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The influence of the crossing of dislocations on the localization of electronic dislocation states is investigated. 
The dislocation structure is approximated by a graph without cycles. Expressions are obtained for the 
mobility threshold and for the condition under which delocalized dislocation states exist. 
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1. INTRODUCTION 

Experimental results'-4 show that dislocations have 
a strong influence on the static and microwave con- 
ductivities of plastically deformed semiconductors. 
In a preceding paper5 these results were interpreted 
within the framework of a simple model. The disloca- 
tion system was regarded a s  a network whose links 
a r e  one-dimensional disordered systems. If the dis- 
location density i s  low enough then, when the disloca- 
tion structure i s  disordered, the w ncentration of the 
network nodes is small and the localization length i s  
I <<N-113. In this case it was possible to consider each 
link separately, and the system conductivity could be 
calculated a s  the conductivity of a network made up of 
macroscopic resistors of random value (since the 
lengths of the link were random). It was found that 
the microwave conductivity is independent of N, and 
the static conductivity i s  proportional to exp(-const/ 
N13) and increases rapidly with increasing N. 

When the dislocation density i s  increased, the con- 
centration of the nodes increases the condition that the 
links a re  independent is violated a t  I -N-'I3, since the 
boundary conditions for the wave functions a t  the nodes 
become of importance. The dislocation system can 
in this case not be regarded as  a network of macroscop- 
ic resistors,  and i t  i s  necessary to solve the SchrG- 
dinger equation for the entire dislocation system a s  a 
whole. The principal scattering mechanism in this 
case is  not scattering by a random potential, but scat- 
tering by the nodes of the dislocation network. For  
this reason it i s  meaningful to neglect the scattering by 
a random potential and to consider only scattering by 
the nodes. Since the dislocation system i s ,  generally 
speaking, random we have a specific disordered sys- 
tem: the motion over the links will be regarded a s  
free, the links have random lengths, and a r e  randomly 
interconnected. In addition, broken bonds located a t  
the nodes differ from the bonds inside the links be- 
cause of the rearrangements of the crystal structure. 

When the system is disordered, the presence of con- 
nectivity of the dislocation network is not a sufficient 
condition for the existence of static conductivity, since 
the electronic states can be localized. The purpose 
of the present paper is  to investigate the possible exis- 
tence of localized and delocalized states in random 
dislocation networks of the described type, and by the 

same token draw a definite conclusion concerning the 
static conduction over the dislocations. 

2. THE MODEL 

We replace the real  dislocation system by the idealized 
one shown in Fig. 1. The broken bonds of the indivi- 
dual dislocations a re  marked by light circles and Greek 
letters. They correspond to wave functions c p ,  and to 
energies c,. The broken bonds corresponding to the 
nodes a re  designated by dark circles and Latin letters. 
The node bonds corresponded to cp ,  and E L .  The overlap 
integrals V =  [ cp+,Hcp,dr differ from zero only for the 
nearest neighbors and a re  constant for  all bonds. Thus, 
the perturbation introduced by the nodes has an ex- 
tremely short range of action. 

The number of dislocations that converge a t  a node i 
will be designated w i .  We consider only structures for 
which wi = w i s  constant. The length Ri of the links 
o r  the number of atoms Nit in a link is constant. For  
simplicity we assume that the different R, are  statis- 
tically independent and that the probability density of an 
individual link is given by 

with R, > A/2 >>a, where a i s  the distance between the 
broken bonds. 

A real dislocation structure is also characterized by 
the fact that individual links a r e  interconnected ran- 
domly (with account of the assumed condition w, = w ) .  
The resultant networks can be topologically most 
varied. Experimental investigations allow us to state 
that all have one common property, namely, they do 
not contain any closed cycles with small numbers of 
steps. From among those observed in experiment, 
the smallest number steps n in a cycle i s  possessed 
apparently by a hexagonal network of dislocations (n 
= 6). Using the condition n >> 1 ,  would replace a real 
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FIG. 1. 
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dislocation network by a graph without cycles, i .  e .  , 
by a tree.  

