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The production of positrons by the Coulomb field of heavy nuclei in a superstrong magnetic field is 
considered. It is shown that in fields B > Bo = mZc3e-'li-'G (B/B,>Z3a2) Z positrons with polarization 
along the vector B are produced in the field of a nucleus with charge Z > Z ,  (Z,  is the critical charge of the 
nucleus) as well as a vacuum electron shell having a small magnetic moment. The vacuum charge distribution 
in superheavy nuclei (Za> 1)  located in a superstrong magnetic field Z3a2>B/Bo> 1 is found. 

PACS numbers: 21.90. + f 

In superstrong magnetic fields with induction B - l o f 2  field.' In Eq. (2) I,,,(x) i s  a generalized Laguerre poly- 
G o r  higher, existence of which on the surface of neu- nomial with argument x =yp2 =e~p ' /2cR:  
tron s t a r s  has been proved in pract ice,  electrons move 

I.,,(x)- (nlsl)-"' exp (- 5)  x(n-.) ,2~:-' (.), in the plane transverse to B in a region with charac- 
teristic linear dimensions AR, -y-'I2 =x,(B~/B)"~,  d s  

Q:- (x) =eax-' -(x'+'e-") ; l f s - n ,  n=O, 1 , 2 , .  . . , s=O, 1,2, . . . . (3) 
where A,= R/mc i s  the electron Compton wavelength dzl 
and B, =-m2c 3 e " ~  " is the strength o f t h e  so-called 
cri t ical  field.' Here E is the energy of the electron and the quantum 

numbers n ,  s , and 2 have the following meaning: n 
As a consequence of this, in a strong magnetic field 

the effective interaction of electrons with heavy nliclei 
becomes, a s  it were,  s tronger than in the absence of 
the field, since the electrons a r e  more  strongly at-  
tracted to the nucleus. If BIB; >> 2 ,  where B;=B,,CY~ 
=2.35. lo9 G, solutions of the Dirac equation in mag- 
netic and Coulomb fields can be found by using the 
approximation of a strong magnetic field: i .e.,  for mo- 
tion in the plane t ransverse  to B the Coulomb field can 
be taken into account by perturbation theory, assum- 
ing that the nature of the energy spectrum of the elec- 
tron does not change by any substantial amount in the 
magnetic field. 

1. CREATION OF POSITRONS BY THE COULOMB 
FIELD OF HEAVY NUCLEI IN A SUPERSTRONG 
MAGNETIC FIELD (SINGLE-PARTICLE 
APPROXIMATION) 

Let us consider the creation of positrons by the Cou- 
lomb field of a heavy nucleus in a superstrong mag- 
netic field. This phenomenon has been the subject of 
many studies ( see  for  example Refs. 3-8 ) ,  where, in 
particular, the situation in a strong magnetic field has 
been discussed.' 

Consider the Dirac equation in a field 

assuming that B > B,. Since in this case  the motion of 
the electron in a plane perpendicular to the vector B i s  
determined by the magnetic field, and the Coulomb 
field can be considered a s  a perturbation, a solution 
of the Dirac equation in the field (1) will be sought in 
the form 

ClI,,_,, . (5) XI (2) e-'Q!= 

iC,I ,  , (x )~ ,  (2) e%Iz 

( 2 )  
i.e., the radial functions describing the motion of the 
electron in a plane transverse to B will be taken from 
the problem of motion of an electron in a magnetic 

numbers the electron energy levels in a magnetic field 
(Landau levels), s determines the distance from the 
origin of the coordinate system to the "center of orbit" 
of the electron motion in the magnetic field, and 1 i s  
the eigenvalue of the operator  of projection of the orbi- 
tal angular momentum onto the direction of the field. 
Any level with a fixed value of n is degenerate with in- 
finite multiplicity i f  the electron moves only in a uni- 
form and constant magnetic field. We note that accord- 
ing to Eq. (3) we have I =-s in the state with n=O. 

