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The effect of deformation phenomena on the spectrum of an electron localized on a thin helium film is 
investigated. It is shown that this effect can take place for both the transverse and the longitudinal part of the 
electron spectrum. The question of stability of the surface electronic states on thin helium films is discussed. It 
is noted that an effective interaction is possible between the electron system on the helium film surface and a 
system of thennal vortical excitations in the film. The presence of this interaction may exert, under certain 
conditions, a substantial influence on the structure of a single electron dimple on the helium film. 

PACS numben: 67.70. + n, 73.20.Hb 

INTRODUCTION 

One of the promising objects for  the investigation of 
the properties of two-dimensional electron systems is 
a charged thin film of helium. The term thin film means 
that the localization of the electrons above the helium is 
due mainly to their interactibn with the hard substrate 
and not to the attraction to the liquid surface of the 
film. 

The behavior of an individual electron over a thin 
film of helium is not a new problem. Various charac- 
teristics that determine the behavior of an individual 
electron over a thin film were determined earlier.12 In 
particular, it was found that over a thin film an elec- 
tron is practically always auto-localized, since the 
electrostatic interaction with the subtrate i s  equivalent 
to the action of a clamping electric field of high inten- 
sity, which leads to the appearance of electron dimples 
on the surface of the helium. As a result, the electron 
mobility over the film should be low enough, a s  is con- 
firmed by experiments.' 

Many interesting details in the behavior of electrons 
over a thin film of helium remain unexplained, how- 
ever. Most needed a r e  refinements of the available in- 
formation concerning the spectrum of an individual 
electron over the surface of a thin film. These refine- 
ments make it possible to observe the influence of de- 
formation phenomena on the discrete part of the electron 
spectrum, corresponding to motion of the electron along 
a normal to the film surface, to introduce the concept 
of the minimum film thickness a t  which realization of 
electronic surface states is possible, and others. 

Second, a new trend is developing, connected with the 
study of the interaction between the electrons and vor- 
tex pairs of fluctuation origin in the films. Recent in- 
vestigations have shown that the production of such 
pairs in thin films of helium is possible. At a tempera- 
ture T x <  f l ,  where is the temperature of the transi- 
tion to the superfluid state of bulk helium, the dissocia- 
tion of the vortex pair in the film should lead, according 
to Kosterlitz and Thouless,' to the loss of superfluidity 
of the helium film, a s  is indeed observed in experi- 
ment.5 Assuming the real  existence of vortex pairs of 
fluctuation origin, account must be taken of their pres- 
ence in their description of various effects of deforma- 
tion origin in helium films. In fact, as  noted in a pre- 

ceding paper," an individual vortex pair interacts with a 
deformation of the film surface, particularly with the 
deformation of the surface in the vicinity of a charged 
dimple. This interaction, which has the sign of attrac- 
tion, causes the electron dimple produced when a free 
electron is placed on the helium-film surface to attract 
to itself a definite number of vortex pairs, thereby 
forming a complicated charged vortex complex. The 
presence of an excess vortex-pair density in the vicin- 
ity of the dimple leads toadditional local pressure on the 
helium surface, something that must be taken into ac- 
count when describing the structure of the charged dim- 
ple on the helium film. The same considerations bring 
about the necessity for taking into account the finite 
density of the vortex pairs in the oscillations of the f ree  
surface of the helium film even in the neutral state. 
Thus, by observing the behavior of the electrons over a 
film at  finite temperatures, it is possible, in principle. 
to obtain information on the parameters of the fluctua- 
tion vortex pairs-a fact  of sufficient interest by itself. 

Third, the collective phenomena that take place in a 
bound electron-rippion system on the surface of a thin 
helium film a r e  of considerable interest. In this prob- 
lem one can expect a substantial increase in the critical 
density of the electrons (compared with the critical 
density of the electron over bulk helium), a qualitative 
change in the s t ructure  of the collective-oscillation 
spectra,  and others. 

A discussion of the foregoing new questions and pos- 
sibilities in the problem of the properties of electrons 
over a thin helium film is the subject of the present 
paper. Principal attention will be paid to a description 
of the properties of an individual electron on a helium 
film. Collective phenomena in an electro-ripplon sys- 
tem on a thin helium film will be investigated separate- 
ly. 

