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A seIf-consistent field model that allows the application of the kinetic-equation method to one-dimensional 
conductors in which the electrons interact with the phonons is formulated. The effects of the phonon drag in 
very anisotropic metals greatly alter all the temperature dependences of the conductivity even at very high 
temperatures. In particular, a T - 2  law is found for the conductivity of TTF-TCNQ. The temperature 
variation laws for the caonductivity of systems that have undergone a slight dimerization (i.e., a lattice- 
constant doubling) are obtained. The role of the soft mode is investigated, and the laws of critical behavior of 
the resistance in the chosen model war the structural transition point are found. The dependence of the 
temperature of the conductivity peak on low defect concentration is found. The theory is not at variance with 
the experimental data. Finally, it is concluded that the results are fairly general, and depend little on the 
model. 

PACS numbers: 72.15.Nj, 72.10.Di 

1. INTRODUCTION. CHOICE OF THE MODEL 

There has thus far been accumulated an enormous 
amount of experimental data on the transport properties 
of the quasi-one-dimensional organic conductors. The 
best studied in this respect a r e  TTF-TCNQ and the re- 
lated double-chain (two types of carr iers)  compounds 
TSF-TCNQ, HMTSF-TCNQ, etc., the single-chain 
(complete charge transfer) compounds (TTT),I, and 
(TMTSF),PF,, and a number of other compounds.') The 
theoretical interpretation of the measurement results  
meets with a number of difficulties. Among them i s  
the difficulty connected with the large number of con- 
stants on which the transport properties of highly ani- 
sotropic organic conductors clearly depend: the large 
number of active phonon modes; the three-dimensional 
effects (the tunneling integrals t,), which determine the 
specific form of the electronic spectrum under condi- 
tions of rather complicated symmetry; the constants of 
the interelectronic interactions both on one chain and 
between the various chains; the dispersion of the pho- 
non spectrum; the occurrence of the Kohn anbmaly 
(i-e., of a structural transition), and a number of other 
factors (e.g., defects). The form of the experimental 
curves, say, for the resistance a s  a function of tem- 
perature clearly cannot furnish enough information. 
Under these conditions the theory in turn should not 
pretend to give more than a qualitative insight into the 
role of the main mechanisms. The situation i s  aggra- 
vated by the fact that the resistance at constant volume 
p, (which i s  studied in the theory) and the resistance at 
constant pressure p, (which i s  what i s  measured in ex- 
periment) differ significantly from each other, and of- 
ten have different temperature dependences in these 
 compound^.^ 

The theoretical methods of interpreting the transport 
properties usually do not fall outside the limits of phe- 
nomenological momentum-balance equations based on 
the kinetic equations for the phonons and electrons 
(see, for example, Refs. 9-11). At the same time, the 
kinetic equation is far from being always applicable in 
the one-dimensional model because of the localization 

phen~mena. '~- '~  In equal measure, because of the fluc- 
tuations, it i s  likewise impossible to describe the 
structural Peierls  transition in the one-dimensional 
model. 

An important physical observation is made in Ref. 10 
about the transport properties of quasi-one-dimensional 
conductors. Namely, the Fermi surfaces in them a r e  
close in shape to parallel planes the vector k,, = 2p,  
apart in the Brillouin zone. Therefore, if this vector 
is incommensurate with the reciprocal lattice vector, 
the phonons in the vicinity of the vectors I k,, - 2p,l - T/ 
v cannot give away their momenta, and a re  strongly 
coupled to the electrons. Consequently, there occurs 
in these compounds the so-called phonon drift, i.e., 
phonon drag by an electric field, and this changes 
greatly the role of the conventional Bloch mechanism 
of electron scattering by phonons, and leads, generally 
speaking, to the appearance of new temperature de- 
pendences. 

The purpose of the present paper is to formulate for 
the electron-phonon interactions in one-dimensional 
conductors a relatively simple model capable of cor- 
rectly describing the main features of such fundamental 
phenomenon a s  the Peierls transition, and then deter- 
mine the limits of applicability of the kinetic equation 
in this model. A more detailed investigation of the 
kinetic equations themselves gives an insight into some 
qualitative characteristics of the temperature behavior 
of the resistance, the role of commensurability, the 
nature of the conductivity peak, and the character of 
the critical behavior of the resistance in the vicinity of 
the structural transition point. 

As shown in Ref. 16, allowance for the interaction of 
the electrons on different chains determines the Peierls 
transition a s  a three-dimensional transition. The sim- 
plest situation (proposed in Refs. 16 and 17), in which 
the structural transition can be described by means of 
self-consistent field theories (the fluctuations in the 
vicinity of the transition point a re  weak), ar ises  when 
the elastic properties (i.e., the phonon spectrum) are  
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assumed to be three-dimensional. The electronic 
spectrum can then be one-dimensional. The "bare" 
phonon spectrum in the vicinity of k= (i2p,, k,) i s  de- 
scribed by the dispersion law 

The renormalization due to the conduction electrons 
determines a new phonon spectrum: 

where W: = wO2(2pF, 01, 6 = k,, - 2pP, and g,: is the di- 
mensionless electron-phonon interaction constant that 
enters into the high-temperature phonon-induced elec- 
tron relaxation time 

and in the definition of the Peierls-transition tempera- 
ture  

T p a e ,  exp ( - l / gma)  . (3) 

Estimates of g,: from (2) o r  (3) usually yield gp,2 
values ranging from -a to i .  In our model we shall 
consider the interaction to be arbitrarily weak: 

The function f (2) in (1') for one-dimensional electrons, 
i.e., in the flat-Fermi-surface model, could have been 
computed exactly. The results  obtained below depend 
weakly on the explicit form off ( 2 ) .  Furthermore, the 
expression (1') essentially preserves i ts  form when al- 
lowance is made for the small three-dimensional ef- 
fects (i.e., when the tunneling integral t,# 0). If the 
tunneling integral does not destroy the structural tran- 
sition, then instead of (1') we have 

a 2 ( k )  =gPhaoo" [In (TIT,) + f (6u/ tL)]  + ~ , ~ B ( k ~ / k ~ ~ )  ' ,  (1") 

where Tb depends on t, > Tp, while j i s  a new function 
and 2 is another number. Normally, Tb is comparable 
to  the characteristic phonon frequencies wo = 50-100 K. 
In their turn, the tunneling integrals a re  estimated in 
the majority of the compounds to be t , s  100-150 K. 