Let us consider the state corresponding to the low- 
es t  energy level of the electron in a magnetic field, 
i .e.,  the s ta te  with n=O. We also s e t  s = O .  Then 
I,, ,,(x) = 0 ,  and for C2x2(z) =g(z) and C4x4(z) =f (2) we 
obtain, af ter  substituting $ into the Dirac equation in 
the field ( I ) ,  

where K =E(cR)-', ko =mcE",  &=+l,  V=-Za/ r .  Mul- 
tiplying these equations by lo ,,(x) and integrating them 
over x with inclusion of the normalization 

we obtain the following system: 

In this way we have obtained the one-dimensional Di- 
rac  equation for an electron in a field v(z) ,  and the 
constant E has  the meaning of the particle energy. 
Thus, according to our assumption, the motion of the 
electron in the direction of B is described by the sys-  
tem (5) with V(z) determined by Eq. (6). 

We shall  show that in a strong magnetic field the 
"effective Coulomb potential" v ( z )  is cut off a t  dis- 
tances z of the order  y-'I2. Calculating the integral ( 6 )  
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for  v(z) ,  we find v ( z )  = - ~ o ( ~ ) ' ~ ~ e  v2(1 - @[(yz2)"z]), 
where @(y)  i s  the e r r o r  function. Using the represen- 
tation of @(y)  in the form 

we find that for z = 0 we have v(0) = - Z C Y ( T ~ ) ' ~ ~ .  We 
note also that for (yz2)'12 >>1 the "effective potential" 
can be approximated by a one-dimensional Coulomb 
potential, s ince for  z >> " I 2  

"-1 
k 2  e-Is 

I-@ ( (rzqv'") =n-le-yzaC ( - 1 ) ~ -  + - 
(rzZ)"+'" 

R". 
k=0 

Since the magnetic field effectively cuts off the inter-  
action of the electron with the Coulomb field at  distan- 
ce s  z -y-'I2, i s  convenient from the very  beginning to 
choose the effective potential in the forms 

where a, -y-' l2 

The system (5) with V(z) chosen in the form (7) can 
be solved exactly.g In the region z > 0 these solutions 
have the form 

g ( z ) =  

w - , k t w + , t ]  (8) 

~ * = S C ~ ~ E + ~ / , ,  E--Za, K,=K/k,; t=2(aH+z)(kOZ-KE)'h;  

ctg E = E K ~ ( I - K ~ ~ )  -Ih. 

From the condition of matching of the solutions a t  
the point z = 0 [we note that v(z)  i s  an even function of 
z ]  it follows that two classes of solution a r e  possible: 
1)  even g and odd f ,  and 2) the opposite case.  There 
a r e  no solutions of the f irst  c lass  in an ordinary three- 
dimensional Coulomb field.9 

Let us consider solutions of the f irst  c l a s s ,  among 
which there is a solution corresponding to the ground 
state.  The energy spectrum in this case  is found from 
the condition f (z = 0) = 0 o r  

' Wc-.lr(te) = ~ c . . i i  ( to),  (1-K,Z)" (9) 

where the argument of the Whittaker function W,,, at  
the point z = 0 sat isf ies the inequality 

to=2(1-KO2)'~a, /h ,<<l .  

Using the well known expansion for W,,, near ze ro  

where r ( y )  is the gamma function, it is easy to obtain 
from Eq. (9) the equation for determination of the en- 
ergy spectrum of electron s ta tes  (&=+I )  in implicit 
form: 

A 
6 In (2Aa,/h.) +. arctg - + arg r 

I-K,  
X 

- a r g I ' ( l + 2 i g ) = - f n m ,  m=-1,0,1 ..., (10) 
2 

where the lowest s ta te  corresponds to m =-I. Here 

The value of the nuclear charge Z(5) a t  which the en- 
ergy level of the electronic ground s ta te  KO c ros ses  
the boundary of the lower energy continuum (i.e., KO is 
equal to -1) i s  usually called the cri t ical  charge. Dif- 
ferentiating Eq. ( l o ) ,  it i s  easy to show that the two 
derivatives a r e  

i.e., with increase of the charge and of the magnetic 
field strength the ground-state energy level drops and 
c ros ses  the limit of the lower energy continuum. 