1. SPECTRUM OF SURFACE ELECTRONS OVER A 
THIN FILM 

A. The problem of the spectrum of a surface elec- 
tron on a thin helium film will be considered by us as-  
suming that the electron is self-localized. The cause of 
the autolocalization and the onset of a self-consistent 
deformation ( ( r )  of the helium surface in the vicinity of 
the localized electron is the strong electrostatic inter- 
action of the electron with the dielectric substrate. At 
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film thickness d c lo'# cm this interaction is equivalent 
to the presence of a strong clamping field E ,  =I 10' V/cm. 

The initial equation for the electron over the thin 
film is of the form 

The plane z = O  coincides with the f ree  surface of the 
film, d is the thickness of the film far from the dimple, 
c, is  the dielectric constant of the substrate, rn is the 
electron mass,  and E is its energy. The substitution 

makes it possible to remove the perturbation ((7) from 
the boundary condition for 4 on the free surface of the 
film. As for  the potential energy, when written in 
terms of Z and r it can be represented in the form 

Recognizing that the motion of the electron along the 
helium surface is slower than in the z-direction, we 
average the second term in (2) over the variable 2 ,  us- 
ing for simplicity the following approximation for the 
z-component of the wave function of the surface elec- 
tron: 

where y-I i s  the scale of the electron localization over 
the film. As a result, the energy V(t, r )  can be repre- 
sented in the form 

The inequalities (2b). which a r e  needed to be able to 
represent V(Z, r )  in the form @a), can be verified after 
determining the parameters y and R ,  where R is the 
radius of the electron localization in the film plane. 
Thus, e.g., using the definition y from (4), i t  is easy 
to find that the inequality ya> 1 reduces to the require- 
ment 

( h 2 / 2 m M )  "(1, 

which is satisfied up to thicknesses d 2 lo-' cm. 

Similar estimates of the satisfaction of the inequality 
y R >  1, obtained by determining y from (4) and R from 
(7) and (9b), also verify that the initial assumptions 
(2b) a r e  reasonable. Thus, the approximation (2a) for  
the potential V(Z,r) is  self-consistent in the sense of 
satisfaction of the required inequalities. 

Using the approximate equation (2a) for V(Z,r), we 
can separate the variables #(7, z) = f (z)cp(r) in the initial 
Schr6dinger equation (1): 

A, and X a r e  the energy eigenvalues of Eqs. (3) and (3a). 

B. The approximate spectrum and the wave functions 
of Eq. (3) can be obtained by various methods. Thus, it 
is noted in Refs. 1 and 2 that the inequality d >> y- l  i s  
satisfied in a wide range of parameters. For this rea- 
son, to find the energy ground level and the localization 
scale of the electron over the film in the ground state 
we can expand the energy V(z) = A/(z +d) in powers of 
z/d and reduce the problem (3) to a solution of the Airy 
equation. As a result, the localization length y-'andthe 
f i rs t  levels A, a r e  given by 

F = A/dZ,  5 ,  a r e  the zeros of the Airy function. The in- 
equality d >> y'' used to determine A, from (4) is  satis- 
fied in this case up to d 2 lo-' cm. 

Equation (3) for f,(z) has also an exact solution in 
terms of Kummer functions. If we use in this case the 
boundary condition indicated in (3), that the wave func- 
tion on the surface of the helium film vanish, and as- 
sume the substrate to be metallic, then the spectrum of 
Eq. (3) for f,(a) can be written in the form'' 

d=dtE(O), d>u,, l W i .  

I t  is appropriate to emphasize that according to (4a) a 
self-consistent deformation of the film surface in the 
vicinity of the localized electron influences the spectrum 
of the surface electron in the z-direction to the extent 
that ((O)/d t 0. In addition, the definitions (4) and (4a) 
of the ground-state energy correlate with each other 
accurate to the number -1. 