The phonon Green function for the physical frequen- 
cies in the neighborhood of the transition point has (for 
a plane electronic spectrum) the form17 

The imaginary term in the denominator shows that the 
damping of the "Kohn" phonon is, generally speaking, 
not weak. Near the transition temperature, and for 
small 6v<< T, t,, we obtain from (1') and (1") the ex- 
pression 

a t ( k )  =gpfwpl[t+aSe+bkL'] , (6) 

where t = (T - Tp)/Tb. 

An estimate of the critical  fluctuation^'^*'^ yields the 
following condition limiting the region of applicability 
of the model near the transition point T,: 

t= 1 AT/Tp ( >gPhL/BE. (7) 

Let us now study the question of the possibility of 
applying the kinetic equations to the electrons and pho- 

nons. For  three-dimensional electronic Fe rmi  surfac- 
e s  the kinetic equation is a consequence of the so-called 
Migdal theorem (see  Ref. 19): The correction depicted 
in Fig. l(a) , the the electron-phonon interaction vertex 
is small because of the fact that the denominators of the 
two electron Green functions differ by an amount of the 
order of the Fermi  energy: 

(This result is another expression of the adiabaticity 
condition for the electron motion in the field of the 
ions.) 

In the quasi-one-dimensional case the corresponding 
energy difference (for k,, = i2p,) is only a phonon fre- 
quency, and the condition assumes the form 

which at high temperatures is, according to (2), possi- 
ble only when (4) is fulfilled. If the tunneling integral 
is finite and t, > wo, then instead of (8) the condition for 
the diagram in Fig. l(a)  to  be small is the inequality 

I/%, p h t ~ C l .  (8') 
The diagram in Fig. l(b) is the fourth-order anhar- 

monicity for the phonon-phonon interaction. Besides, 
in the three-dimensional case this anharmonicity makes 
a small contribution proportional to the mean square of 
the thermal vibrations T/c, << 1. For  the "quasi-one- 
dimensional" phonons, i.e., for four phonons with lon- 
gitudinal momenta k,,, - k,,, = 2p, and k,,, - k,,, - - 2p, (the 
transverse momenta can have any values), all the four 
Green functions turn out to be "resonant," and the ma- 
t r ix  element is small only to the extent that gph4 i s  
small. [If Ift, > w,, then there will appear an additional 
factor equal to (wo/tJ2.] Thus, for the phonons lying 
near the c ross  section I k,, I - Zp,, the expansion in t e rms  
of the anharmonicities corresponds to an expansion in 
powers of gPb2 instead of an expansion in powers of T/ 
c,. As 6 = I k,, - Zp, I >> T / V  increases, these amplitudes 
decrease rapidly to the normal order of magnitude. In 
the high-temperature region, where the phonon damp- 
ing i s  weak (i.e., where ~ / T ~ , , " ~ , ~ W ~ ~ / T ) ,  not only 
the electron-phonon collisions, but also the higher-or- 
de r  processes may be important for the phonons with 
(k , , ( -2pF.  Thus, i t  i s  easy to verify that, for the pho- 
non-phonon scattering vertex shown in Fig. l(b), the 
evaluation of the collision integral, defined by the equa- 
tion 

FIG. 1, a) First-order correction to the electron-phonon 
interaction amplitude. b) Fourth-order anomalous anharmon- 
icity: the matrix element for the scattering of the phonons 
with momenta f 2p ,  by each other. 
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yields 

2. HIGH TEMPERATURES 

In this section we shall discuss the case of sufficient- 
ly high temperatures, i.e., the case of temperatures 
T >> oo (wo is the characteristic frequency of the phonon 
branch). As asserted above, the effects of the phonon 
drag in a one-dimensional conductor manifest them- 
selves in the high-temperature region a s  well. The 
condition, (81, of applicability of the kinetic equation 
specifies a model with a weak electron-ghonon interac- 
tion. The effects due to the slight three-dimensionality 
of the electronic spectrum will be neglected at first. 

Using the standard notation (see, for example, Ref. 
201, we shall write the corrections, due to the electric 
field, to the electron and phonon distribution functions 
respectively in the form 

Let us first  investigate the possibility of the normal 
Bloch mechanism, i.e., of the first-order processes, 
in which an electron is absorbed o r  emitted by one pho- 
non. The system of kinetic equations for the electrons 
and phonons has the form (see, for example, Ref. 20) 

Here I,,,, is the linearized electron-phonon collision 
integral: 

X 6 (ep - spa - OL) + (absorption processes) 1 

[ w ( ~ ' ,  k ;  p) is the probability for the process; in the 
second form of the expression we have carried out a 
natural abridgment of the notation]. The phonon-elec- 
tron collision integral can be written in a similar form: 

(pl = p - k everywhere). Finally, the term I,,,,,(x) de- 
scribes the phonon-phonon processes that occur a s  a 
result of the third-order anharmonicities, and should 
of necessity be introduced, since, under conditions in 
which the electronic umklapp processes a re  impossible, 
this is the only mechanism that guarantees the relaxa- 
tion of the momentum of the electron and phonon sys- 
tem. The term I,,,,", i s  the sum of the contribution of 
the normal three-phonon processes and the umklapp 
processes: 

The momentum-balance equation yields 

d'li 
-eEn,= 5 -klpyph ( x )  

(2n) ' 

Equation (13) remains valid even when allowance is 
made for the possible complications of the basis system 

of equations (11), if, of course, no new umklapp pro- 
cesses  a r e  introduced in the process (see below). For 
the estimates it is convenient to use the relaxation 
times: 

where a t  high temperatures we have 

According to (l$j, the result 1/7,,,, - ~ , R w , ~ / T  pertains 
to  the phonons with longitudinal momentum I k,, I = 2p,, 
and is a specific property of flat (or near-flat) Fermi 
surfaces. If k,, = *2p,+ 6, then I ph,e has a large magni- 
tude only in a narrow neighborhood 1 6 1 v - T, and ex- 
ponentially falls off outside this region. But inside this 
neighborhood l/rph,* >> l/rpbph. This inequality also ex- 
presses  the physical fact that the phonons effectively in- 
teracting with the electrons (i.e., those with k,, a &p,) 
participate in the electron drift: X =  2q7 (Ref. 10). When 
T>> w,, the integrals (12) and (12') get simplified: 

(where (. . -) denotes integration over the corresponding 
transverse momentum). 

