i s  presented in Ref. 18. 

Using expressions (2) and (12), we reduce the two- 
part icle Green's function K(w) t o  the form 

F o r  a more  compact expression, i t  is convenient to 
introduce in place of the s e t s  of fermion and boson 
f ields the superfield $ with the following components 

where  a =  1 o r  2 and T i s  the transposition operation. 

In (151, C i s  the "charge conjugation" matrix: 

(16) 

where  A is a diagonal matrix with components A" 
= -AzZ=  1. The matr ices  c, and cz a r e  of the form 

Here  and elsewhere, the superior  indices pertain to 
retarded o r  advanced parts .  The conjugate field i s  
connected with the complex-conjugate $* by the simple 

relation 

In t e r m s  of the superfield, Eq. (14) can be rewrit ten 
as 

?here U(r) i s  the impurity potential, and the operator  
H, i s  given by 

In the calculation of the averages  over the impurity 
locations, the potential U(r) i s  assumed to be a random 
quantity with a Gaussian 6-correlated distribution 

where v i s  the state density and T i s  the free-path time. 
This  distribution descr ibes  weakly interacting impuri- 
t i e s  of small  s ize.  In the general ca se  one can verify 
that the r e su l t s  that follow remain valid upon a suitable 
redefinition of the constants. 

In the ca se  of a Gaussian distribution of a random po- 
tential,  the averaging of (13) with the Lagrangian L (18) 
becomes very simple. After the averaging, expression 
(13) re ta ins  i t s  form,  while the Lagrangian L becomes 

i i(m-i8) - 
L- j [ - i $ ~ & +  -;--($$)'+ 

-3v7  
(20) 

The Lagrangian (20) i s  s imi l a r  t o  the Lagrangians 
used in field theory. In models described by such La- 
grangians t he re  can appear mean values Q - ( d $  and 
associated Goldstone modes. These  mean values will 
be separated in the next section in a ra ther  customary 
manner. Cer ta in  complications due to  the need of tak- 
ing into account both boson and fermion components a r e  
of no fundamental significance. 

3. REDUCTION TO A NONLINEAR GENERALIZED 
o MODEL 

Further calculations with the Lagrangian (20) will be 
car r ied  out under the assumption that the distances of 
importance a r e  much l a rge r  than the mean f r ee  path. 
This  i s  the situation in thick wi re s  and two-dimensional 
sys tems,  if the potential of the interaction with the im- 
puri t ies  i s  smal l  enough. In this  c a s e  there  exist mean 
values Q - (J?) that vary slowly in space. To  separa te  
these  slowly varying mean values we rewri te  the inter- 
action in (20) in the form 

The regions with smal l  q a r e  specially separated in 
(21). Using the charge-conjugation operation (15), (16) 
and the commutation ru les ,  it can be seen that the f i r s t  
and second t e r m s  in (21) a r e  equal. J u s t  a s  in Refs. 11 
and 12,  we use the Hubbard-Stratonovich transforma- 
tion.'' The simplest  to separa te  i s  the las t  t e rm of (21) 
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The integration in (22) i s  with respect  to slowly vary- 
ing r ea l  functions E ( r ) .  Comparing (22) and (20), we 
can verify that E ( r )  leads to only an insigificant change 
of energy, since it i s  a slow rea l  function. Therefore 
the last  t e rm in (21) leads to no physical phenomena 
whatever and will be disregarded.  

The remaining t e r m s  in (21) can be split into slowly 
varying pa r t s  only by integrating over the matrix.  We 
rewrite (21), separating the fermion ( 1 1 )  and boson (a) 
coniponents of the supervector ;1 (15). Discarding the 
last  t e rm and using the equality of the f i r s t  two t e rms ,  
we obtain 

1 
L,. .  =-'P [(iiI,!ln,) (ii -,,- qu-p,+,) 

X\ .T Y 

The splitting of the f i r s t  two t e r m s  into slow par ts  in 
(23) can be car r ied  out by integrating over the Bose 
fields. However, to split the third t e rm in (23), inte- 
gration with respect  to the Fe rmi  fields i s  necessary.  
Integrating by using Eq. (10) for the Gaussian integral 
over Fernli  fields, and the corresponding equation for  
the integral over the Bose fields, we a r r ive  a t  the 
equal ions 

crp (---id ,,,,) =P,P,P,, 

In (24) the integration i s  over the 2 x 2 matr ices  Aab, 
Bab, and .Yab. The elements of the matr ices  Aab and Bab 
a r e  ordinary numbers,  while those of Sab a r e  Grass-  
mann variables. All these matr ices  satisfy the condi- 
tions that a r i s e  when the charge-conjugate and com- 
plex-conjugate quantities a r e  separated in the integrals: 

