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We consider photon emission by an electron moving in a constant magnetic field and in the field of an intense 
plane electromagnetic wave with circular polarization. With the approach developed here, based on the use of 
exact solutions of the quantum equations of motion of charged particles, we obtained for the probability of 
emission a compact representation that is convenient for analyzing the fundamental characteristics of the 
radiation over a wide range of the parameters. The resonance region is examined, and the limiting expression 
for the emission probability is obtained; this is new representation for the total probability of the analogous 
process in a constant crossed field + wave configuration. A calculation of the probability of synchrotron 
radiation is made which includes the effects of an intense wave = eE/mcw % 1)  and of quantum corrections. 
An analysis of the resonance region shows that the possibility of realizing resonant modes of particle motion 
depends on the parameters of the electromagnetic field and the average electron velocity component along the 
magnetic field. 

PACS numbers: 41.70. + t 

1. INTRODUCTION s tant  uniform magnetic field and the field of a plane 
circularly polarized ( g = i l )  electromagnetic wave pro- The study of quantum effects in the interaction of 

elementary particles with intense electromagnetic pagated along the magnetic field: 
- - 

fields takes on particular significance owing to the ob- A,=A,") ( H )  +A:'' ( T )  ; cp= ( k t )  =o (t-z), 

servation near pulsars1 of magnetic fields with inten- 
A,!" (11) = {O,O, xH, 0) ; A,'" =E ( m l e )  (0, -sin cp, gcos cp, 0), 

(1) 

s i t ies  comparable with the quantum-electrodyanmic 
characteristic field value1) H, =m2/e. taking the z axis a s  the direction of the magnetic field 

H; the invariant classical  parameter  for  the intensity 
The systematic study of nonlinear quantum processes of the wave is connected with its amplitude E and the 

in constant fields, and also in fields of plane electro- frequency w : 
magnetic waves, was begun comparatively recently (see 
Refs. 2 and 3 and papers cited there). There has r e -  e=eElmo.  (2) 
cently been increasing interest  in this s o r t  of research  
when the action of fields of ra ther  complicated configu- 
ration is  considered. In our opinion an  especially in- 
teresting situation is one in which the field taken a s  
external is that of a plane electromagnetic wave propa- 
gating along a magnetic field. A distincitive feature of 
this configuration of fields is the possibility of a reson- 
ant action of the field on charged particles. Besides 
this, the exact solution of the quantum equations of 
motion of charged particles in such a field is known.4 

There have been several  papers on fundamental 
quantum-electrodynamical processes in a field consist- 
ing of a plane electromagnetic wave and a constant 
magnetic field; these have dealt  with particular aspects  
of the exact treatment of the action of this complicated 
external field (see, e.g., Refs. 5-11). I t  must  be 
pointed out, however, that the consistent use of the 
exact solution is  made difficult by the complexity of 
the analysis, which is  characteristic of many-param- 
e ter  problems. 

We note that quantum effects of the intensity on the 
scat tering of electromagnetic waves by electrons 
moving in an external magnetic field have been studied 
in an ear l ie r  paper,5 where some properties of the 
radiation of relativistic particles were analyzed. An- 
other paper6 studied the effects of a s trong electromag- 
netic wave (EMW) on the emission from weakly excited 
electrons moving in a magnetic field; in particular it 
was shown that in the neighborhood of the point of cy clo- 
tron resonance3) the effective parameter  of the coupling 
of an  electron of momentum p,  moving in a magnetic 
field with the field of an EMW is the quantity 

This conclusion was la te r  confirmed in the fundamental 
results  of Ref. 8. We also note that an essentially ana- 
logous parameter  determines the behavior of the cross 
section (as found in the classical approximation) for  
scattering of a s trong EMW by a plasma electron mov- 
ing in a magnetic field.= 

In the present paper we examine the emission of a Here we have derived a compact representation for  
photon by a charged particle2) of spin $, using quantum- the characterist ic  functions that determine the total 
mechanical methods of describing the states of the probability of the emission process. This representa- 
particle in an  electromagnetic field and paying close tion has not been given previously. I t  corresponds to 
attention to effects associated with the intensity of the an  explicit breaking up of the total probability of the 
electromagnetic fields. As our initial field configura- process into a sum of partial probabilities correspond- 
tion we consider one which is a superposition of a con- ing to a fixed numbers of quanta of the wave in the 
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reaction, which is extremely convenient fo r  analysis 
of the characterist ics  of the emission over a wide range 
of the parameters. This representation is used to 
study the resonance region and to derive a limiting ex- 
pression for  the probability of emission in the field 
(I) ,  which is also a new representation for  the total 
probability of the analogous process in the constant 
crossed field + wave config~rat ion. '~ 