Taking the limit <-Scr,  KO--1 in Eq. ( lo) ,  we find 
the value of the magnetic field at  which the intersection 
of the lower continuum with the energy level K =-k, 
occurs ,  a s  a function of [,,: 

n-2 arg r(1+2i&, , )  
B=4Ecr2B, exp 

which agrees  with the conclusions of Ref. 7. The 
threshold probability of pair production by the Coulomb 
field of a superheavy nucleus in a strong magnetic field 
w(5, 5,,) can be found analytically, continuing KO(() into 
the region 5 > 5,,, a s  was done, for  example, in Ref. 7. 
As a result  we obtain 

Thus, the threshold probability of pair production 
by the Coulomb field of a nucleus in superstrong mag- 
netic field depends only weakly on the choice of V ( z )  
near the point z = 0. This i s  confirmed by comparison 
of Eq. (11) with the result  obtained by ~ r a e v s k i r e t  nl.,' 
in which the function V(z) near  z -0  was different. 

2. WAVE FUNCTION OF THE GROUND STATE OF 
THE DISCRETE SPECTRUM AS (-+{,, AND AT 
KO = - I  + 0  

The wave function of the ground s ta te  of the discrete 
spectrum for 5 - 5 ,  and KO =- 1 + 0, i.e., in the sub- 
critical region of values of 5,  in the field configura- 
tion considered can be written in t e rms  of a MacDon- 
ald function. Fo r  this purpose we shall  use the well 
known relation (see page 257 of Ref. 10) 

w, , (x )  =e-x/ku+'"q ('Ir-h+CL, 2p+1, x), (12) 

where II ,  i s  the confluent hypergeometric function and 
the formula for the limiting transition (page 253 of 
Ref. 10) is 

lim I @ (a ,  C ,  x )  F ( a )  I = (2xa)  -*KZ, ( (8xa)  '") . 
s.+- 

We note that a - m, since a --A -a. 

To find the explicit form of the normalized wave 
function of the ground s ta te  it is convenient to repre-  
sent  the solution (8) in the following approximate form: 

A 2 A I - i g  
g = - - w * , i t ( r ) ,  f = t'" -- W A S $  ( E l .  

t'" A A (14) 
Here X =</A - 4  and t = 2A(z +a , ) /~ , .  The normaliza- 
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tion coefficient A i s  found from the condition 

Recognizing ( s ee  page 872 of Ref. 11) that - dt n @('la+p-h) -+('l,-p-h) 

j { w ' + ( t ) } 2 ~  = sin 2 % ~  r (1,2+p-a) r (l,,-p-a) 

and using the well known representation for the differ- 
ence of the + functions (see page 958 of Ref. 11) 

and also calculating this sum by means of the Euler  
summation formula 

from Eq. (15) for  determination of I A  1 we obtain 

With inclusion of Eqs.  (12)-(15) and also (16) for the 
normalized wave function of the ground s t a t e  for [ - 5,, 
and KO --1 we obtain 