For  the sake of clari ty,  we wr i te  down the matr ices  
Aab, Bab, and Cab that satisfy the conditions (25)-(27) in 
explicit form: 

Altogether the matr ices  A, B ,  and Z contain 16 in- 
dependent complex variables,  half of them boson and 
the other half fermion. The equality of the number of 
boson and fermion variables makes  i t  unnecessary to  
wr i te  in (24) the weighting denominators, s ince their  
product i s  equal to unity. We note that the integrals in 
(24) always converge. The matrix A has  a symmetry 
s imi lar  to that used to analyze the problem by the 
method of rep l icas  with the aid of fermions,12 and the 
matr ix  B analogously with the aid of bosons." 

The ra ther  cumbersome expression (24) can be 
writ ten in a more  compact form by introducing the con- 
cept of the supermatrix.  Such a supermatrix (3 con- 
s i s t s  of blocks (superelements) 

The  quantities y : b  a r e  a lso  matrices,  with q:b and g a b  
consisting of bosons, and O , b  and q:b fermions. It i s  
easy to verify that the product of any number of super- 
ma t r i ce s  i s  also a supermatrix of the form (29). Since 
half of the elements a r e  anticommutative, the ru les  for 
operating with supermatr ices  differ somewhat from 
those fo r  ordinary matr ices .  We define the supertrans- 
position operation 

Using the definition (30) and the ru les  for  commuta- 
tion of the elements of the supermatrix,  we can verify 
that the following equality holds 

where Ql and Q, a r e  a rb i t ra ry  supermatr ices  of the 
form (29). The definition (30) allows us to introduce the 
operations of the charge and Hermitian superconjuga- 
t ions 

where C i s  defined by Eq. (16) 

From (31)-(33) it follows immediately that 

The charge-conjugation operation plays an important 
ro le  in the description of the propert ies of quadratic 
fo rms .  If ;Cl and i), a r e  arb i t ra ry  supervectors of the 
fo rm (15), then the following equality holds 

It i s  useful to introduce the concept of the s u p e r ~ p u r ' ~  

The superspur defined by (37) i s  invariant to cyclic 
permutations: 

and i s  not changed by supertransposition 
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In supermatrix notation, expressions (24) take the 
fo rm 

i 
e x p ( - 4 1 1 ) = j [ e i p ( - T j ( ~ * + ~ ~ ~ p p i ) ) d r ] ~ ~ .  (40) 

The supermatrix Q in (40) sat isf ies the self-adjoint 
conditions 

and consists  of four superelements made up of the ma- 
t r i c e s  A, B,  and Z (24) 

Substitution of (21) and (40) in (20) yields an expres- 
sion for  the Lagrangian L in (13). Using the slow vari- 
ation of the supermatrix Q in space,  we can integrate 
(13) over the boson and fermion fields. We note that al l  
integrals  over the superfield J ,  converge. Gaussian in- 
tegration with respect  to J ,  is ca r r i ed  out with the aid of 
the equation 

where  P =  P i s  a self-adjoint supermatrix.  

Equation (43) can be proved by successive integration 
over the boson and fermion fields. Using ( l3 ) ,  (15), 
(201, (401, and (43), we obtain 

~ ( ~ ) = s . j ~ ~ ~ ( k ( i - . \ )  64 (I-T,)Q(r) (t+A) 

where k is a superelement of the fo rm (29) with com- 
ponents 

The matrix T, i s  a l so  of the  form 

but is now in the space of the ma t r i ce s  A, B, and C. 

The functional of the f r ee  energy in (44) i s  
i ioh 

F[Q]- jdr [- T ~ ~ n  - ln (ill. - - Q)-tc~~p~]. (47) 

We note that the integral over Q in (44) with the func- 
tional F[Q] (47) converges a s  before. 