2. THE TRANSITION AMPLITUDE 

The effect of a wave propagated along the magnetic 
field [see Eq. (I)]  preserves the symmetry of the elec- 
t ron motion in the magnetic field, s o  that the probability 
of emission does not depend on the azimuthal angle rp, 
a t  which the photon is emitted in a coordinate system 
in which the angle 0 is measured from the direction 
of the magnetic field. 

Let  the frequency of the emitted photon be x; the wave 
vector is 

x = x  (sin I3 cos cp,, sin 0 sin cpo, cos 0) .  

Without loss of generality we can fix the angle q,, say,  
a t  rp, = r/2. Fo r  a transition of the electron from the 
s ta te  with the quantum numbers n, p,, p- = (kp)/w, I ,  the 
probability of the electron emitting a photon of definite 
polarization can be written in the form5 

where the matr ix  element 1% is  calculated from the 
transition current  j, 

,V=-ro(4n) je', j= d'zY,.'aY,e8 *"I, (5) 

where & is  the polarization vector of the photon and a 
a r e  Dirac matrices:  primes indicate the final state. 

Using the explicit f o rms  of the Dirac maprices and of 
the functions Q, (see Ref. 5), we can put the integrals 
(5) in the form 

-"' } = (2nj3NN'6 (p--p-'-x-) 6 (A-prT-xu) 6 ( q l A l ~ - ~ z ' - ~ z )  
12 , 

x[G, (a ,Q3'~a ,Q, ' )+H,  (b,Q,'+b,@,*) 1, 

jS= (2n)~~~~(p--p-'-x-)6(p,-p,'-x,) 6(q,+lo-q2'-xZ) (6) 
1 

where N and N' a r e  the normalization coefficients of 
the functions Q,  and @,., and 

The spin coefficients c, a, b and the functions R ,  Q, 
a r e  given by the relations 

c,=2-'" (l+bml/pn) '", c,=2-"" (I-~m,/po)  '", 

a=2-'"(l+cm/rn,)'l", b=2-'"ic(1-tm/ml)'", 

R=2-"igogA-'eiw, A=ao-gox,  y=mox, 

cr=m--'q-=m-lp-, m,Z=p,Z-p,Z, p02=m2+2yn+p~, \ ITn=e-'S(P)~m(~) ,  

S((0) =mat+q,cp/o+gEA-' ( m o e ~ f p , )  sin rp-0.25mA-2~20rtsin 2cp-p,~. 

The general  form of the functions + f ( z  = 1,2 ,3 ,4)  and 

G . 4  

@l'=~n:,,  @21=~:-',n,, @8'=~":"*-,,  @'l=~;-i,"*-,, 

I + (  (D,*=@, /A'*Q:-'/A, (D,*=(D:+'/A*@:-'/A' (7 

is determined by integrals of the type 

M,,, = d'x u,. (p') u,(p)exp[iS' ( c p )  -iS(cp) + i (xs )  I ,  (8) 

u,, (p) =y7'(2"n!)-'" (n)-"e-P'12H. (p), p=y'" (x-Eb-' cos cp) +p,y-'Is, 

(where H ,  a r e  Hermite polynomials) after  one has 
separated out from Eqs. (8) the 6 functions which a r i s e  
in the integration over  space. In this ca se  the general  
s t ruc tura l  par t  of the transition amplitude reduces to 
the form 

Under the summation sign he re  there is a 6 function 
which expresses  the law of conservation of the sys tems 
quasimomentum component along the direction of the 
magnetic field, Hl(z: q, =p, + ['mw/2h. The number I 
labels a partial process involving a fixed number of 
"wave quanta" that take part  in the reaction. This situa- 
tion is  very typical in processes that take place in the 
field of a n  EMW. The essential difference from the 
c a s e  of a "pure" EMW (with no effect of a constant 
field) is  that in the present  case  the number I can be 
ei ther  positive o r  negative. 

The functions B',,. specified by the integral represen- 
tation (8) can be written in the form 

j=k-0,s (F+E') g x ,  sin v-g ( ' 2 - - I L ' )  i~ irct".?. 