g=DE,,K,(x), i=D(l+E,~)"~K,(x), 

3. MANY-ELECTRON CASE 

Quantitative est imates of the production of positrons 
by the field of a superheavy nucleus in the presence of 
a s trong magnetic field, obtained in Ref. 7, showed that 
the effect of the magnetic field on the energy spectrum 
of an electron in the field of a heavy nucleus leads to a 
substantial lowering of the energy of the ground s ta te  
of the electron for a given nuclear charge Z(5). This  
means that in superstrong magnetic fields the cri t ical  
charge of the nucleus decreases in comparison with the 
case  B = O .  A second important difference of the effect 
considered by us from the creation of positrons by the 
Coulomb field of nuclei in the absence of a magnetic 
field i s  the following. In a Coulomb field for Z > Z,, 
but Z < z::', where 2::' is the charge of the nucleus 
for which the 2s level c ro s se s  the boundary of the low- 
e r  continuum, two positrons with antiparallel spins 
a r e  created.  If the effect i s  studied in the framework 
of second quantization, then from the point of view of 
this theory a s  Z goes through Z,, there i s  a decay of 
the neutral vacuum, a s  a resul t  of which two positrons 
a r e  formed (if the ground-state level for Z < Z,, was 
not filled with electrons) and a charged vacuum a r i s e s ,  
the total charge of which i s  -2e ( s ee  for  example Refs. 
4,  5, and 8). In a superstrong magnetic field the spin 
of an electron located in the Landau level n = 0 can be 
oriented only opposite to the vector  B. Therefore,  if 
the ground s ta te  was not filled with electrons before 
the transition through Z,, (from Z < Z,, to Z > Z,,), pos- 
i t rons should be created with polarization along the 
vector B, and in the ca se  when this  s ta te  is filled with 
electrons, no positrons will be created,  but both in 

that c a se  and in the other  ca se  there  is a rear range-  
ment of the vacuum, a s  a resul t  of which the charged 
vacuum a r i s e s .  Here  the charge density of the new 
vacuum for  0 < Z - Z,, << Z,, as a function of the coor- 
dinates has  approximately the s a m e  distribution as the 
probability density of various values of the coordinates 
of the electron located in the ground s ta te  fo r  Z < Z,,. 

The distribution of the vacuum charge near  super -  
c r i t ica l  nuclei (Za, >> 1)  was  found in Ref. 5 ,  where it 
was shown in part icular  that for  Z >> Z,, the total 
charge of the vacuum shell  becomes equal to  -Ze. Fo r  
Z >> a9" (supercharged nuclei) the vacuum electrons,  
penetrating inside the nucleus, compensate its charge 
practically completely. According to Ref. 5, super -  
charged nuclei consist of an electrically neutral plasma 
with equal concentrations of electrons,  protons, and 
neutrons (it  is assumed that the  m a s s  number A is 
equal to 22) .  The question of the vacuum shell  of a 
heavy nucleus in the presence of a superstrong mag- 
netic field, and also severa l  other  aspects  of this prob- 
1 e m ,  will be  discussed below. 

Let  u s  consider qualitatively the question of filling 
of electron shel ls  of an atom located in a s trong mag- 
netic field B >> BhZ. We shall  take into account that 
the s ta te  with n = 0 in a magnetic field is degenerate 
in s ,  and the wave function of an electron in this level 
is proportional to I , , , ( ~ ~ ~ ) ,  where s = 0 , 1 , 2 , .  . . . We 
recal l  that in the absence of a Coulomb field the level 
n=O i s  degenerate with an  infinite multiplicity. How- 
eve r ,  if the electron i s  in magnetic and Coulomb fields 
the value of s,, can be found by using physical pre- 
requisites. F o r  this we will take into account that in 
the s ta te  n=O, s  # O  the probability density of various 
values of the coordinates of an electron in the plane 
t ransverse  to B has the form 

I:,. ( r )  =xRe-'ls!, x=yp2, 

1; ,Jx) has a maximum for x =s , and the spat ial  width 
of the distribution for  each s is approximately the same 
and i s  determined by the function 1; =eq. There-  
fore  in a crude approximation we can modify the ex- 
pression for the average potential energy of the elec-  
t ron  in the s ta te  s , introducing into this expression an 
explicit dependence on s . Then assuming that Z >> 1, 
let us consider qualitatively how the electron shel ls  
a r e  filled for  Z < Z,,. We shal l  take it into account 
that in each s ta te  characterized by numbers m and s 
there  can be only one electron. As was shown above, 
the a r e a  of the region of motion of an  electron in a 
strong magnetic field is equal in o rde r  of magnitude to 
the quantity AR? - (B;/B)U;. The quantity AR: must be 
compared with r i  = a ; ~ " ,  where r,  is the radius of the 
Bohr orbi t  of a hydrogen-like atom of charge 2. Thus, 
if B/B; << Z3, then 