In two- and three-dimensional sufficiently pure sam- 
ples, such that the inequality ET>> 1 is satisfied, and in 
sufficiently thick wi re s  with c r o s s  section much l a rge r  
than atomic, the minima of the energy (47) a r e  signifi- 
cant. Varying (47) with respect  to Q and using the 
property (37), we obtain 

1 
Q = - j ~ < p ) d p .  no (48) 

At w #0,  the solution of (49) i s  of the form Q = A. 
This  extremum point does  not belong to  the se t  of su- 

permatr ices  of the type (42) with conditions (25), (26), 
and (27), s ince the ma t r i ce s  Baa in (42) a r e  Hermitian 
with rea l  eigenvalues. A s imi l a r  dispari ty a r i s e s  when 
the  method of rep l icas  i s  used in the boson representa-  
tion." To  reach  the saddle point i t  is necessary to  shift 
the  contour of the integration over the e lements  of the 
ma t r i ce s  Baa into the complex plane. Th i s  procedure i s  
described in detail in Ref. 11. At w =  0 the  solution of 
(481, (49) t u rns  out to be strongly degenerate. Ju s t  a s  
in Ref. 11, we obtain Q" and QZ2 at  the saddle points 
from the specified Q12. The solution, which goes over  
continuously a t  w # 0 into Q = A ,  takes the form 

where Q" and Q" a r e  defined in (42). The  supermatrix 
W has  eight independent complex variables.  

At the saddle point, besides the condition (41), there  
i s  satisfied the equality 

where k i s  the superelement (45). Equation (51) can be 
verified by con~par ison  with Eqs. (25)-(27), (42), and 
(50). F o r  the supermatrix Q (50) there  exis t s  another 
convenient representation: 

where U i s  a superunitary matr ix  satisfying the condi- 
tions 

Thus, at  the saddle point the extremal solution (52) i s  
connected with the transformation group U(8)/ L'(4) 
x U(4). This  degeneracy i s  due to the supersymmetry 
of the initial Harniltonian (20). The  supermatrix Q (52) 
plays the ro le  of the o rde r  parameter  and contains 
Grassmann variables.  Calculating the f r ee  energy (47) 
a t  the minimum, we verify that it i s  equal to zero.  An- 
ticommutative variables d o  not enter  in the physical 
quantities. A s imi lar  situation obtains in supercon- 
ductivity, where the o rde r  parameter  i s  a complex 
quantity, but all the thermodynamic quantities a r e  real .  

At smal l  deviations 6Q f rom the equilibrium value, 
the f r ee  energy i s  quadratic in these  deviations: 

A distinction must be made between longitudinal fluc- 
tuations of Q, which change the eigenvalues, and trans-  
ve r se  ones, in which only the matrix U in (52) fluctu- 
ates.  F o r  t ransverse  fluctuations we have 

The longitudinal fluctuations a l te r  great ly the f r ee  en- 
e rgy ,  and can therefore be neglected. 

Homogeneous t ransverse  fluctuations do  not change 
the f r ee  energy at  a l l  in the low-frequency limit. The 
functional F of the f r ee  energy,  which desc r ibes  these 
fluctuations, contains a t  low frequencies only gradients 
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of Q and t e r m s  l inear in the frequency 
nv 

F = --I SSp[D(VQ)'-ZioAQldr ,  
8 (55) 

where D = u 7 / 2  i s  the diffusion coefficient. 

The functional (55) descr ibes  Goldstone modes whose 
existence i s  the consequence of the spontaneous break- 
ing of the supersymmetry and of the existence of the or -  
d e r  parameter  Q.  A system with f r ee  energy (55) be- 
longs to the c l a s s  of nonlinear u models. We note the 
formal analogy between expression (55) and the corre-  
sponding expressions obtained in investigations by the 
method of replicas."*12 Of course ,  the matr ices  Q 
have everywhere different s t ruc tures .  

To calculate the propagator of the f r ee  diffusion mode 
i t  suffices to use the f i r s t  t e r m s  of the expansion of Q 
in t e r m s  of W in (50). Substituting this  expansion in 
(55) we obtain 

From (56) and (54) we get 

K ( w )  =';lv/(Dk'+iw). 

The propagator K,(w) corresponds to  the usual diffu- 
sion equation. 