Thus, on the one hand, it follows from the kinetic 
equation for the phonons that xr: 2 q  in the region v 161 - T .  On the other, using (14) and (15), we see from the 
two equations of the system (11) that in the region Ik,, 
- 2pFl- T/v 

whence we obtain for the conductivity the law 

ne' oner 
o(T)a--. 

m T' 
Let us return to Eq. (13) for the momentum balance. 
Generally speaking, it contains a contribution from the 
three-phonon processes of decay and fusion of all the 
phonons (we a re  talking about umklapp processes). In 
other words, we should further estimate the magnitude 
of XI, outside the region of i t s  maximum, which is lo- 
cated in the neighborhood of I &,, I = 2p,. As stated 
above, I,,,,(k) falls off rapidly outside this region. For 
an arbitrary phonon momentum the second of the equa- 
tions (11) reduces to the equation 

Since all the phonon characteristics (the probabilities 
for the decay processes and the phonon frequencies) 
change over the atomic constants, we find from this 
equations the estimate 

T T 
X*ll+zp,- -X~II-~P,- - Tp. 

e s  E r  

The factor T / E ~  i s  the relative width of the phase- 
space region where total phonon drag by the electrons 
occurs. Since 2 p = x  2 P ~  a j / e S  (where S i s  the cross- 
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section a rea  of the Brillouin zone and j is the current 
density), we obtain for the resistance from (13) the 
final expression, equivalent to (17): 

m Ta . 
E or--]. 

ne' woer 

In other words, the phonons with I k,, I= 2p, can, gener- 
ally speaking, either participate o r  not participate in 
the three-phonon umklapp processes. This is deter- 
mined by the specific form of the phonon spectrum. 
But even in the latter case they give up their momentum 
to  other phonons, which in turn transfer the momentum 
to the lattice. The form of the temperature dependence 
of the resistance is preserved. 

Thus, both the temperature dependence of the con- 
ductivity and the physical mechanisms underlying the 
dissipation in the one-dimensional case turn out to be 
significantly different. As to the three-phonon mechan- 
i sms themselves, i t  is to be expected that they will 
have the normal-for dielectrics-character in the or- 
ganic conductors. The conservation laws correspond- 
ing to the phonon decay o r  fusion processes can, one 
should think, be fulfilled fairly easily in these media 
owing to the abundance in them of different phonon 
modes. 

The expressions (17) and (17') contain the anharmonic 
parameter T/E=, which characterizes the relative in- 
tensity of the thermal vibrations of the lattice. This 
circumstance compels us to investigate the role of 
another process that i s  formally of the same order of 
smallness in the anharmonicity, namely, the process 
in which an electron interacts simultaneously with two 
phonons. The corresponding matrix element is depict- 
ed in Fig. 2(a). This type of process was first  intro- 
duced by Gutfreund and WegerZ1 for the so-called libra- 
tional (rotational) vibrations of plane molecules. We 
shall now show that, if we do not make any special as- 
sumptions about the magnitude of the matrix element 
of such a transition, then the indicated process will 
make a smaller contribution to the resistance than 
(17'). As noted in Ref. 21, the conservation laws that 
obtain in the process depicted in Fig. 2(a) limit only the 
total longitudinal momentum component (k, + k,),, = &2p,, 
and therefore allow umklapp processes that make an 
additive contribution to the momentum-balance equa- 
tion (13). We shall not write out the corresponding col- 
lision integral tTLh(X, q) in i t s  explicit form. It i s  suf- 
ficient for what follows to write 

and estimate the time 76f;, by investigating the imagin- 
ary part of the diagram in Fig. 2(b). Let us ,  without 

FIG. 2. a) Matrix element for electron scattering accompanied 
by the emission of two phonons. b) Contribution to the self- 
energy part of an electron from the two-phonon processes. 

going into details, give the estimate 

Substituting into ( l3) ,  we obtain in place of (17') the ex- 
pression 

(A,  and 4 a r e  numerical coefficients). 

If A, -4 - 1 in (19), the first  term predominates when 
T >> w,. Let us  recall in this connection that the origin 
of one of the temperature factors in (17') is connected 
with the small effective longitudinal width T/E, of the 
momentum region for the phonons actively interacting 
with the electrons. If it turns out that the electrons 
cannot be considered to be one-dimensional, i.e., if 
the magnitude of the interchain tunneling integral t ,  is 
large ( t , ~  T), then the effective width, a s  is clear from 
the foregoing, is of the order of t,/~,. As a result, 
both mechanisms in (19) lead to the following tempera- 
ture  dependence for the conductivity: u- T2. In the 
majority of the compounds, the conductivity at room 
temperature is of the order of 10+3$-8-1 cm-I. This i s  
roughly a factor of wo/c,- 10-1-10-2 smaller than the 
value that follows from (19). Therefore, it i s  express- 
ly argued in Ref. 10 that the large sizes of the mole- 
cules in the organic conductors a r e  capable of compen- 
sating for the indicated smallness, i.e., that the coeffi- 
cient A, in (19) is correspondingly large. It seems to 
us that the amplitudes of the librational vibrations in 
this case would be too high for the expansion in powers 
of the anharmonicity to be applicable. We shall not, 
however, investigate the last question, since there are  
other complications in the expounded picture. For  ex- 
ample, the condition (8) is no longer fulfilled at high 
temperatures. 