Here  zAR: i s  the a r e a  of the region in which Z elec- 
t rons could be located. Therefore i t  is evident that f o r  
BIB; << Z3 the electrons will fill  only the lowest s -  
s ta tes ,  and in each s - s t a t e  there  can be severa l  elec- 
t rons ,  i.e., the electrons will be  distributed over the 
m -levels. 
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It i s  evident that the inequality (18) is satisfied if 
the bulk of the electrons a r e  concentrated in a region 
with linear dimension 

1- (Z"B,'/B)"~a.. 
(19) 

This qualitative conclusion agrees  with the result  ob- 
tained in Ref. 2. Hence we can also obtain an  est imate 
of the value of s,,: 

i.e., s,,<< Z .  

However, if BIB;>> Z3, then ZARI<<r;, i.e., in 
this case  al l  electrons can be located in the ground- 
state m-level, and in each s -s ta te  there  will be only 
one electron. 

For  BIB; << Z3  the distribution of the vacuum charge 
near superheavy nuclei located in a superstrong mag- 
netic field, like the charge distribution in a neutral 
atom in which both the vacuum and external electron 
shells  a r e  completely filled, can be found from the 
relativistic Thomas-Fermi equation (see  Sec. 4). 
However, this equation i s  not suitable for analysis of 
the situation with BIB;>> Z3. AS  a complete t r ia l  func- 
tion describing the distribution of vacuum charge,  in 
the latter case  we can choose a function in the form of 
the product of single-particle functions 

'12 

v .=e~*w~(+)  r0 . (xi)  W.,.(Z.) 

[w+,,(z) is a function corresponding to the ground 
s ta te  of longitudinal motion for a givens], which is 
antisymmetrized in s . A t r ia l  function is constructed 
similarly fo r  the ground s ta te  of a neutral heavy atom 
located in a strong magnetic field (see Ref. 12). 

We note that fo r  B >> B, the lowest energy level K 
c ros ses  the lower continuum boundary for  such Z, 
that BIB; >> z:,. Therefore in the approximation con- 
sidered here  if Z > Z,, the neutral vacuum should de- 
cay into a supercharged vacuum having a total charge 
-Ze, and Z positrons should be formed, which pene- 
t ra te  through the potential ba r r i e r  and go off to infi- 
nity. The vacuum charge in this case  will be localized 
in a region 

and the number of electrons located in a sphere  with a 
radius equal to the radius of the nucleus is 

where ~ , = t i / m &  is the pion Compton wavelength. The 
vacuum shell  has a smal l  magnetic moment which for 
Z -Z,, i s  equal to 

in which p V  << p Z =Zeti/2mc. We note that our dis- 
cussion i s  applicable for  the condition B << B , = m k 3 /  
le / t i ,  since in the fields B, i t  i s  necessary to take into 
account the influence of the field B on the s t ruc ture  of 
the nucleus, although probably in weaker fields B 
- l ~ n a " ~ ,  the contributions of characterist ic  nonlinear 

quantum effects may become important: vacuum pol- 
arization and other effects which must be taken into 
account. Therefore the value of B most likely must 
be  restr icted to a value l 2 n c u - ' ~ ~ .  

If Z >> Z,,, the ent i re  discussion can  be ca r r i ed  out 
for  very  la rge  Z such that BIB; << Z3 in the framework 
of a spherically symmetr ic  relativistic model of the 
Thomas-Fermi type. 