4. MAGNETIC AND SPIN-ORBIT INTERACTIONS 

We have considered so  f a r  the scat tering of electrons 
by ordinary impurities. The system was  in this  ca se  
invariant to t ime reversa l .  When account i s  taken of 
the spin degrees  of freedom, invariance to rotations in 
spin space i s  added. The high degree of symmetry of 
the f r ee  energy (55) with respect  t o  the transformations 
of U (53) i s  due to the invariance of the system to time 
reversa l  and to spin rotations. An external magnetic 
field and nlagnetic Impurities destroy the symmetry 
with respect  t o  t ime reversa l .  The symmetry with r e -  
spect to rotations in spin space i s  violated by the inter- 
actloll with the magnetic impuri t ies  and by the spin- 
orbit interactions. When all these perturbations a r e  
accounted for ,  the Hamiltonlan takes the form 

In (58) and (59) A i s  the vector potential, V,, i s  the 
spin-orbit interaction in the absence of impurities, Us 
i s  the interaction with the magnetic impuri t ies ,  and US, 
i s  the impurity spin-orbit interaction. The matrix T, 
defined by (46) a r i s e s  in the transformation of the X, 
x*, S,  S* Lagrangian into the Lagrangian expressed in 
t e r m s  of $ and $. 

If the entire interaction i s  weaker than scattering by 
ordinary impuri t ies ,  the influence of the lat ter  can be 
calculated independently. All the calculations a r e  sim- 
i la r  t o  those in Ref. 12. Repeating the derivation of the 
functional (55) in the presence of a magnetic field, we 
obtain 

nv e A F - - I  8 ssp [ D  ( V Q  fT [Q ,  T , ]  )'- 2iuAQ] dr. 

The f r ee  energy (60) contains, besides the gradient 
t e r m ,  the commutator [Q, r 3 ] .  Because of th is  t e rm,  
some of the diffusion modes a r e  no longer gapless. By 
substituting (42) in (60) we can verify that the only r e -  
maining Goldstone excitations a r e  A,, B,, and C, in 
(28). The 4, B,, and C, fluctuations are suppressed 
within the limit of long waves by the magnetic fields. 
If the Hamiltonian does  not depend on the spins, ail the 
r e su l t s  a r e  separately applicable for  part icles with 
spin up and with spin down. To  study the spin interac- 
tions it i s  necessary to double the number of variables. 
The anticommuting (74")  and the commuting (va )  compo- 
nents of the supervector J I  a r e  of the form 

0 io, 
r=(cq)r. .,= ( i o v  ) , .,= (:. -;). 

It i s  assumed that the supermatrix C is expressed in 
t e r m s  of c ,  and c, in accord with Eq. (16). All the 
equations of the preceding section remain unchanged if 
the supermatrix C is taken t o  mean the expression (61). 
In part icular ,  the symmetry of Q i s  determined a s  be- 
fore  by Eqs. (41) and (51). After averaging over the 
random fields of the magnetic impuri t ies  U, the La- 
grangian (20) acquires an additional t e rm 

1 pa=- ($a!$)', & = o ~ T , .  
tiXvT. 

4ii (U,'(r)U.'(r'))=-6(r-r'). 
JXVT, 

Integration over the superfields + leads t o  an addi- 
tional t e rm in the f r ee  energy 

,z Y 
F ,  = - J SSP (QO)'  dr. 

dl. 
(63) 

In the long-wave limit, an anisotropy of the form (63) 
leads  to suppression of the excitations A,, B,, and C, 
in (28). /All the elements in the matr ices  (28) a r e  now 
spin quaternions.] In addition, only unity elements re -  
main in the spin quaternions A,, B,, and Z,. Therefore 
the action of the magnetic impuri t ies  i s  equivalent to 
the action of the magnetic field. 

In the case  of sufficiently weak spin-orbit interaction 
there  is added to the Lagrangian (20) a t e r m  of the form 

1 9 =-- *" 2 ( ( J + ( r ) a [  i7 ( v .~+u .~) .  ilq(r)dr) ') . 

After integration with respect  to $ we obtain an addi- 
tional contribution to the free-energy functional 

The last  equation takes into account the possible 
anisotropy of the spin-orbit interaction. 

As  a result  of the t e rm (64), the only Goldstone ex- 
citation remaining a r e  those corresponding to unity 
elements in the spin quaternions. We then obtain in 
place of (28) 
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A,, B,, and C, in (65) a r e  unity elements in the spin 
quaternions. 

The results  show that the magnetic field, the mag- 
netic impurities, and the spin-orbit interactions take 
the form of anisotropies with different symmetries in 
the free-energy functional, and lower the initial sym- 
metry of the energy (55). A similar effect is exerted 
by these interactions on the f ree  energy that a r i s e s  in 
the method of replicas.12 

5. RENORMALIZATION GROUP 

By way of example of concrete calculations with the 
aid of the method described in the preceding section, 
we consider the problem of the conductivity of a two- 
dimensional disordered metal. We shall use for the 
calculations the free-energy functional (55). The asym- 
metry of the order  parameter Q in (55) depends on the 
presence of magnetic and spin-orbit interactions and 
i s  determined by the equations of the preceding sec- 
tions. We use the renormalization-group method in a 
form similar to that proposed by Polyakov for the in- 
vestigation of the vector o model.20 Such a method was 
already used in Ref. 12 for the tensor model. 