3. BASIC EQUATIONS 

Each broken bond is characterized either by a num- 
be r  0, (if one counts from the point i to the 'point j) ,  
o r  by a number (Y j, (counting from j to i) .  It i s  con- 
venient to consider each link twice, both ij and ji, so  
as to avoid the problem of determining the s tar t  and 
the end of the link. We seek the solution of the Schrz- 
dinger equation in the form 

The factor 1/2 in front of the sum is due to the fact 
that each link i s  counted twice, a s  ij and a s  ji. For  the 
same reason, the terms j= 1 must be divided by w, a 
fact designated by the prime of the inner summation 
sign. 

At ff, j+ 1, Ni we have for a' '(a j) the equations 

They a r e  satisfied if 

a"(aiJ) -Aii exp (ika ( a i j - I ) )  +B" exp (-ika ( a u - I ) } ,  (4) 
e=e0+2V cos ka. (5) 

The variables A i j  and B" a r e  determined by the equa- 
tions for  the node links and by the symmetry conditions. 
The former take the form 

where the sum is over w nearest neighbors. The latter 
can be written in the form 

Equation (7) is obtained if it i s  recognized that a:* 
pertains to one and the same node bond regardless of 
the value of j. In exactly the same manner, Eq. (8) 
means that ~ " ( f f , ~ )  and aji(Ni j+  1 -0 ,  pertain to one 
of the same bond inside the link. Substituting in Eq. 
(4) in Eqs. (6)-(8), we obtain a system of equations 
for A'' and B". 

Investigation of this system can yield 

A"= (B") '. 

Next, introducing the variables ~ e A ' j ,  lmAij, and then 
eliminating lmAij, we obtain a system for  ~ e A ' j  = m i :  

E~=E~'+VQ cos ka-v sin ka ctg k ~ , , ,  
f 

v,=V sin kalsin kRij. 

In the sum j denotes the nearest neighbors of i. 

The condition for the existence of a nonzero solution 
(9) with account taken of Eqs. (5) and (10) yields a very 
complicated transcendental equation for k. The com- 
plex solutions of this equation correspond to defect 
states localized near the nodes. The energies of these 
states lie outside the band (E, - V, co + V) . These 
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states a r e  similar to the usual surface states of a fin- 
ite crystal. Real solutions correspond to states de- 
localized over the link. Their energies l ie in the band 
(&,, - v, C, + V). 

Delocalization along the link still does not mean de- 
localization in the entire dislocation system. To de- 
termine which of the states of the band & =E, + 2V coska 
a r e  localized and which a r e  delocalized, we turn to 
the system (9). It can be regarded formally a s  a 
SchrEdinger equation in the strong-coupling approxima- 
tion for a disordered system with random node energies 
c ,  and with random overlap integrals vi j. 

By determining the energy E, that separates the local- 
ized and delocalized states in such a disordered system, 
we can draw certain conclusions fo r  the initial problem 
of localization on a dislocation network. 

4. DETERMINATION OF THE LOCALIZATION 
THRESHOLD 

A self-consistent method of describing localization, 
which yields an exact solution in the case of networks 
without closed cycles, was developed in Ref. 6. The 
system investigated there is described by Eqs. (9) 
with v, j=const and with random c , .  A generalization 
to the case of both vi j  and c i  random (even for depen- 
dent v, and E, )  consists of changing the concrete for- 
mulas. The general idea, however, remains the same. 
We therefore describe the solution very briefly, re-  
ferring the reader to Ref. 6 for detail. We introduce 
first  the notation and determine the statistical pro- 
perties of &, and v,  ,. Assume that we a r e  considering 
two nodes i and j. It i s  convenient to express ci in 
the form 

E , = A + B ~  s,,+Bs,,=~~,+B~,,; (11) 
i f ,  

c,,=ctg kR,,, A=e,+Vo cos ka, B=-V sln ka. 