T=(E-6') sin cp[x,(mo,)-'+(E-E') C O .  q I-'. 
%yp=x~+'~2(~-~')Z-2yxi(~-~') cos q, zL=x sin ir. 

These functions have a ra ther  complicated structure;  
only in the special  case  when the EMW field is com- 
pletely absent in Eq. (1) (5 =0) do they reduce to the 
well known Laguerre functions I,,, of the argument 
p = ~ 2 , / 2 ~  (here the index I takes the value zero). In 
the general case ,  however, we can get  for  the coef- 
ficients B:,. a compact operator  representation4) 

where J , ( ~ R  1) i s  a Bessel  function of the operator 
argument 1 R I = (RR + ) I D ,  with 

The functions H,,, a r e  given by 

H,,.=exp [-ig(n-nl)h] I,,. (q);  

A=- (ylx) [I -  ( 2 ~ y ) - ~ ( q ~ - q ) ~ ] " ' + a r c t g  T.  

Here  I,,. is the Laguerre function, related with the 
Laguerre polynomials by the formula 

and it is  understood that after  the operator  J,(I R I)(R/ 
R,)''' has acted on the function H,, ,  the value is taken 
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a t  the point q ,  = 2  +y2. 

For  the squared modulus of the amplitude for  a 
transition of the polarized electron ( I ,  [' =*1 give the 
signs of the spin components in the direction of the 
magnetic field for  the electron in its initial and final 
s tates)  with emission of a photon characterized by a 
polarization vector with rectangular components e, 
and e, (e, . e, = 0, el. u = 0, e2. u = 0) we get  the ex- 
pression 

2S,= (1+55')S,++ (1-5L')S,-, j=1 ,  2; 

S,*=F,*= (8q,'qo") -' {o,* [ p I f * p i -  I Q l  I 2+pg'=p1+ I Q2i I Z ~ 2 p 3 p J ' Q Z ' Q S 1 ]  

+0.5gZo2p-p-'[pa'TpI-I 0,- 1 '+pir*pL+ 1 Q,-1 2+2pIpL'@I-@I- ]  

+goE(p-'m,fp-in,') [p,(p,'*@i-@,'-pi'T@i-QZi) 

*p3'(pL-@,-Q3'-p~+Q~-@21)] } ; 

S,*=F,* cos' O+F,* sinZ 0-F$ sin 28; 

F2*=:F,*(@,'-+Q:, Q;+-@; ,  Q:+@;,  Q;+@:,  mi-+@,+, a ' - + @ , + ) ;  

F3+= ( 8 ~ ~ ' q ~ ' ' )  -' {bZJ [p I1$p: -  I Q,' / Z+pL'*pl+ 1 Qri ILi2p3p3'@,'@, ' ]  

+ 1 / 2 ~ 2 0 ' o , *  [plr;pi-I Q:-' IZ+pLrTpI+I @ ~ + 1 ~ 2 + 2 p 3 p 2 ' @ ~ - ' ( ~ : + ' ]  

+go~o'*[ps(p'~+@"@:- l+~'r~@,i@;+' )+ p31(pI-@,1@:-1+pk+@'1@:+1) I ) ;  

x [ p s  ( p , f ~ @ , + @ : + l + p l r * @ : - i  mL+)  *p3' (pI-@l+@~-l+~~,+@:+i@,+) ] 

+'/pgo~[~8*(pI'sp~-@i'Q1++pi'*p,+cDL'@i+f p 3 p  ( @ L 1 @ l + + @ l l Q I + ) )  

+ ~ , * ( p , f * p L - @ ~ 1 @ ~ - 1 + ~ L ' T ~ ~ + ~ 2 ~ ~ ~ + ' * p 3 p ; ( @ : @ ~ + ' + @ ; @ ~ - ' ) )  I}. 

Here 

Accordingly, the expression fo r  the probability cal- 
culated per unit volume and unit time and for  specified 
polarization characterist ics  of the particles in the 
reaction can be written 

u d u  d cos 0 
w ~ = m 2 e 2 ~ 1 - ' ~ ~ ~  JiYi- 8)1 ~ j ~ ( q o + ~ ~ - - q ~ ' - ~ ~ ) ~  (11) 

1 . " .  

where we have introduced the new variable u =(a - a t ) /  
a ' ,  where a =m-'(9: - q : ) .  