We break up the superunitary supermatrix U(r) in 
(52) into a product of a fast and slow part U,(r) and 
t?(r), respectively: 

We assume that Uo(r) and fi(r) satisfy the conditions 
(53). Substituting (52) and (66) in (55) we obtain 

The supermatrix 4, (67) satisfies the equation 4, 

= -8. We integrate (44), with the free energy defined 
by (67), with respect to the fast variable Q,(r). As a 
result of the integration, the energy F in (67) i s  re- 
placed by the energy 3 that describes the slow fluctua- 
tions - 

F--h I e-r DQ,. (68) 

To simplify the calculations i t  is convenient to choose 
from the outset the gauge of the supermatrices fi and 4,. 

We assume that fi in (66) and (67) i s  close to unity. 
Then the only nonzero superelements in the superma- 
t r ix  4, a r e  4," and a*', which a r e  interconnected by the 
anti-self-adjointness condition. Extremely important 
in the calculations i s  how to separate the fast  and 
slow variables and cut off the diverging integrals in an 
invariant manner. To eliminate the slow changes in Q, 
with momenta kc A, we add to (67) a term of the form 

The cutoff of the integrals that diverge at large mo- 
menta will be carried out with the aid of dimensional 
regularization. Using the representation (501, expand- 
ing Q, in t e r m s  of W, and retaining in the functional P 
(67) and (69) the number of t e r m s  necessary to obtain 
the f i rs t  two orders ,  we get 

I iiii ia - - ( w @ ) ' + - w Q + - w ~ Q ] ~ ~ ,  4 2 8 

(3 in (70) i s  determined by the expression 

?=F.\r. 
There a r e  no t e r m s  linear in W in ('lo), since W 

var ies  rapidly. Assuming that A2 ,x 3, retaining the 
first  two o rde r s  in 1 ,  we reduce (68) to the form 

F = F Q + < l : 2 ) o - g / 2 ( ~ : , ~ ) , , - . ~ ! ~ ' e 1 ~ : ; ) ~ , r ~ . ' , .  (71) 

Fi in (71) stands for the part  of the functional F, 
quadratic in W, and the angle brackets (. . .), denote 
averaging with the functional Fo from (70). The quan- 
tity F, describes the contribution from the Jacobian. 
The Gaussian integrals a r e  calculated in accord with 
Wick's theorem. The following equations, which a r e  
verified by direct calculation, a r e  useful: 

In (721, P i s  an arbitrary supermatrix, while PI and P, 
a r e  self-adjoint (P, = P I ,  P, = p,) supermatrices. The 
superelements in all  these matrices have the same 
structure a s  the superelements W. The values of the 
coefficient LY in (72) a r e  - 1, 0, and + 1 for potential 
scattering, magnetic interactions, and spin-orbit in- 
teractions, respectively. 

Using (72) and calculating the mean values in (?I) ,  we 
~ b t a i n  

The averaging over the angles in the integral that re-  
sults from the third term in (71) has  already been car- 
ried out in Eq. (73), whose nonlogarithmic t e rms  have 
been discarded. The quadratic divergences that ar ise  
in the second-order calculation a r e  cancelled by the 
contribution of the Jacobian. We note an interesting 
feature of the model in question. Only the "tempera- 
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ture"  t is renormal ized  in i t ,  and the effective f r e -  
quency O r e m a i n s  constant.  T h i s  property i s  p re -  
se rved  in a l l  o r d e r s  and i s  due t o  the part ic le-number 
conservat ion law. Equation ( 7 4 )  enables  u s  t o  wr i te  
down the  Gell-Mann-Low function gt): 