Thus f a r ,  the Kohn anomaly of the phonon spectrum 
has  not been mentioned anywhere. Let us, for simpli- 
city, assume that the structural transition temperature 
TpZ wO. The phase-space region affected by the soften- 
ing of the phonon frequency is ,  according to (l ' ) ,  of the 
order of (Ak)3-g,,,%~/v. If by chance the Kohn phonons 
do not participate in the umklapp processes, then they 
do not directly contribute to the momentum-balance 
equation (13). But they do participate in the normal 
processes, transferring their momenta to other pho- 
nons, and it i s  difficult to estimate their role in the re-  
sistance. Perhaps, the situation i s  possible in which 
the conductivity monotonically increases all the way to 
the transition temperature. The decrease of the con- 
ductivity below the transition point i s  due to the appear- 
ance of gaps in the energy spectrum of the electrons. 
Therefore, in the absence of impurities, the conduc- 
tivity peak would occur either in the neighborhood of 
the transition point, in the critical-fluctuation region, 
which is determined by the condition (7), or  even below 
the transition temperature (see also Sec. 4 below). 

In conclusion of this section, let us return to the ques- 
tion of the temperature dependences of the conductivity 
of compounds of the TTF-TCNQ type (high tempera- 
tures). Participating in the conductivity in these ma- 
terials a re  two types of carr iers :  the electrons and 
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holes localized respectively on the acceptor and donor 
chains. One obvious mechanism that i s  always present 
corresponds to the scattering of the electrons and holes 
by each other on account of the Coulomb interaction of 
the ca r r i e r s  on different chains. This mechanism will 
contribute to the resistance a term linear in the tem- 
perature (i.e., a term p a  T) if the electron-hole spec- 
trum i s  plane (one-dimensional)," o r  quadratic in T 
(i.e., a term pm P/tJ when t ,# 0 and Tct,. The mag- 
nitude of the contribution of the electron-hole scatter- 
ing i s  determined by the corresponding interaction con- 
stant, but we should obtain a reasonable order-of-mag- 
nitude estimate for the resistance. As has been men- 
tioned, PAT) and p,(T) have different temperature 
variation 

We should now like to point out that the electron- 
phonon contribution to the resistance is also changed 
significantly by the presence of the two types of car-  
r i e r s  in, say, TTF-TCNQ. Within the framework of 
the kinetic equation, this change i s  due to the fact that 
the two types of carrier-the electrons and holes-ex- 
change momenta via the phonons. But here again there 
ar ise  deviations from the three-dimensional picture 
owing to the unique topology of the almost flat Fermi  
surfaces. Because of the requirement of electrical 
neutrality, the two types of carr ier  always have one and 
the same Fermi momentum ipF (if we neglect the tun- 
neling effects), but, generally speaking, different vel- 
ocities in the longitudinal (conducting) direction, i.e., 
u ( ~ ) # u ( ~ ) .  Let us take a phonon with vector k =  (2pF 
+ 6, kJ and frequency w(k), and write out the 6 functions 
that enter in the electron-phonon and hole-phonon col- 
lision integrals and guarantee the conservation laws: 

8 ( E ~ - E ~ - L *  o (k) ) =8 (u6f w (k) ) . 

It can be seen from this that when de) # I dh)  1 the elec- 
trons and holes interact with different phonons,') and, 
consequently, the mechanism under consideration i s  by 
itself not capable of ensuring the relaxation of the mo- 
mentum. Nevertheless, there is now no need to fall 
back on the normal three-phonon processes, since, a s  
shown above, the phonons in the neighborhood of +2pF 
and -2p, interrelax by means of the specifically one- 
dimensional four-phonon mechanism depicted in Fig. 
l(b). 

Let us return to the kinetic equations (11), (12), and 
(15). Owing to the two different chains, there a re  the 
corresponding collision integrals Ielph and I,,,:,, which 
can easily be simplified at high temperatures in the 
same way a s  was done in (15). The two types of car-  
r i e r s  enter additively into the phonon integral (12'). 
Adding all the equations together, we obtain for the 
quantity xZpF, a s  in (16), the estimate 

but with rph, = rph from (9), i.e., not depending on T. 

The next step i s  to relate xZPF with the current. On 
the one hand, xZPF- (p(@) - (p(h); on the other, a current 
appears only when the electron- and hole-drift veloci- 
t ies and u(h) respectively a re  not equal. Assuming 

that X2pFa~(e)  we obtain for the conductivity the 
estimate 

A more correct derivation of (20) would make use of the 
variational method,24 in which the trial functions should 
be chosen with allowance for the strong phonon drag. 
When the electron and hole velocities a r e  equal, the 
Bloch mechanism turns out to be adequate for the con- 
struction of the equilibrium solution, and the conduc- 
tivity has the standard form: 

In other words, the linear law, which is typical of a 
metal, a r ises  in the absence of a phonon drag. We 
shall not discuss this solution, since it corresponds to 
the physically improbable case of equal velocities for 
ca r r i e r s  on different chains. 

To the foregoing must be added the fact that (20) also 
provides a reasonable interpretation of the experimen- 
tal  data when gp,2 -1. All this demonstrates once more 
the ambiguity in the choice of one o r  another theoretical 
description of the experimental data. 

3. SINGLE-CHAIN CONDUCTORS AND 
DlMERlZATlON 

The phonon-drag phenomena and the conductivity due 
to  the Bloch mechanism can be investigated in greater 
detail within the framework of the kinetic equation in a 
number of compounds with one conducting chain, of 
which (TTT),I, (Ref. 25) and the recently synthesized 
conductors of the type (TMTSF)& (Refs. 5-7) can be 
considered to be prototypical. In these materials the 
charge transfer i s  complete, which corresponds to a 
cparter-filled band (holes o r  electrons). Superimposed 
on this circumstance i s  the phenomenon of dimerization, 
which doubles the lattice constant along the conducting 
chain. Thus, for example, in (TTT),I, the iodine 
forms, with respect to the TTT chain, 1,- complexes 
with a doubled lattice con~tan t . '~  If, a s  usual, we as- 
sume the potential produced by the iodine chain on the 
conducting (TTT) chains to be sufficiently flat, then the 
doubled iodine-lattice constant implies a slight struc- 
tural modulation of the potential in which the conduction 
electrons move. A slight modulation with a doubled 
period i s  also observed in the (TMTSF),PF,-type struc- 
t ~ r e . ' ~  