3. EMISSION AT H << H, PROBABILITY 

For H<< H ,  the discrete nature of the electron states 
in the constant magnetic field manifests itself only 
weakly. The electron motion in such fields becomes 
quasclassical and for  relativistic particles [po>> m ,  
(2yn)1/2,>> m] the discrete transverse momentum of the 
electron becomes quasicontinuous (2yn =fi >> m2). Con- 
sidering this situation and assuming P,>>P,,  which can 
always be obtained by changing (without loss of gen- 
erality) to a reference f rame that moves in the direc- 
tion of the magnetic field, we keep in the integrand of 

Eq. (11) only the principal t e rms  in the expansion in 
powers of the energy. We also make use of the fact that 
in this approximation 

@,'=J,At,  @z'=Yl(A,-B,) ,  Q , ' = Y , [ A , + ( l + n ) B , ] ,  

Qk l=JI (A ,+uB, ) ,  @,*=(aJl+,*a71-,)A,/oaa', 

Q ~ * = ( a % + , + d ~ - , )  (AI+uBi ) lwaa ' ;  
(12) 

A , = A Q ( t ) ,  B , = B Q 1 ( t ) ,  B = a - ' ( 2 ~ / u ) " A ,  
A= (an'") -' (2x122) '" ( l + u ) " ,  

where @ ( t )  and d( t )  a r e  an Airy function and its deriva- 
tive, with the argument 

and J, ( I  R I ) is  a Bessel  function of order  I of the opera- 
t o r  argument. In the limit considered (H<<Hc) we can 
a l so  get  a s impler  form for the Bessel-function argu- 
ment, which contains the differential operator R = h  
+g, 2: 

Using the properties of the functions j, = J, (R/R+)'/~, 
which a r e  analogous in their  general properties to the 
Besse l  functions of c-number argument, we can bring 
the expression for  the probability of photon emission 
by the electron, in this approximation, to the form 

where $@ and ji+' a r e  to be taken a s  meaning that the 
derivative is  taken with respect  to the argument: ji@ 
=aJ,+/ah and J;@' =a.~,@'/ah. 

The resulting expression (13) is a generalization of 
known r e s u l t ~ , 2 . ~  which hold ei ther  when the field of a 
plane electromagnetic wave acts  on the electron o r  
when there is only a constant field. Consideration of the 
l imit  of ultrarelativistic energies of the emitting elec- 
t ron (a,>> 1 ,  ol>>w,/w) enabled us a t  H<<Hc to get from 
the general expression (11) for the probability the exact 
value of the probability of photon emission by an elec- 
tron moving in the superposition of a constant crossed 
field EL H, E = H  and the field of a plane electromagne- 
t ic  wave propagated along the Poynting vector of the 
constant field. 

We note that an  expression for  the probability in such 
a configuration of electromagnetic fields in the form 
of a multiple integral was f i r s t  obtained in Ref. 13. The 
representation (13) of the total probability of the emis-  
s ion process a s  a sum of partial probabilities, corres-  
ponding to definite numbers of wave quanta taking part 
in the reaction, is  more  convenient in many cases. In 
particular, this is  t rue  for  the treatment of cases in- 
volving a sma l l  (or, conversely, a very large) number 
of wave quanta. For example, a t  1 = 0 the expression 
(13) determines the probability of synchrotron radiation 
a s  affected by the action of an  EMW of arb i t ra ry  inten- 
si ty:  
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+t2[ (Jo'~)'+(g,/h)Z(JOf~f)Z-(J~Q)z] 

+2gE (2x1") ' "  ( J , @ ' J , ' @ + J O ~ J o r ~ ' ) } ,  J,=J,( I RI ). 

If 5<< 1 ,  we can confine ourselves to the f i r s t  t e rms  
of the expansion of the zeroth-order Bessel  function 

where the second derivative is given by the equation 
@" =t@ that defines the Airy function. In this way, after  
integrating over T we get an expression for  the prob- 
ability in the form of single integral 

At 5 = O  this expression agrees  with the well known inte- 
g ra l  representation fo r  the probability W'- of synchro- 
tron radiation in the quasiclassical limit.2 At 5 # 0 it 
contains corrections to W'; caused by the influence of 
t h e  wave (cf. also Refs. 10 and 15). 