Equation ( 7 4 )  shows that t h e r e  a r e  no t e r m s  of o r d e r  
t3 in P(t )  in the c a s e s  of potential and spin-orbit sca t -  
ter ing.  The  solution of ( 7 4 )  l eads  t o  a logari thmic pole 
f o r  potential sca t te r ing ,  and to a ze ro-charge  situation 
f o r  the spin-orbit interact ion.  In the magnetic c a s e  
t h e r e  is no t e r m  of o r d e r  t 2 ,  but the t e r m  of o r d e r  t3 is 
not equal t o  ze ro .  The  r e s u l t s  f o r  the magnetic and po- 
tent ial  sca t te r ings  a g r e e  with the conclusions a r r i v e d  
a t  by Wegner with the  aid of the method of r e p l i c a s  and 
by using the  r e s u l t s  of Ref. 21. T h e  statement  made in 
Refs. 12 and 22 that t h e r e  i s  no t3 t e r m  in the magnetic 
c a s e  i s  incor rec t .  T h e  e r r o r  i s  due t o  the  noninvariant 
cutoff used in these  p a p e r s  at  l a r g e  momenta.  T h e  
f i r s t  o r d e r  f o r  the spin-orbit sca t te r ing  coincides with 
the  resu l t  obtained in Ref. 12. 

The  diffusion coefficient D and consequently a l s o  the 
conductivity a r e  inversely proport ional  t o  t  ( 6 7 ) .  
Therefore  solution of the Gell-Mann-Low equation ( 7 4 )  
enables  u s  to de te rmine  the dependences of these  quan- 
t i t i e s  on the frequency and on the  s i z e  of the sys tem.  
We note that calculat ions f o r  pure  potential sca t te r ing  
w e r e  c a r r i e d  out f o r  the  s p i n l e s s  par t i c les ,  while those 
f o r  spin-orbit sca t te r ing  w e r e  made  f o r  par t i c les  with 
spin. The  t ransi t ion f r o m  sp in less  par t i c les  t o  part i -  
c l e s  with spin is effected by a s imple  redefinition of D 
and I .  

6. CONCLUSION 

It w a s  shown in the preceding sect ions that the prob- 
l e m  of the e lec t ron  conductivity in a random potential 
i s  equivalent to  the problem of the thermodynamics of 
a super tensor  field. Despi te  ce r ta in  complicat ions due 
t o  the fact that half of the s u p e r m a t r i x  e lements  a r e  
fe rmions ,  the pr incipal  r u l e s  of operat ion with super -  
m a t r i c e s  a r e  s i m i l a r  t o  the r u l e s  for  ordinary mat r ic -  
e s .  In con t ras t  to  the methods based on the rep l icas ,  
the  difficulty connected with the assumption concerning 
the number of rep l icas  d o e s  not a r i s e  h e r e .  T h i s  h a s  
made possible  a r igorous  corroborat ion of the renor -  
malization-group equation in the two-dimensional c a s e .  
Of course ,  t h i s  advantage is not very significant in  the  
calculation of the perturbat ion-theory s e r i e s  t e r m s ,  but 
t u r n  out t o  be very important  i n  the investigation of 
m o r e  complicated prob lems .  The  use of the super-  
symmetr ica l  representat ion of the Green ' s  functions 
h a s  made it  possible  t o  e x p r e s s  the problem of the  con- 
duction in few-dimensional s y s t e m s  in t e r m s  of fluctua- 
t ions of the o r d e r  p a r a m e t e r  Q. The  use of the concept 
of such an o r d e r  p a r a m e t e r  can be substant ial  a l s o  in  
t h e  investigation of three-dimensional  d i sordered  met- 

a l s .  In cont ras t  t o  phase-transi t ion theory,  the  sym-  
m e t r y  group corresponding t o  Q is not compact.  T h e  
known nonanalyticity of the  conductivity i n  the  low-fre- 
quency region is possibly due to  t h i s  noncompactness. 
T h e  magnetic and spin-orbit interact ion manifest  them- 
s e l v e s  a s  special  anisotropies  of different symmetry .  
A change in s y m m e t r y  l e a d s  to  a dependence of t h e  con- 
ductivity on t h e s e  interact ions.  Although the compo- 
nen ts  of the o r d e r  p a r a m e t e r  contain Grassmann vari-  
ab les ,  the physical quant i t ies  should be ordinary num- 
b e r s  without even a n  even number  of Grassmann vari-  
ab les .  T h i s  is t h e  usual  situation in the theory of phase 
t rans i t ions .  In par t i cu la r ,  in  superconductivity theory 
t h e  o r d e r  p a r a m e t e r  i s  a complex number,  while al l  
t h e  thermodynamic quant i t ies  a r e  r e a l .  

The  author  thanks A. I. Lark in  and D. I. Khmel'nitskii 
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