The difference between the two compounds l ies in the 
fact that the first  can, as it turns out, exist in a whole 
range of nonstoichiometric compositions of the type 
(TTT),I,,, . (The number of electrons in the conduction 
band i s  nonetheless determined by the iodine concentra- 
tion, and the Fermi momentum is tightly bound with the 
iodine-lattice constant: 2p, = n/a, .) We shall discuss 
this difference below. Now, however. let us assume 
that there exists in the system a slight structural (lat- 
tice-constant) modulation whose period i s  equal to a* 
= 2a. Then since the original band was one-quarter- 
filled, the new band is now half-filled," and the scat- 
tering of a +pF electron by a -pF electron, due to the 
emission of a phonon with momentum 2pF, i s  accom- 
panied by umklapp processes. Otherwise, the momen- 
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tum 4p,= r / a  may be given to the lattice owing to the 
presence in the lattice of the new superstructure. As tothe 
electronic spectrum, the modulation opens a gap in the 
spectrum of the electrons with momenta p* = 2pF. But 
this gap l ies far from the Fermi level, and therefore 
the electronic anharmonicities (the expansions of the 
various electronic matrix elements in powers of the 
modulation amplitude) contain the corresponding small 
quantities. But for the electrically active phonons with 
momenta I k,, I = 2pF the modulation mixes the *2p, 
states. These phonons, a s  well a s  the matrix elements 
for their interaction with the electrons can undergo 
significant changes. 

Let us write out the third-order terms in the expan- 
sion of the parent-lattice energy in terms of the anhar- 
monicities in the form 

where u i Q  is the strain of the a-th "atom." (The Greek 
index corresponds to the vector component of the dis- 
placement. The expansion coefficients A depend, in 
particular, on the symmetry, but their actual forms 
a r e  unimportant for what follows. Below we use in the 
formulas the simplest model with effective constant 
A(3).) Let us assume that a structural modulation of the 
form e t i 4 * ~ r n  exists in the lattice, and let us character- 
ize i t s  relative magnitude in terms of the lattice con- 
stants by the dimensionless parameter a. 

The equilibrium positions of the atoms change slight- 
ly. Substituting into (21) u, = u,,,+ ;,, where u,,, i s  
proportional to o! and the 5 ,  are  small displacements 
relative to the new equilibrium positions, we see that 
H ( ~ )  generates second-order terms having in the mo- 
mentum representation the form 

These terms mix the phonon states with momenta k, and 
& = kl i Q, where 

and, in particular, make possible the processes depict- 
ed in Fig. 3, in which an electron emits (absorbs) a 
phonon a s  it gives up momentum to the superstructure. 
Accordingly, in Fig. 3 

The matrix element for such a process, computed with 
the aid of ordinary perturbation theory, would have the 

FIG. 3.  Umklapp processes in the presence of a slight dimer- 
ization: first-order matrix element for electron-u -super- 
structure scattering with simultaneous emission of kFphonon. 

form 

In i t s  turn, according to the conservation laws, cp, 
- E p,= *wo(&). In accordance with (22), the scattering 
by the regular superstructure does not change the 
transverse component of the longitudinal momentum. 
The frequency difference wo(q) - wo(El) in (23) may be 
small, especially in the case of a relatively high crys- 
tal  symmetry, if w(k,,, k,) = 4 - k , , ,  kJ.  he latter is 
valid for the symmetry of the (TTT),I, crystal; although 
such a relation does not exist for the triclinic 
(TMTSF),X, the maximum effect of (23) in the expres- 
sion for the resistance will, a s  follows f rom (I ) ,  cor- 
respond to small k,. Therefore, the formulas obtained 
below a r e  applicable at low temperatures to these com- 
pounds a s  well.] Thus, the slight dimerization can be 
compensated for by the small denominator in (23). Be- 
cause of this, the phonon spectrum undergoes substan- 
tial reconstruction in the vicinity of k,, = lt2pF. Figure 
4(a) shows the appearance of a gap in the phonon spec- 
trum in the case in which the Kohn anomaly can be ne- 
glected (high temperatures), while Fig. 4(b) schemati- 
cally depicts the splitting of the phonon frequencies in 
the case of a developed soft phonon mode (in the band of 
the parent lattice). .The effect of the dimerization ex- 
tents to an entire momentum neighborhood &,, = 6 
around Zp,. In i t s  turn, the momentum region that is 
important for the scattering processes is determined 
by the Fermi  factors v 6 -  T for the electrons. 

In order to illustrate these ideas, we considered the 
simplest model, in which in He,, ,  the electrons interact 
with one phonon branch and the strain u,,, belongs to 
the same branch. The occurrence of quadratic terms 
in (21') indicates that it i s  necessary to rediagonalize 
the square matrix for the phonon vibrations. It can also 
be seen from (23) and Fig. 4(a) that it i s  necessary to 
take into consideration the longitudinal dispersion of 
the phonon branch in the vicinity of &p,: 

( p  i s  a numerical coefficient). 

The new phonon creation and annihilation operators 
(a, ,  a;) in the presence of dimerization can be ex- 
pressed in terms of the old operators (ak,ak+) by means 
of the canonical transformation: 

a a = a z a , + a  cos ~ a + a - z h . + a  sin ~ 6 .  a - b = a z k F  -6 cos X A - U - ~ ~ ~ - ~  sin T I ,  (24) 

FIG. 4. Formation of a gap in the phonon spectrum in the pre- 
sence of a mild dimerization structure: a) at high tempera- 
tures; b) in the presence of the Kohn anomaly. 
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where in our model 
coskxb='lz{f+$ ( G I P ~ ) I [ ~ ~ ( ~ I P P )  ' +az~ ' ]  "), 

[LY characterizes the relative magnitude of the modula- 
tion, r i s  a numerical dimensionless coefficient formed 
from the constant 5(3) in (21') and the atomic quantities]. 

The two phonon-frequency branches shown in Fig. 4 
a r e  described in the neighborhood of the edge of the new 
band (i.e., near k,, = 2p,= n/2a) by the spectrum 

In (25) @(6, k,) corresponds to a phmon frequency that 
has, generally speaking, been renormalized on account 
of the electronic corrections in accordance with (1'). 
The Kohn anomaly makes only one of the two branches 
vanish. 