4. DISTRIBUTION OF VACUUM CHARGE IN 
SUPERHEAVY NUCLEI ACCORDING TO THE 
THOMAS-FERMI MODEL 

The distribution of vacuum charge in superheavy nu- 
clei located in a strong magnetic field for  BIB; > Z3 can 
be discussed qualitatively, proceeding from a modified 
relativistic Thomas-Fermi equation. We shall give the 
derivation of this equation, using the method se t  forth 
in Ref. 5. Fo r  this purpose it is necessary to find a 
solution of the system (5) in the quasiclassical approx- 
imation. Setting in (5) 

g=a(+) exp [is ( x )  1, f=b  (2) exp [ i s ( x ) ]  , 

where x = koz,  and assuming that a(%) and b(x)  a r e  
slowly varying functions of x ,  i.e., neglecting the 
derivatives a'(%) and bl(x), we obtain5 

The normalization coefficient A i s  found from the con- 
dition 

from which 

Here z ,  i s  the turning point in the region z > 0 for the 
effective equation 

a"+k2(z)u=0, 

where 
k'=2((,-CJ), w=(K,,2 -1)/2 

i.e., z ,  is the positive root of the equation k2(z) = 0. 

If the ba r r i e r  penetrability is exponentially smal l ,  
the energy levels K : ~ '  can be determined from the 
BohrSommer fe ld  quantization condition: 

' f  

f p(z)dz= (m+'/,) 5 .  
2 (21) 

Differentiating Eq. (21) with respect to m and compar- 
ing the result with Eq. (20), we find 

A= (n-'dK,ldm) . (22) 

Then, a s  shown in Ref. 5 ,  for  w(5,5,,) << 1 for descrip- 
tion of the vacuum electrons one can use the single- 
particle approximation, and the vacuum electron den- 
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sity can be found by direct means, summing over sin-  
gle-particle s ta tes  localized in the region 2Az lying 
between the turning points: 

We recall  that a t  BIB; > .Z2 in each s ta te  n = O,m,s 
there can be only one electron, with a spin oriented 
opposite to the magnetic field direction. Therefore the 
right-hand side of Eq. (23) does not contain the factor 2. 
Going over from summation over m to integration in 
Eq. (23), we obtain 

KO-V 
P =-- dK,  

1 xdx =--J ----- ' J , ( K o - v ) 2 - l , ~  . ( 2 - 1 ) .  

If we a r e  interested in the distribution of the electrons 
in the vacuum shell of the nucleus, integration over the 
energy KO must be car r ied  out in the interval (see Ref. 
5) 

- l= .K,>l+V.  

In the case  of a neutral atom in which both the external 
and vacuum shells  a r e  filled, the upp_er limit is equal 
to 1. Consequently we obtain n, =-(2V + f2 ) l f2 /2n  for 
a superheavy nucleus with a filled vacuum shell and 
n, =-(-2f + 172)112/2n for an atom in which a l l  shells  
a r e  filled. Here we have taken into account that the 
characteristic dimensions of the region of motion of the 
electrons along the magnetic field a r e  2Az. 

We note that, a s  was done for  the state s = 0 ,  quasi- 
classical functions can be constructed also tor other 
s -states. Here,  if B/B; << Z3, then a s  was shown 
above the wave function of the electrons located in 
neighboring s -levels will overlap to a significant de- 
gree.  Therefore i t  will be more  advantageous to the 
electrons to fill the lowest s -levels (where s << Z )  and, 
this means,  the ra ther  high m -levels, since such a 
distribution will correspond to the minimum energy of 
the system. In this case  the function n, can be con- 
sidered to be a function of al l  variables ( p , z ) ,  and we 
obtain the t rue  electron density by multiplying 12, by the 
normalization coefficient of the total electron wave 
function yn-l. 

We shall  wri te  the Poisson equation in the form 

Here e > 0,cp =-fe-l is the electrostatic potential and 
n, i s  the density of protons. Fo r  the function f we 
have the equation 

We shall take n, in the form5: 