For the calculation of the integral (15) i t  is convenient 
to represent  i ts  characterist ic  parts  a s  Mellin-Barnes 
integrals5): 

2m-3 1 '7- ( 
=-- m-n-i r s+- ) r ( s  +=) r(stlii) 

n r ( m )  2 n i , - < _  2 

At x> 1 the integral (16) can be calculated in t e rms  of 
the sum of the "right side" residues a t  the points s 
= $ ( n + l ) + k ,  s = i ( n +  2 ) + k ,  k=O, 1 , 2 , .  ..: 

In the other region x< 1 we get  a s e r i e s  of inverse 
powers of x by closing the contour of integration on the 
left. The t e rms  in Eq. (15) that contain ln(1 +u) a r e  cal- 
culated analogously. Some complication in this case 
a r i s e s  in finding the residue a t  a double pole in the 
region x< 1. 

Using these resul t s ,  we present expressions for  
the probability (15) in two limiting cases  (t2<< 1,  tZX2/ 
k2<< 1 ,  tZX4/k4<< 1): 

Since a classical  l imit  of the probability in a constant 
field exists [the t e rms  proportional to x for  x<< 1 in Eq. 
(18)] the corrections due to the effects of the field can 
be divided into two types: quantum t e rms  proportional 
to tZX2, and classical  t e rms  -xt2 and -52X3/kz. The 
quantum correction leads to an  increase of the prob- 
ability, while the classical  t e rms  can give ei ther  an  in- 
c r ease  o r  a decrease. In the region of large x >> 1 the 
corrections a r e  decidely nonlinear functions of the field 
strength. 

The contributions of the other part ial  t e rms  can be 
calculated analogously. I t  must  be pointed out that fo r  
5 << 1 the main contribution to the I-th t e r m  is  propor- 
tional to t21'1, whereas in a weak constant field (with 
x<< 5<< 1) it is ei ther  of the s ame  order  a s  in the field 
of an  EMW (for 2> o), o r  exponentially smal l  (for 2 <  0). 

4. THE REGION OF CYCLOTRON RESONANCE 

The range of parameter  values for  a n  electron 
radiating in the field (1) f o r  which the frequency of the 
wave, with the Doppler shift taken into account, is 
close to the cyclotron frequency w, = e ~ / m ,  i s  known 
a s  the  region of the cyclotron resonance. We shall  char- 
ac ter ize  the amount of deviation from the point of ex- 
act resonancewithaparameter  6 = (aw)-'A = 1 -gwH/aw, 
where g = r l  is ,  a s  usual, a parameter  corresponding to 
the two directions of rotation of the polarizationvector in 
a circularly polarized EMW. I n  what follows we shall  
consider the case  in which 6 can take values much 
smal ler  than unity (for definiteness 0 <  6 <  I ) ,  s o  that 
we fix g=  1. In contrast  with the case  considered 
before, we a lso  assume that in its initial s ta te  the elec- 
t ron has a sma l l  t ransverse  momentum, 2yn<< m2. 

Let  us introduce a new variable r  = ( A  - A')/A' 
= u a t / ( a '  - w,/w). I t  will be useful in the region con- 
sidered. In this case we have 

Accordingly, in the quasiclassical region, where the 
role of quantum effects is not important, a '= ru and 
when the condition 0 <  6<< 1 is satisfied we have r  =u/b 
3 0. I t  must  be emphasized that we a r e  neglecting here  
t e rms  of o rde r  u/6  in comparison with unity. 

Let  us now estimate the effective value of the number 
of field photons taking part  in the reaction. In par-  
t icular ,  f o r  the minimum value of the number I we get 

Satisfaction of the conditions O< 6 < 1 ,  r >  0 allows us to 
conclude that the final s ta te  of the electron, character-  
ized by the parameter  6 l, is a lso  a resonance state,  i.e., 
6' =A'/(Y'w - 6<< 1. Then the est imate of the quantity 
l , ! ,  leads to the result  
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In accordance with the resu l t s  of Ref. 6,  where  a n  
expression i s  given f o r  the  spec t rum of the emit ted 
photons, f o r  the motion of the electron in the field (1) 
we have 

where Pn is the average  value of the velocity of the 
electron 's  motion along the z axis .  I t  follows f r o m  
Eq. (19) that the quantity s = l -n' +n, which under 
resonance conditions is  the number of the harmonic 
that is  emit ted,  is given by the express ion  

where the angle 8, i s  connected with the angle 8; cos 8, 
= (cos Q - pll) /(I  - fill c o s  9) ,  and cos 9, - 5 '5 with 5 '6 > 1. 