After we have diagonalized the phonons and have 
found their spectrum, we must substitute the expres- 
sions (24) and (25) into He,,,, expand the displacements 
in terms of the new modes, and thus obtain the matrix 
elements for the processes describing the interaction 
of the electrons with the new phonons. The dissipation 
of the momentum is due to the umklapp processes, 
which should have been defined in terms of the new 
(doubled) band. Since, a s  explained above in the deriv- 
ation of (23), the point of the matter i s  that the electron 
momentum assumes a modulation structure, we shall 
call, although somewhat conditionally, those umklapp 
processes which in the expansion of the deformation in 
t e rms  of the new modes contain cosx, and sinx,  re- 
spectively normal umklapp processes. The probability 
for the "umklapp processes" is thus 

where w(k,, 6) can be either the "amplitude" o r  the 
"phase" mode [the two roots of (25)] [and the choice of 
sin2x, ensures the correct passage to the limit in (23)] 
when (6/p,)'>> a2. 

The momentum-balance equation (13) assumes (under 
the assumption that the dimerization effects predomin- 
ate) the form 

with w(k) from (5). (Here u i s  the electron drift veloc- 
ity.) The Fermi factors yield 6v - T; substituting this 
into (24') and (25), we see that for 

the resistance has the usual order of magnitude, a s  if 
the phonon drag did not occur. The smallness of the 
dimerization drops out from the answer. The condition 
(28) imples that the shifts in the lattice that a re  due to 
the doubling of the lattice constant a r e  greater than the 
root-mean-square thermal fluctuations. 

The temperature dependence of the resistance has i t s  
simplest form in the limit (28), and we can also inves- 

tigate the role of the soft mode in this limit, assuming 
that the Peierls  transition temperature T, satisfies the 
condition 

For T>> T, the usual linear law p a  T follows from (27). 
In a broad range of T - T, the frequency of the "soft" 
mode is, according to (11), given by the expression 

and, in order of magnitude, the function f - l(6v - T). 
The integration over k, in (27) has a logarithmic region 
when Bkp/k,: >>g,,P, which yields 

The above-presented formulas admit of a large num- 
ber of different limiting cases,  depending on the rela- 
tionships among the parameters. In practice, we usual- 
ly have T,- w,, while the quantity g,: is not at al l  small. 
Therefore, of all the possibilities allowed by (26) we 
shall investigate only one other limiting case, namely, 
the one that is the opposite of (28): 

In the indicated limit, the integration over the Longi- 
tudinal momentum in  (26) gets truncated at 6- up, on 
account of the presence of the factor sinzx,. Instead of 
(29), we now obtain 

From this relation we obtain in the high-temperature 
region a temperature-independent resistance p= a. In 
the so-called broad range of temperatures T- T,, pro- 
ceeding in the same way a s  in the derivation of (29), 
we obtain in place of (29) the expression 

pas ln (T/gphwo ln" (TIT,) ). (31) 

This behavior resembles the observed flat temperature 
dependence of the conductivity in stoichiometric 
(TTT),I, (Ref. 25). Such a similarity immediately 
ra ises  the question whether, in their turn, the charac- 
terist ics of the conductivity in the case of nonstoichio- 
metric composition of the compound can be understood. 
According to Kaminskii et U Z . , ~ '  the compounds 
(TTT),&+6 with 6 =0.08; 0.10 have higher conductivities 
a t  low temperatures, the transition in them and their 
conductivity peak occurring at lower temperatures. A 
probable answer is that, in the absence of stoichiome- 
try,  the iodine chains a re  not ordered, and their rela- 
tive disposition is random. In this case the modulating 
potential varies from chain to chain, although, a s  has 
already been noted above, the modulation period is 
tightly bound with the population. 

Let us return to the formulas (21)-(23) of this sec- 
tion. If the modulating potential has  a three-dimension- 
al periodicity, then in the matrix element (23) the trans- 
verse components of the vectors k, and 6 coincide by 
definition [see (22)]. But i f  the component u,,, in (21') 
varies from chain to chain, then (21') is responsible for 
the phonon scattering involving a change in the trans- 
verse component of the momentum. Therefore, the 
resonance denominators in (23) do not play any role, 
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since the frequencies o(4) and 46) a r e  completely in- 
dependent. In other words, i t  is necessary to  average 
the resistance over the amplitude of the random poten- 
t ial  of the iodine chains, which is equivalent to addi- 
tional integration over kl, in the expression (23) for  the 
square of the modulus. It follows from the foregoing 
that the temperature dependence of the resistance is 
almost  linear (corrected by the logarithmic t e r m  at  
T - TJ, but the resistance contains a small  factor  in 
comparison with (29), since the resistance is propor- 
tional to the square of the magnitude of the modulating 
potential. This  result  qualitatively coincides with what 
is observed for  the resistance in nonstoichiometric 
(TTT),I,,, (Ref. 25). At the same time, i t  should be 
noted that the temperature dependence of the resistance 
PAT) in (TMTSF),PF, has been found to be quadratic 
right down to quite low temperatures. Probably, the 
transition from PAT) to p,(T) (allowance for  the ther- 
mal expansion of the lattices*23) will give a dependence 
closer  to the linear law, which would imply that the 
scattering on the dimerization of the parent lattice plays 
the decisive role,  i.e., that the limiting ca se  (28) ob- 
tains. But we cannot exclude the possibility that other 
mechanisms a r e  responsible for  the conductivity in 
th is  material.2 Whether o r  not the dimerization effects 
considered in this section a r e  important in the region 
of the dielectric-transition temperature is quite diffi- 
cult to say both because of the insufficient width of the 
temperature range [the transition temperature T, - 15 
K (Ref. 5)] and because of the fact that the dielectric 
transition in this  compound has  a different character .  