Accordingly 

The quantity 7, is  statistically independent of I;, ,, 
and consequently of vi '. Taking into account Eq. (1) 
we obtain for the probability density 7 the expression 

and correspondingly for 5 :  

Since the lengths of the individual links a r e  statistically 
independent, 7 and I; a r e  also independent. 

Following Ref. 6, we write down equations for  the 
real and imaginary parts of the self energy Si(c) = E ,  
+ i A i  , which in our case take the form (& is  the energy) 

where the summation is over o - 1 neighbors, R =Re&, 

I .  A. Ryzhkin 1166 



and 6 =Imc - 0 .  Equations (15) and (16) a r e  exact  only 
f o r  networks without cycles .  

We investigate next the probability density of the  
quantities E , and A ,, which we designate  f (E ,, A ,). 
Using (13)-(161, we  can calculate  f ( E , ,  A,) and,  
identifying it  with f (E,, A,), obtain a n  integral  
equation f o r  f .  It is convenient to wr i te  i t  in  the f o r m  
of an equation f o r  the  F o u r i e r  t r a n s f o r m  f of the 
function F(k, , k,): 

B2 ( l + t 2 )  
ik,' (R-Be)  -ik2-6-ik,'z-ik, - 

xa X 

Here  P(k:) is the F o u r i e r  t rans form of t h e  function 
p(q) .  We used a l s o  the fac t  that  f o r  localized s t a t e s  
[ i t  is precisely f o r  them that Eq. (17) is sat isf ied]  we 
have 6 - 0  a s  A--0. 

Corresponding to localized s t a t e s  a r e  a l s o  those solu- 
tions of (17) which yield, with unity probability, A- 0 
a s  b - 0. It is possible to  determine the condition f o r  the 
existence of such  solutions and by the s a m e  token to 
determine exactly the localization c r i t e r ion  by means  of 
a numerical  solution. It i s  much s i m p l e r  to  find a n  
approximate localization c r i t e r ion .  Following Ander- 
son,7 we put E,  = 0. Then,  substituting ik, - s, we 
obtain f r o m  (17) 

F ( s ) =  { j J d x d ~ q ( t ) ~ ( R - x - ~ I )  
-c. 

xF[sB2(:"" ] -[ - fiz(I;')7) (18) 

The localization c r i t e r ion  can be  obtained by inves- 
tigating the behavior of F ( s )  a t  s m a l l  s. Putting F(s )  
= 1 -AsB with JE(O, I/,), we find f r o m  (18) (see Ref. 
6) 

" 

(o-i)~~JJd~dcg(c)~(~-x-~c) T= 1. (19) 
- - 

Localized s t a t e s  exist s o  long as Eq.  (191, a s  a n  equa- 
tion f o r  p ,  has solutions in the interval  (0, 1/2) .  
Using (13) and (14) and calculating the integral  with 
respect  to d x ,  we can reduce Eq. (19) to  the f o r m  

((,-I)"'-" "J 
dqcos2f iq{[  ( o - l ) ~ i n c p - D c o s q ] ~  f ~os'cp} ' -~=i ,  (20) 

n cos np 
-=I2 

D = ( R - E ~ ' - V W  cos ka)/V sin ka. 

Investigating (20) numerical ly ,  w e  obtain the condition 
f o r  the exis tence of localized s t a t e s  

IDl>D, (o ) .  

The constants Dc(w) a r e  equal to  6.9,  1 0 . 6 ,  and 1 4 . 1  
respectively f o r  w = 3 ,  4 ,  and 5. 