We note now that the boundary condition that the wave 
function of the electron vanish on the film surface is in 
fact idealized for our problem. This condition is ac- 
curate to -5% already in the case of an electron over 
bulk helium. As for an electron over a thin film, where 
the effective clamping force is much stronger, the prob- 
ability that the electron will penetrate in the interior of 
the film becomes quite noticeable. I t  might seem that 
this circumstance should lead to a tunneling break- 
through and to the penetration of the electron into the 
film. This process is  hindered, however, by the ab- 
sence of suitable (i.e., having negative energy) states in 
the film (if the substrate is not metallic). The details 
of the solution of the corresponding problem will be 
made clear in the Appendix. Here we summarize only 
the results obtained for x iZ )  when solving Eq. (3) with 
different boundary conditions, and gathered in Table I. 
Commenting on this table, it can be noted that the 
analytic definition (4a) of A,, which is valid in the re- 
gion d >> no, i s  accurate enough compared with the re- 
sults obtained by the more exact numerical search for 
the zeros of the Kummer function U ( a ,  b, x )  listed in the 
second column of the table. However, allowance for the 
penetration of the electron wave function into the helium 
film al ters  noticeably the values of up), especially in 
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the thickness region d - 10'' cm, a s  is evident from the 
third column of the table. Finally, the fourth column 
demonstrates the influence exerted on the spectrum by 
the image forces and the liquid surface on the film. 
This effect was calculated by perturbation theory. As 
for  the variant of the problem with a metallic substrate, 
no discrete levels of finite depth appear in this case,  
i.e., the electron cannot be held on the film. 

C. Changing over to Eq. (3a), which must be solved 
with the equation of mechanical equilibrium for  5 ,  we 
note f i rs t  of all that i t  was investigated earlier1 for  the 
limiting case {(O)/d<< 1 (the region of applicability of the 
results of Ref. 1 will be defined more accurately below). 
The transition into the region {(O)/d 5 1 leads not only 
to a certain quantitative change in the values determined 
in Ref. 1, but also to the appearance of qualitatively new 
effects. To verify the validity of the last statement, 
we write down the equation for the mechanical equilib- 
rium of the electron on a thin helium film: 

Here A is the two-dimensional Laplace operator; a is 
the surface-tension coefficient; d is  the equilibrium 
thickness of the helium film fa r  from the dimple; F(Y)  
is the effective clamping force with account taken of the 
contributions from the external field E,, from the 
image forces of the substrate having a dielectric con- 
stant &, [the actual form of this term is reconciled with 
the definition of (V(r)) in (2a)j; f is a constant that 
characterizes the van der  Waals interaction of the 
helium film with the solid substrate of the given type. 
In the case of a glass substrate f=  9.5 x g . cm2/ 
s eca . 

In the limiting case S(O)/d<< 1, linearization of Eq. 
(5) with respect to ( leads to the equation 

where G2 = 3f/ad4 is the effective capillary constant. 

Consideration of the linear equation in (6) together 
with (3a) allows us to carry  through to conclusion, in a 
self-consistent manner,' the problem of localization of 
an electron on a film. The final results a r e  in this case 
the following (we have in mind the harmonic approxima- 
tion)": 

Here Ro i s  the radius of localization of the electron in 
the dimple, is  the total energy of the dimple, and 
KO is a Macdonald function of zeroth order. For  d 2 lo-' 
cm, a glass substrate, and E, - 0 we have Ro- lo-" 
cm; 5i= 1.7. lo5 cm-'; iiRo=0.17, ((O)=5-10 A; g = - 1 0  
K. The combination GUo is practically independent of 

TABLE I.  

d ,  and the values of {(O) and I increase rapidly with 
decreasing film thickness (to the extent that F -d-2). 

1 X P '  

Turning now to the conditions under which the definit- 
ions (7) a r e  valid, it is easy to s e e  that in addition to 
the necessary condition ?R<< 1, which according to the 
estimates given above is satisfied and does not depend 
on d ,  i t  i s  necessary also to satisfy the inequality 

1 
2 
3 

1 
2 
3 

1 
2 
3 

which was used to obtain Eq. (6). Taking into account 
the definition of ((0) from (7), we easily verify that the 
inequality (7a) is  violated if ((0)-d. Thus, with de- 
creasing film thickness, it is  no longer correct to lin- 
earize the mechanical-equilibrium equation. 