4. THE PEAK IN  THE CONDUCTIVITY. CRITICAL 
BEHAVIOR OF THE RESISTANCE 

The question of the conductivity due to the contribution 
f rom the FrBhlich mode fluctuationally generated in the 
vicinity of the transition has  been repeatedly raised in 
connection with the study of the transport properties of 
the one-dimensional With the exception 
of the phenomenological theory of Ref. 28, the majority 
of the published papers a r e  devoted to the investigation 
of the contribution of the diagrams shown in Fig. 5. 
Similar diagrams a r e  responsible for the paraconduc- 
tivity in the theory of superconductivity.29 The dia- 
g r a m s  in Fig. 5 a r e  studied either in the purely one- 
dimensional mode130*31 (which does not have a region of 
applicability at  all),  o r  with allowance for the three- 
dimensional properties of the phonons.17 It became 
c lear  after the publication of Ref. 10 that the diagrams 
in Fig. 5 describe the phonon-drag effect, and that they 
have nothing to do with the question of cri t ical  fluctua- 
tions. A more correc t  formulation of the question i s  

FIG. 5. Diagrams of this type, which were investigated in 
earlier papers with the object of obtaining the fluctuation 
contribution to the conductivity from the Friihlich mechanism, 
describe the phonon-drag effect in first orders. 

contained in Refs. 32 and 33, where i t  is pointed out 
that, since the transition i s  due to the softening of 
definite phonon frequencies, the cri t ical  behavior of the 
resistance in the vicinity of the transition temperature 
is determined by the fluctuations of the order  parame- 
t e r  of the structural  transition. In Ref. 33 the contribu- 
tion of these fluctuations is studied without allowance 
for  the effects of the drag,  and there is an unfortunate 
mix-up with the dimensionality of the fluctuations. 

Singularities occur in the resistance even within the 
framework of our model (l'), which is equivalent to the 
self-consistent field approximation, the singularities 
occurring even in the dominant t e rms ,  which deter- 
mine the temperature dependence of the resistance.  
The region of applicability of the resul t s  obtained below 
is naturally limited by the inequality (7), i.e., AT/T, 
>g,,/p. We shall investigate these singularities in de- 
tailSS within the framework of the kinetic equation and 
in the relaxation-time approximation with allowance for  
those modifications which, according to the above-per- 
formed analysis, a r e  due to the strong phonon-drag ef- 
fect. In the neighborhood of the transition point the 
phonon branch has  a la rge  damping constant (51, and the 
applicability of the approach based on the kinetic equa- 
tion seems  to be doubtful, even with all the approxima- 
tions noted in Sec. 1. We specifically verified the fact 
that the analysis of the requisite d iagrams with the use 
of the appropriate expressions for the Green functions 
(5) leads to equivalent results .  The diagrammatic com- 
putational method is therefore not presented in order  
to avoid tedious computations. 

Examining the formulas of the preceding sections, 
e.g., (15), we see  that they contain the structural  soft- 
mode factor ~ / 0 ' ( k ) ,  which enters  into an integral of 
the form 

where f contains all the other factors figuring in the 
process,  while 6(. . .)  i s  the delta function expressing 
the conservation laws, which depend on the process un- 
d e r  investigation (thus, for  example, this  may be the 
three-phonon umklapp process considered in Sec. 2 if i t  
is possible for the soft phonon). Let the behavior of W 
limit the quantity 1 k,, * 20, I - T / U .  The integration over 
k, in this case  yields a contribution of the order  of unity 
from the momentum region k:-gph2ko:. [lf there  is a 
region where T>> wag,,, then, like (29), the corre-  
sponding contribution contains l n ( ~ / ~ , , w ~ ) . ]  The more 
detailed information about the temperature dependence 
of the resistance at T - T, depends on the specific form 
of the function f ( 6 v / ~ )  in ( I f )  and ( I n ) ,  i.e., on the 
model for  the Kohn anomaly. The softening of the pho- 
non frequency increases  the amplitude of the scattering 
on the soft phonon a s  the temperature T - T ,  from 
above. But the temperature dependence of the popula- 
tion factors for  the other phonons can compensate for  
th is  effect. 

The question whether the conductivity possesses a 
maximum above the transition point cannot ( a s  dis- 
cussed in part  in Sec. 2) be answered unequivocally if, 
of course, the phonon spectrum in (1) does not possess 
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additional two- o r  even one-dimensional properties 
(i.e., if the coefficient B of the transverse phonon dis- 
persion is not small in one o r  two dimensions). In 
principle, the peak could be located below the transi- 
tion point (i.e., in the new phase), owing to the differ- 
ent temperature-variation laws for the mobility and the 
number of carriers.  

Let us differentiate (32) near the transition point with 
respect to the temperature, using for Gi(k) the expres- 
sion (1). The singularity of the resistance has the form 

dp(T)  P ( T P )  1 ----- 
dT T, t" ' 

(33) 

where t = (T - T$/T,. Let us recall that the applicabil- 
ity of (33) is limited by the condition (7); therefore, the 
factor tU2 cannot be too small. It i s  interesting, how- 
ever, that (33) does not contain an additional gp,2 coef- 
ficient, proportional to the weak electron-phonon in- 
teraction. [TWO opposite effects act below the transi- 
tion point: the hardness of the phonon mode is re- 
stored [an effect which is the opposite of (33)], and the 
number of carr iers  decreases like3* A/T,CC l t 
Therefore, although the singularity i s  a root singular- 
ity, the sign of the effect i s  not apparent.] 

Let us return to the question of the peak. If T,- wo 
>>gp, w,, then ln(~$g,,w~) can be considered to be a 
large number. In that case the peak exists: instead of 
(33), we obtain 

Hence for the determination of the position of the peak 
we have the relation 

Horn and G ~ i d o t t i ~ ~  have experimentally found that the 
exponent 9 for the derivative Idp/dTI mt-' of the resis-  
tance in the compounds TTF-TCNQ and TSeF-TCNQ 
below the transition point is indeed close to 8 =  $. But 
above T, the exponent 8 i s  significantly higher than 
(8 = 1.0 for TTF-TCNQ and 9= 1.5 for TSeF-TCNQ). 
Strictly speaking, these values were obtained in the re- 
gion of very small t, where (33) i s  probably no longer 
applicable. As to Horn and G ~ i d o t t i ' s ~ ~  d ~ / d T  curves 
themselves, the I dR/dT I = At-' - B plot can be fitted 
to them in the region further away from T,,. 