F o r  the coefficients Bin. we get  f r o m  the integral  
(9) 

where in the l imi t  considered,  5 >> 6 (a! << 6-'5), the 
arguments  f and q of the two fac tors  reduce  to the s i m -  
ple functions 

Accordingly we have f o r  B:,. the express ion  

where J,(z) is the B e s s e l  function of the argument  

and the argument  of the Laguer re  function I,,, i s  

It  mus t  be  emphasized that  kinematically the condition 
that the sys tem be close to the resonance point, 6<< 5,  
means that the average  value of the r a t e  of motion of 
the electron along the direct ion of the magnetic field in 
the laboratory sys tem is relat ivis t ic ,  1 - 4 << 1. The 
connection between the bas ic  p a r a m e t e r s  in the neigh- 
borhood of resonance i s  given by 

By comparing the expression (19) with the argument  z of 
the Besse l  function, one can s e e  that f o r  5 >> 6 we  have 
z - s, with z 's = (1 + 5'  sin Q O ,  eo - 7712, and 2nH 'H, 
<c. 1. Accordingly, with increasing p a r a m e t e r  5 16 the 
argument  and index of the B e s s e l  function increases  
like (5 /6)', but their  ra t io  approaches unity: 1 - z2 IsZ 
= cos2fl, + 6' 15' << 1. I t  can be  verified that in the l imit  
5<< 5 the expression 

remains finite,  and to descr ibe  the angular  distribution 
of the probability i t  is convenient to introduce the 
quantity 

u= (e/6) cos Oo. 

These  resu l t s  indicate that there  is qualitative agree-  
m e n t  between this  limiting c a s e  and the situation found 
in a n  intense EMW,3 but h e r e  the meaning of the sym-  
bols is  different. Using the asymptot ic  formula f o r  the 
B e s s e l  function for  z >> 1 (s- z ) ,  we have where  + ( t )  is 

a n  Ai ry  function with the  a rgument  

After  summing and averaging over  the  polarizations of 
the par t i c les  of the react ion the  expression for the 
probability reduces  in the  region now considered to 

I t  m u s t  be  pointed out that  in deriving the expression 
(25) we  have c a r r i e d  out a summation over  the index n', 
on which only the  L a g u e r r e  function I,,.(x) depends. T h e  
a rgument  of this function is a purely quantum variable  
x x  (m /2~,)?2. I t  is not hard  t o  verify that  the m a i n  con- 
tribution to the c lass ica l  p a r t  of the  probability comes 
f r o m  t e r m s  with n' = n  (the so-called coherent  o r  un- 
shifted scat ter ing,  cf. Ref. 6). The  contributions of the 
o ther  t e r m s  a r e  due to  quantum effects.  In  Eq. (25) we  
have a l s o  substituted a w  =w,(l - 6)-' and dropped unim- 
portant  t e r m s  -6<< 1." 

The resulting expression is the exact  resu l t  f o r  the 
probability of the emiss ion  p r o c e s s  in a constant 
c r o s s e d  field. Under resonance conditions the effective 
p a r a m e t e r  f o r  the coupling of the electron and the wave 
is [/6, which f o r  even a weak wave (5 << 1) can be l a r g e  
owing to the s m a l l  detuning f r o m  of the quantities a w  
and w, f r o m  the point of exact  resonance:  

We note that the maximum of the s p e c t r a l  distribution of 
the emission probability f o r  a n  electron whose initial 
s t a t e  is close to the point of cyclotron resonance occurs  
a t  the frequency x =  sw - (5 ' 6 ) ' ~  = (5/6)3w,/a, where  w 
is the frequency of the wave, o r  xa m(H /H,)(c 16)' in the 
re fe rence  s y s t e m  in which fi l l  = O ;  th is  is slightly diff- 
e r e n t  f r o m  a n  e a r l i e r a  est imate.  