An approximate idea of the deformation phenomena 
that occur in the region ((0) 5 d  can be obtained in the 
following manner. We assume that, just a s  in the in- 
vestigation of the limiting case ((O)<<d. Eq. (3a) can be 
solved by using the oscillator approximation, i.e.. (V(r)) 
can be represented in the form 

6.10-7 

lo-' 

5. lo-" 

As for the mechanical-equilibirium equation (5), we 
seek its solution under the assumption that the right- 
hand side of this equation is piecewise smooth: 

Taking these remarks into account and solving Eqs. 
(3a) and (5) we arrive a t  the following relations for 
tU(0), and R: 

R-Z= t ~ t o h - ' .  w 2 = . 2 j " ( 0 ) / ( d + ~  (0)) ' rn .  

4.66 
5.66 
6.66 

6.43 
7.43 
8.43 

14 2 
15.2 
I ti2 

o r ,  after simple transformations, 

The solution of the system (8a) for R and ((0) com- 
pletes the investigation of the problem of determining 
the parameters of the electron dimple under the assump- 
tion that the inequalities SR < 1 and V ( < 1 and that the 

4.75 
5.9 1 
6.98 

fi.29 
7.5'2 
8.6i 

12.7 
14.1 
15.4 
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4 tin 
5.bi  
6.!l I 

fi.2'4 - 1 -  
t . i ( t  

8.59 

I?.; 
14.1 
15.4 

4.40 
5.GG 
6.74 

5.78 
7.13 
8.30 

10.8 
12.4 
15.3 



ratio of [(O) to d is arbitrary but remains less than 
unity. 

Proceeding to solve the system (8a), we note f i r s t  that 
the parameter 6 contained in the second equation of (8a) 
is small a t  typical values of f and &,. Thus, i f f  = lo-" 
erg  and &, 5 10, then 6= lo-'. The smallness of this 
parameter means that actually, even under conditions 
when the deformation of the helium surface is not 
small, the principal role in the mechanical equilibrium 
at  the center of the electron dimple is played by the 
competition between the electron and Laplace pressures. 
As a result, and relation analogous to the definition (8a) 
of [(O) can be obtained under the condition 6<c 1 from 
the definition (7) of [(O), by replacing the expression F 
from (7) by 

/.'=.\Id'+.\/ (d+ t  (U) ) '. 
This circumstance, however, is not obvious beforehand, 
s o  that the foregoing analysis of the situation with 
((0) s d  is  necessary. In addition, it is  perfectly pos- 
sible that for certain solid substrates with relatively 
small values of c, the parameter 6 may turn out to be 
not small and its presence cannot be neglected. 

Taking into account the smallness of 6<< 1 and intro- 
ducing the variable x={(O)./d, we can rewrite the second 
equation of (8a) in the form 

The left-hand side of this relation is bounded from 
above and has a maximum a t  x = x,,,,, = 5. Consequently 
the right-hand side of (9) should also be bounded from 
above by the requirement Q a 4. In expanded form, this 
inequality represents a restriction on the film thickness: 

Numerically we have d,,, = lo-' cm. 

Thus, within the framework of the approximation in 
which W <  1 and V[ < 1 a stationary localized state of an 
electron on a thin film is possible only in the region 
d > d,,,,,. When this inequality is  violated, breakthrough 
takes place and the electron penetrates into the film, 
forming apparently a strongly deformed bubble. 

The expression for R, which follows from (8a) and 
(9), is  of the form 

Obviously, this value of R is somewhat smaller than the 
R, defined in (7) [to the extent that d + [(O) < d l .  Con- 
sequently, the inequality RR < 1 used to obtain the 
results in (8a) actually holds true to the extent that the 
inequalitites R <  R, and RR0< 1, discussed above, a r e  
satisfied. 

The numerical scale of R in the thickness region 
d -dm,,, is R -d. Consequently, the necessary inequalit- 
ies yR > 1 from (2b) and A[ < 1 [which can be written in 
the form [(O)R-'< I ]  a re  actually satisfied a t  the appli- 
cability limit. As for the requirement d +5(0)> $["(O)R~ 
used to simplify the potential (V('(r)), it reduces to the 
inequality d3 > 27 A/8na, which is satisfied s o  long a s  
the inequality (9a) holds. 