Figure 6 shows the experimental d logR/d(l/T) 
curves3) for (TTT),13+, ( 6  = 0.10 and 0.08) in the critical 
region together with the indicated interpolation depend- 
ences. Clearly the agreement i s  quite good. It should 
be borne in mind that Kaminskii et  a1.25 measured the 
derivative of the resistance directly (Horn and Guidot- 
tis3 obtained the corresponding curves by means of a 
numerical differentiation of the resistance). Therefore, 
the stoichiometric composition of (TTT),&, which i s  
characterized by a smooth conductivity law,25 does not 
provide reliable data. Let us also note that, a s  in the 
derivation of (31), when the dimerization is slight, the 
dependence of all the expressions in (32) on the longi- 
tudinal momentum has another scale [it i s  necessary to 
compare (T - TJ/T, and a]. This observation undoubt- 
edly pertains also to TTF-TCNQ; for although no di- 

FIG. 6 .  The d!"PR (n/d(l/T) experimental curves (in arbitrary 
units) obtained by Kaminskii et al.25 for (TTT)213+, near the 
transition point. a) 6 = 0.08; the general shape of the deriva- 
tive near T,. The continuous curve is  the result of the theo- 
retical analysis (see the text). b) Dependence of d fogR (TI/ 
d(l/T) on t- ' I2,  where t = (T- T,)/T,. The straight line is the 
plot of d[logR(T)l/d(l/T) = 0.22t-'1~ - 0.57 (for 6 = 0.08). c) 
Same plots as  in b), but for 6 =  0.1; the straight line i s  the 
plot of d [ l 0 ~ ~ ( ~ ) ] / d ( l / ~ ) = 0 . 3 7 t " ' ~  -1.33. 

merization occurs in this compound, there i s  interac- 
tion between several phonon branches, which get com- 
plexly reconstructed in the course of the development 
of the Kohn anomaly. We have not, however, investi- 
gated 'this question quantitatively. 

The low-temperature conductivity curves, the con- 
ductivity-peak values, and the corresponding tempera- 
tures for one-dimensional conductors a re  very sensi- 
tive to impurities and defects. In the kinetic-equation 
approximation, and at low defect concentrations c ,  the 
scattering by the impurities make an additive contribu- 
tion to the resistance: 

where the second term p,,,(T) describes the elastic 
scattering by the static defects, which is ,  however, 
temperature dependent also in the region above the 
transition point." In the model chosen by us, the 
amplitude VC(q) of the scattering, involving a q,,  = &2p, 
momentum transfer, of an electron by an impurity is ,  
a s  shown in Fig. 7, higher because of the fact that the 
impurity easily deforms the lattice if the corresponding 

373 Sov. Phys. JETP 55(2), Feb. 1982 Gor'kov et ab 373 



FIG. 7. Schematic representation of the mechanism underlying 
the increase in the amplitude of the electron scattering by a 
static defect as a result of the presence of a soft phonon 
branch. 

phonon mode is a soft mode: 

FIG. 8. Results of the measurements of the defect-concentra- 
tion dependence of the temperature at which the conductivity 
of irradiated TTF-TCNQ samples attains its maximumJ5 in 
accordance with the theoretical expression (38) of the text. 

where I V*(q)1 is connected with the scattering ampli- 
tude I V(q) 1 by, when the Kohn anomaly i s  neglected, 
the  relation 

Using for  Li2(q) a t  T -  T, the expression (I1), we see  that 
1/7*,,(T) - l/gp,2~im,, and strongly depends on tempera- 
ture,  since the integral over % in (36) converges at 
smal l  9,-g,,,q,,. The temperature dependence psmp(T), 
however, depends on the model. The cri t ical  behavior 
of the resistance near T, is determined by the deriva- 
t ive 

It follows from this, in particular, that at  low impurity 
concentrations c the point at which the conductivity at- 
tains i t s  maximum value shifts according to the law 

In Fig. 8 we have plotted the difference T, - T, a s  a 
function of c2I3 for  irradiated TTF-TCNQ cry  ~ t a l s . ~ '  
A s  can be seen, the experimental picture i s  reproduced 
by the dependence (38) quite well. It i s  possible that 
the high critical exponent 9% 1.45 found for TSeF- 
TCNQ by Horn and G ~ i d o t t i ~ ~  is due to the presence of 
impurities in the investigated samples. 

5. CONCLUSION 

The most convincing experimental evidence for the 
important role played by the phonon-drag effect in the 
materials  under discussion is the strong frequency dis- 
persion of the conductivity that has been found to occur 
mainly in TTF-TCNQ. The most recent measure- 
mentss6 allow us  to construct the frequency dependence 
of the conductivity in the high-frequency region extend- 
ing right up to 9= 7 cm-'. These data clearly show that 
the conductivity has  a sharp peak at  zero  frequency (in 
the metallic regime), and fal ls  off rapidly a t  9 s  10-20 
cm-'. We should expect a linear law for the resistance 
a t  high temperatures and high frequencies [i.e., the law 
a a r n e 2 ~ / m  with T given by (2)]. Comparing th is  with 
our expressions (19) and (20), we see  that the expected 
decrease of the conductivity with increasing frequency 
can be very rapid. The frequency scale responsible for 
the  phonon-drag mechanism is clearly determined by 
the t ime (14') characterizing the interaction of the pho- 

nons (with I k,, I = 2p,) with the electrons. Taking for  
the frequency of the Kohn phonon at  high temperatures 
the value w, = 70 K (Ref. 371, we obtain for  a t  
T = 160 K the reasonable est imate l / ~ , , ~ , ~ - l O  K. AS 
h a s  been observed by Tanner e t  ~$. ,3~ 1 / ~ , ~ , ~  decreases  
with increasing temperature.  

In conclusion, let us  note that our  resul t s  a r e  fairly 
general, and do not depend too much on the model, a t  
least  in that part  which concerns the three-phonon pro- 
cesses .  Indeed, the d rag  effect only indicates that the 
electrons and the phonons with I k,, I = 2p, a r e  strongly 
coupled, since the adiabatic approximation i s  not ap- 
plicable to them. They give their  momentum to the 
phonons (or  the 4p,-modulation of the lattice) that do 
not participate in the development of the structural  in- 
stability. These phonons and the three-phonon process- 
e s  corresponding to them a r e  well defined. As to the 
strong-coupling region (i.e., the subsystem: the elec- 
t rons  and the phonons with I k,, I =2p,), i t  plays the ro le  
of a momentum source with a characterist ic  width in 
momentum space of MI, - T/v. 
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