In a s i m i l a r  way we can  a l so  g e t  a n  expression for  
the intensity of the radiation. Multiplying the spec-  
t r a l  and angular  probability distribution by the energy 
of the emitted photon 

and car ry ing  out the  integration over  the angular  var i -  
able  u = (5 '6) cos Q,, we get  f o r  the s p e c t r a l  intensity 
distribution 

udu 2 u2 
I = - e - m 2 [  - - { ~ ( y ) ~ -  (1-u)* y (I--) ? ( I -  ) or(y)}, 

1051 Sov. Phys. JETP 54(6), Dec. 1981 V.  N. Rodionov 1051 



This is also the well known expression for  the intensity 
of emission by an electron moving in a constant crossed 
field. The role of the quantum parameter  X, however, 
is he re  played by the quantity x = (H/H,)([/b). In the 
region x << 1 we have 

where the f i r s t  t e rm agrees  with the result  obtained 
ear l ie r6  in an  exact calculation of the contribution to 
the probability from coherent transitions of unexcited 
electrons n' =n  = O  in the field (1). The second te rm is 
a quantum correction to the classical  l imit  of the inten- 
sity (see also Ref. 8). 

As has been noted previously (see Refs. 2, 3) many 
characterist ic  features of the radiation of relativistic 
particles a r e  not directly due to the type of external 
electromagnetic field in which the particles a r e  moving. 
With the relativistic motion of an electron in a constant 
magnetic field and the field of an  intense plane electro- 
magnetic wave a s  examples, i t  was shown that  in these 
cases  the radiation is produced on a smal l  segment of 
the particle trajectory, so  that the specific nature of 
the external f ie ld is  manifested only ra ther  weakly. The 
situation is analogous fo r  the region of the cyclotron 
resonance in the ca se  of an electron moving in an  exter- 
nal field having the configuration (1). In fact, in the 
cyclotron-resonance region the t ransverse  momentum of 
the electron is  determined by the parameter  5/15 (2yn 
<< m2) and can be relativistic owing to the resonant 
action of the field (1) on the particle: 

I t  is not hard to verify that in this case the region 
where the radiation process occurs is a sma l l  portion 
of the particle trajectory 

where R i s  the instantaneous radius of curvature of the 
trajectory, in complete analogy with the well known 
results  of Refs. 2 and 3 for  the relativistic motion of an 
electron in a pure magnetic field o r  the field of an 
EMW. Because the region in which the process occurs 
is smal l  compared with the characteristic period of 
change of the field, in the limit [/b>> 1 we can, a s  the 
results  show, completely neglect the change of the 
field (1) within the region where the radiation i s  pro- 
duced. This fact  is  illustrated in Eqs. (25) and (26), 
where the effect of the electromagnetic field (1) has 
been reduced to the effective action of a constant field 
on the particle.7' 

Using the expression (23), we can see  that a s  the 
magnetic field increases from zero,  beginning a t  
values 

there  a r e  three possible values of the energy parameter  
o! fo r  each value of w,/w. Subject to the condition (27), 

we can judge a s  to the possibility of realizing various 
types of resonant behavior. Fo r  example, if 5<< 1 and 
2~ << 1,  then in a system where fill = 0 we have (w,/w) 
31. For  5' >> 1 +2pn in the same system, calculation 
with Eq. (27) gives (w,/w) 3 5, which ag re s s  with the 
analogous condition of Ref. 12 and corresponds to rela-  
tivistic resonance in the intense wave. If the opposite 
inequality holds 

the main factor  in the determination of the resonance 
region is the energy of the particle in the magnetic 
field (w,/w) 2 (1 +2pn)''2. The determination of the 
upper boundary of the resonance region i s  based on con- 
sideration of the energy lost by the system in radiation. 

In conclusion the writer  expresses his gratitude to 
I. M. Ternov and V. P. Khalilov fo r  helpful discussions 
and valuable comments. 

"Units in which ti= c =  1 a r e  used here  thr6ughout. 
 or definiteness, we consider he re  throughout an electron 

with charge e and m a s s  m. 
3 ) ~ y  the point of cyclotron resonance we mean the parameter 

value a t  which the frequency of the wave i s  equal to the fre- 
quency of the particle motion in the magnetic field, with the 
Doppler effect taken into account. 

4h7e point out that operator representations for some special 
functions a r e  well known. For example, fo r  Bessel functions 
there i s  the expression 

5'We note that by a simple change of parameters this integral 
reduces to the so-called G function of Meijer. 

6 ' ~ e  also note that in obtaining the argument (24) of the Airy 
function, which i s  a classical  quantity, quantum te rms  of 
order  u c< 6 were dropped. Consequently in this approxima- 
tion there i s  no dependence on the sign of 6. * 

''we note that without the condition 2yn<c rn2 the electron mo- 
tion is  m o r e  complicated, and this region cal ls  for further 
study. However, in this case  also these qualitative conclu- 
sions a r e  apparently st i l l  valid. 
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