I t  should be noted, in concluding this section, that the 
quantity d used above is the total thickness of the film, 
including its liquid and solidified parts, which differ 
little in their dielectric properties. This thickness is 
somewhat larger than the thickness d of the superfluid 
part  of the film, which "participates" in the hydrody- 
namic motions. 

2. VORTEX PAIRS I N  A HELIUM FILM AND THEIR 
INTERACTION WITH ELECTRONS 

A. An interesting new formation produced in thin 
helium films a t  finite temperatures a r e  vortex pairs of 
fluctuation origin. These excitations cannot stem from 
fluctuations in the bulk helium, since their energy is 
macroscopically large. In thin films, however, the 
situation changes, since the length of the vortex fila- 
ment is  now of the order of the thickness of the helium 
film, i.e., it is sufficiently small, and the logarithmic 
divergence and the self-energy due to the slow decrease 
of the velocity field around the vortex filament can be 
eliminated if the vortices a r e  produced in pairs of op- 
posite sign. As a result, the energy of an individual 
vortex pair is  finite and independent of the area  of the 
helium film: 

Here p,  is the bulk density of the liquid helium, d is the 
film thickness, L is the distance between the vortex 
axis, b is  the radius of the core of the vertex filament, 
Wo is the energy of the vortex core, r i s  the circula- 
tion quantum, and m, is the mass of the He4 atom. 

According to (4), the average value of L and the 
average density N for vortex pairs of fluctuation origin 
in a temperature region far  enough from the Kosterlitz- 
Thouless phase-transition point a r e  determined by the 
expressions 

The function (PN) diverges a s  BE,- 2. In this tempera- 
ture region the vortex pairs begin to dissociate, and 
this is the cause of the Kosterlitz-Thouless phase 
transition in the helium film. The presence of this 
phase transition is revealed, e.g., by an abrupt change 
in the viscous properties of the film, and this viscosity 
change was indeed observed in experiment. 

It should be noted that the definitions of (L') and N in 
(11) a r e  somewhat ambiguous. If, e.g., we represent 
the vortex pairs a s  Bose quasiparticles with energy 
W(p) ,  momentum p, and velocity u: 

lthe Hamiltonian definitions of W(P), p, and v for a 
linear vortex pair a r e  known from classical hydrody- 
namics], the expression for N takes the form 
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Obviously, the pre-exponential factors in the definitions 
(11) and (13) of N a r e  different, and in the case 6- a, ' 

where a is the distance between the atoms in the liquid 
helium, the expression (13) for  N exceeds (11) by (d/a)' 
times.5) 

B. The lack of information on the vortex-pair-spec- 
trum parameters W, and 6, which cannot be calculated 
theoretically, makes it necessary to search for new 
experimental possibilities of investigating the interest- 
ing phenomenon of fluctuation vortex formation. In this 
sense,  it may be useful to study the deformation pheno- 
mena that occur when electrons a r e  located on the sur-  
face of a thin helium film. As noted in the Introduc- 
tion, vortex pairs interact with an individual charged 
dimple and becomes attracted to it. The reason for this 
attraction is very simple and clear. According to its 
definition (lo), the vortex-pair energy is proportional to 
the vortex-pair length. A decrease of this length leads 
to a decrease of the total vortex-pair energy. But it is  
precisely such a decrease of the vortex-pair length 
which takes place when the vortex pair lands in the 
region of the charged dimple. A quantitative measure 
of the resultant interaction is the definition of 6W: 

in which the role of [(r) is  played by the self-consistent 
deformation of the film surface in the vicinity of the 
localized electron. Recognizing that the expected (i.e., 
the theoretically predicted) dimension L of an indivi- 
dual vortex pair is of the order  of interatomic distances, 
and that the region of substantial deformation in the 
vicinity of the charged dimple has a scale R .: 10'" cm, 
i.e., R >> L, we can assume that a large number of 
vortex pairs, which is characterized by the local den- 
sity ~ ( r )  of the vortex pairs, should accumulate in the 
vicinity of the charged dimple. If the average vortex- 
pair  density N is small enough, then N(r) is defined by 
analogy with N (13): 

For  a film thickness d 2 10" cm and a glass sub- 
strate,  when the estimates given in the comments on 
the definitions (7) yield [(O) of the order of -5-10 A, 
which is a noticeable fraction of d ,  the local density 
of the vortex pairs in the vicinity of the electron dimple 
can exceed noticeably the average density N. This c i r -  
cumstance suggests that procedures in which electron 
dimples a r e  used to investigate fluctuation vortex pairs 
a re  highly sensitive to the density of these pairs. 