5. CONCLUSIONS 

Using the resu l t s  of the preceding sect ions,  we  can 
descr ibe  the genera l  s t r u c t u r e  of the spec t rum of the 
model under  consideration. F igure  2 shows schema- 
tically the s t a t e  densi ty.  As a l ready  noted i n  Sec.  3 ,  
the re  exis t  solutions with complex values of k and 

FIG. 2. 

localized n e a r  nodes. The i r  energ ies  l i e  outside the 
band (co - V, e, + V) and f o r m  regions marked 1 on 
Fig.  2. Inside the  band (c,- V, & , + V )  t h e r e  exis t  
regions of localized (regions 2) and delocalized (region 
3) s t a t e s .  The lower  and upper  localization thresholds 
E , , ~  are determined f r o m  Eqs. (5) and (21): 

( E ~ - E ~ ' )  (m-2 )TVDC[  (~-2)2+D.'-(eo-co')Z/VZl" (22) 
El,,-eo + 

(0-2)"DD.Z 

If 

( E O - E ~ ' ) ~ / V ~ > ( ( , - ~ ) ~ + D , ~ ,  

then a l l  the  s t a t e s  in  the band are localized. F o r  w = 3 
th i s  t akes  place at I eo  - & A  I 2 7 V .  We note that  the 
determined localization thresholds a r e  approximate 
only because of the  approximate solution of Eq. (17). 
The  method itself makes  i t  possible  to  obtain them 
exactly. To  in te rpre t  the experimental  da ta ,  however, 
t h e r e  is no need f o r  exac t  solut ions,  s ince  the model 
itself contains definite approximations. 

Comparing the resu l t s  with the  preceding paper5 we 
can  d r a w  the  following conclusion. Crossings of d i s -  
locations, bes ides  violating the one-dimensionality 
(the delocalization effect),  introduce a n  additional scat-  
t e r ing  mechanism (localization effect). F o r  the exis- 
tence of s ta t i c  conduction over  the dislocations i t  is 
necessary  a t  the  v e r y  leas t  that  the  d i sorder  introduced 
by the sect ions b e  weak, namely 

We emphasize f u r t h e r m o r e  that  the considered model 
is applicable t o  a l l  (not necessar i ly  dislocation) ran-  
dom networks made up of one-dimensional e lements .  

In conclusion, the author  i s  grateful  to S. V. Iordan- 
ski: and A . K .  Stepanov f o r  helpful discussions and to 
V.  V. Tatarskii '  f o r  help with the calculations. 

'YU. A. Osip'yan and S.. A .  Shevchenko, P is 'ma  Zh. Eksp. 
T e o r .  Fiz.  20, 709 (1974) [ J E T P  Lett .  20, 328 (1974)). 

'v. A. Grazhulis ,  V. Yu. Mukhina, Yu. A. Qsipyan, and S. 
A. Shevchenko, Zh. Eksp. Teor .  Fiz. 68, 2149 (1975) [Sov. 
Phys. J E T P  41, 1076 (1975)l. 

3 ~ .  A. Grazhulis ,  V. V. Kveder,  V. Yu. Mukhina, and Yu. A. 
Osip'yan, P i s ' m a  Zh. Eksp. Teor .  F iz .  24, 164 (1976) 
[ J E T P  Lett .  24, 142 (1976)l. 

4 ~ ~ .  A. Osip'yan, V. I. ~ a l ' y a n s k i i ,  and S. A. Shevchenko, 
Zh. Eksp. Teor .  F iz .  72,  1543 (1977) [Sov. Phys. J E T P  
4 5 ,  810 (1977) J. 

'I. A. Ryzhkin, Fiz. Tverd.  Tela (Leningrad) 20, 3612 
(1978) [Sov. Phys. Solid State 20, 2087 (1978)J. 

6 ~ .  Abou-Chacra, P. W. Anderson, and D. J. Thouless,  J.  
Phys. C: Sol. St. Phys. 6, 1734 (1973). 

'P. W. Anderson, Phys. Rev. 109, 1492 (1958). 

Translated by J. G. Adashko 

1167 Sov. Phys. JETP 5 4 6 ) .  Dec. 1981 I .  A. Ryzhkin 