In the general case the local density of the vortex 
pairs in the vicinity of an electron dimple may turn out 
to be not small. In this situation, the problem of the 
density of vortex pairs in the vicinity of an electron 
dimple does not reduce to the determination of ~ ( r )  (15) 
in a given field [(r). A self-consistent solution must be 
obtained for the mechanical-equilibrium equation 

together with definitions of the electron Pel ( r )  andvortex 
P,(r) pressures on the film surface. 

Using the natural definition of P,(r), which is valid 
if L<< R: 

and taking into account the definition Pel = ~ d ( r ) ,  where 
the electron wave function q ( r )  satisfies Eq. (3a) and F 
is taken from (7), we arr ive  a t  a closed system of equa- 
tions that determine in self-consistent manner the be- 
havior of &), t ( ~ ) ,  and N(r) i s  the vicinity of the elec- 
tron dimple. 

A consistent solution of the resultant nonlinear prob- 
lem with respect to ((r), cp(r), and ~ ( r )  has not yet 
been obtained. We present below an approximate analy- 
s i s  that should provide a qualitative description of the 
dimple properties in the presence of a finite vortex- 
pair density. We have in mind a representation of the 
deformation [(r) in the vicinity of the center of the 
dimple in the form of the expansion 

E ( r )  =E ( 0 )  +l/;br' (0)r2+ . . . , (18) 

which contains two constants, [(0)< 0 and ['(O) > 0. Ac- 
cording to (3a) and (181, the wave function of the ground 
state of the electron in the dimple has now an oscillatory 
form: 

(19) 

where the radius R of the electron localization in the 
dimple is connected with ('(0) by a relation similar to 
(8): 

i mo 
-I- 

R' h ' 
O'-=F&'' (0) m-I. (20) 

Noting now that the right-hand side of the mechanical- 
equilibrium equation (16), with account taken of (18) and 
(19), is a sum of two exponential terms, we can obtain 
an exact inhomogeneous solution of this equation. Hav- 
ing an expression for [ ( r )  from (16), and determining 
with its aid the value [(O) and ("(0). we obtain the follow- 
ing relations which complete the system of transcenden- 
tal equations needed to find the three parameters of the 
problem [R, [(O), and L;' = $("(O)paw,/ad] : 

R' t h2 aw, P-F- ' - .  
L,' 6 mR2 dd 

In the limiting case of a weak influence of the vortex 
pressure on the electron-dimple parameters, when 
F*/F- 0, the expressions for f(0) and R from (21) go 
over into the corresponding definitions of [(O) and R 
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FIG. 1. Dependence of a on d at a temperature T= 1.5 K under 
the assumption that W,= YE,,: 1-y= 0.2; 2-y= 0.3. 

from (7). Using this circumstance, we can represent 
R in the region F*R'R'/F<< 1 in the form 

where K: is  the value of H a s  a -  0 and F,* takes the 
form (21) with ((0) from (7). In expanded form, recog- 
nizing that itRo= 0.15 [see the pertinent comments to (711, 
o is given by: 

.I!\ dlV0 
oz2.?j.10-:--. I O U ,  

1.';- dd 

aw, F 
Q=p --, BEoBi. 

d d  2 x a  

The numerical value of o depends essentially on the 
film thickness d. Assuming W,=yEo, where y s 1 is a 
numerical coefficient, the value of o is  exponentially 
small in the region d > lo-" cm and becomes sufficiently 
noticeable in the region d < 10-6 cm. The behavior of 
o for Wo=yEo, for different values of y ,  and for a char- 
acteristic temperature T = 1.5 K is shown in Fig. 1. In 
the calculation of o we took into account the fact that the 
thickness of the superfluid part of the helium film i s  
approximately 10 .i smaller than the total film thick- 
ness, which includes additionally two o r  three layers 
of solidilied helium. 

The real behavior of o can deviate noticeably from 
that shown in the figure, since the ratio W,, - Eo is only 
an assumption. In the absence of information on W,, 
however, this assumption must be used for approximate 
estimates. 

Thus, in the region d <  lo-" cm one can expect notice- 
able devitations, of vortex origin, of R from R, to the 
extent that o # 0. These deviations should have a char- 
acteristic (exponential) temperature dependence and 
a re  observed under conditions when the equilibrium 
thickness of the helium film is constant. The appear- 
ance of a tendency towards such a variation of R is des- 
cribed by Eqs. (21) and (22). As for significant changes 
in the structure of the electron dimples on account of the 
interaction with the vortex-pair density, they can a r i se  
in the region d <  10'" cm, i.e., in a situation wherein the 
structure of the electron dimple ceases to be described 
by relations (7), and conditions a r i se  for the electron 
localization described by relations (8). 

CONCLUSION 

Let us summarize some of the results. The main 
purpose of this study was the description of the influence 
of the deformation phenomena on the parameters of the 

electronic spectrum of electrons localized on thin 
helium films. I t  was found that interesting singularities 
of deformation origin a r e  present both in the transverse 
[see the definition (4a) of A,] and in the longitudinal part 
of the electron spectrum. In the latter case this reduces 
to different degrees of localization of the electron a s  i t  
moves over the film surface [see relations (7) and (9) 
and the pertinent comments]. The appearance of local- 
ization of this type can be detected by various methods, 
e.g., by measuring the cyclotron resonance. The shift 
of the cyclotron-resonance frequency can in this case be 
much larger than in the case of the known experiments 
on cyclotron resonance for electrons over bulk helium.' 
In the case of sufficiently thin helium films, a notice- 
able connection becomes possible between the electron 
and vortex components in the film, and this leads to a 
number of additional singularities in the behavior of the 
longitudinal electron spectrum a s  a function of the tem- 
perature and of the film thickness [see the definitions 
(21) and (22)]. 

APPENDIX 

For a thin helium film (d<< 5 x lo'$ cm), the princi- 
pal role is played by the potential of the interaction of 
the electron with the substrate and by the potential a t  
which the electron enters the helium, which takes the 
form of a potential step V,- 1 eV. In this case the 
Schrtidinger equation outside and inside the film has the 
same form a s  the Coulomb equation. After making a 
standard change of variables, the problem reduces to a 
solution of the following equations: 
outside the film 

t/,"(r) + ( 2 - r ) l ; I r )  - a d l ( x )  =u. 

e- te-": 
1, = - .$'a,(x'")- ]Z(Z) I=-- = 0; 

inside the film 

In addition, it must be stipulated that the logarithmic 
derivative of the wave function on the f ree  film surface, 
located a t  the point z =0,  be continuous. 

The only solution of (Al) satisfying the boundary con- 
dition a t  infinity is the confluent hypergeometric func- 
tion ~ ( 4 . 2 ,  x): 

where $(x) is the Euler psi function. 

The second solution of Eq. (Al) does not satisfy the 
boundary condition a t  infinity. If % # -n, n =O, 1 ,2 , .  . . , 
the second solution i s  the function p , ( % , 2 ,  x).  In the 
case a, = -n, the functions U(-n, 2, x )  and ,F,(-n, 2, x) 
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differ only by a constant factor, and the solution inde- 
pendent of U(4,2,  x) is exp(x)U(2 +n ,  2, x). In both 
cases,  the corresponding wave functions diverge at 
infinity. 

The only solution of Eq. (A2), satisfying the boundary 
condition on a dielectric substrate, is ,F,(a,, 2, x). 
Taking the foregoing into account and satisfying the 
continuity condition on the boundary of the f ree  surface, 
we obtain the following equation for A,: 

The connection between the quantities A,, y,, y,, a,, 4, 
xp was determined above. 

Thus, the problem of finding the electron spectrum 
reduces to solution of f i e  algebraic equation (A3). 
Table I lists the results of the solution of this equation 
in terms of x?' in various approximations. The f i rs t  
and second columns give the results of the calculation 
of n(f' in an approximation corresponding to the vanish- 
ing of the wave function on the surface of the helium 
film. In the f i rs t  column, x, was calculated with the 
aid of the asymptotic formula (4a) of the main text for 
the zeros of the function U(a, b, x). In the second 
column this quantity was obtained numerically. The 
results of the numerical solution d Eq. (A3) a r e  given 
in the third column. Finally, in the last column of the 
table a r e  given the results of a numerical calculation 
of xf", in which the potential of the interaction of the 
electrons with the image on the surface of the helium 
film was taken into account by perturbation theory. 

As seen from the table, allowance for the penetration 
of the wave function of the electron into a helium film 
on a dielectric substrate a l ters  the spectrum insignifi- 
cantly. The main correction i s  introduced by allowance 
for the interaction of the electron with the image in the 
helium film. At a film thickness -lo-" cm this correc- 
tion is 15-20s. 

In addition to a dielectric substrate, we can consider 
a variant with a metallic substrate. In this case the 
boundary condition for Eq. (A2) a t  z =-d takes the form 

(re-'"f, (z) ) '-0. 

Solving the system (Al) and (A2) we can verify that the 
problem has a single eigenvalue corresponding to nega- 
tive energies, A, - -- (the corresponding xJ2) = 0). In 
this case the electron penetrates into the film, and 
there a r e  no stationary solutions with finite negative 
energy. 

The question of the stability of discrete electron 
levels on a thin helium film deposited on a dielectric 
substrate is quite fundamental. It is therefore meaning- 
ful to present additional arguments in favor of the ex- 
istence of this stability. One of the leading considera- 
tions is the absence of negative discrete levels for  a 
f r e e  electron located on an interface between liquid 
helium and a solid dielectric (the energy is reckoned 
from that of the electron in vacuum). In fact, on such 

a boundary the discrete part  of the electron spectrum is 
of the form 

when account is taken of the energy scale V,,= 1 eV, 
even the lowest discrete level from (A4) i s  in  a positive 
region a t  arbitrary &,>> 1. At the same  time, the dis- 
cre te  levels for an electron on a thin helium film lie in 
the negative region. Consequently, stable localization 
of the electrons should be realized precisely on these 
levels, a s  was in fact revealed by the concrete calcula- 
tions given in the Appendix. 

Additional evidence that, in an atomic scale, the elec- 
trons do not stick to a solid dielectric substrate is  pro- 
vided also by measurementsg of the mobility of elec- 
trons in thin helium films on a dielectric substrate. 
The experiment shows that the mobility of the electrons 
in such films is only several  times smaller than the 
corresponding mobility of electron bubbles inside liquid 
helium; this indicates most likely that the electrons in 
the helium film a re  in a bubble state. The energy of such 
a state is also positive compared with the energy of the 
electron in vacuum, and can therefore not be the most 
stable state in the problem of the spectrum of an elec- 
tron on a thin helium film. 

"TO our knowledge, a spectrunl of the form (43) for an elec- 
tron over a helium fil?i was f i rs t  obtained by Gabovlch, 11'- 
chenko, and ~ a s h i t s k i i . ?  We a r e  grateful to them for the 
opportunity of becoming acquainted with thei r  resul ts  prior to 
publication. They, however, did not take into account the dc- 
formation phenomena, and their  final resul ts  for the clcctron 
spectrum do not contain the quantity t (0). 

')What was actually used in Ref. 1 1s not a harmonic approxi- 
mation, but a somewhat more  accurate variational procedure 
that yields for  R $ ~ )  the expression H: 4na l iZ /m~' ,  i. e., a 
resul t  twice a s  large as the harmonic-approximation value of 
R: from (7). Nonetheless, we adhere to the harmonic approx- 
imation, which admits of various generalizations. 

3)The averaging in the definitions (11) and (13) of A' was made 
with different statist ical  weights: exp[-@ W(I.11 in (1 1)  and 
exp[-PW(p)] in (13). This leads to additional numerical dif- 
ferences in the arguments of the exponentials and in the de- 
nominators of the corresponding expressions for N. 
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