Obviously the vacuum shell  has a finite radius r,, 
since n,(r) is _different from zero only in the region of 
space where v2 > 2v.  Therefore the boundary condi- 
tions for solutions of Eq. (25) in the case  of a supernu- 
cleus with a filled vacuum shell  has the form5- 

vacuum shel l  for an external observer.  In the var ia -  
bles r =k,r, Eq. (25) has the form 

where R = A " ~ T ~  i s  the nuclear radius, r, =1.1 F, and 
A i s  the mass  number. In the relativistic limit V' 
<< 2V Eq. (26) coincides with Eq. (9) of Ref. 2,  which 
was obtained by a different method for description of 
the potential of a neutral atom with Zclr < 1 located in 
a strong magnetic field. In this case  the value of the 
rat io BIB; for  which Eq. (26) i s  valid i s  also bounded 
from below: BIB; > z"~. This condition a r i s e s  from 
the requirement that there be no electrons in the f irst  
excited Landau level in the main region of the poten- 
tial. The condition that there be no vacuum electrons 
with a high binding energy (-K,,, mc/ti) in the f irst  
excited Landau level has the form (l/2)(-K,,,A/mc) 
x (B,/B)"~ << 1. 

Going over to a new function Vo = V r 1 ,  we obtain for 
it the s impler  relation 

Let  us find the charge distribution inside the vacuum 
shell  for Z a  >> 1. We shall consider the region of val- 
ues r << z 0 ~ 8 , / 2 .  Then Eq. (26) is greatly simplified 
and takes the form 

The spherically symmetric solution of this equation 
which (together with i t s  f i rs t  derivative) sat isf ies the 
condition of continuity for r =R and i s  finite for r = 0 
has the form 

The number of vacuum-shell electrons located inside 
a sphere  of radius r i s  N,(r)=Z -Q(r ) ,  where Q(r)  
can be found from Gauss's theorem, V1(r) =eE 
= ~ ( r ) e ~ / r ~ .  We note that x << ( ~ a ) ~ / ~ ,  and therefore 
the interval of values of r in which the obtained solu- 
tion is valid has the form 

i.e., for  Z a  B 1 ,  Z, -2 this interval turns out to be 
ra ther  broad. 

Let  us find Q(r) .  Differentiating Vo with respect to 
r ,  we obtain 

From this we obtain for  Q(r)  

If XR << I ,  then 

where Zo i s  the combined charge of the nucleus and the 
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In the second case  XR % 1 we have 

Q (R) -3%/2 (hR) KZ. 

Therefore the total negative charge of electrons located 
inside the nucleus for  XR % 1 is of the o rde r  of Z .  

As in the absence of a magnetic field, in the ca se  
considered here  (for XR >> 1 , Z a  >> 1 )  inside the super-  
heavy nucleus there will be formed an electrically 
neutral plasma and the screening of the nuclear charge 
by the electrons of the plasma will become important. 
Since inside the nucleus the total charge is close to 
zero,  there will be no electric field in this region. 
However, the electr ic  field strength i s  large for  r = R ,  
i.e., a t  the nuclear boundary, and the value of this 
field i s  inversely proportional to B ' I ~ :  

where for  A = 2 2  

Here we must have in mind that z - ~ / ~  << (B;/B)"~ << a ,  
Z a  >> 1. For  an  est imate let us s e t  (B;/B)'l2 = a 3 I 2 .  

Then E R  = (n312/2)a2(~,/h.,)3~0. In this ca se  we obtain 
essentially the maximum possible value of E R  at  the 
nuclear boundary (see  Ref. 5). We note that without 
taking into account the vacuum charge which screens  
the nuclear field, the field E ,  will approach infinity 
with increase of Z a s  .ZU3: E: = ~ " ~ e ( n / 3 ) ~ ' \ ; ~ ,  in 
which z1I3 >> (h,hr) .  

As i s  well known, the effect of diamagnetism in 
atoms leads to appearance of a magnetic field induced 
by the external field in the atom, and the strength of 
this field at  the center can be estimated from the for-  
mula (see  Ref. 13, p. 535) Bin,=-(e2/3rnc2)p,(0)~, 
where p,(0) is the electrostatic potential created by 
the electrons of the atom at  i t s  center. The validity 
of this formula for  the case  of a neutral heavy atom 
located in a strong magnetic field B >> B, has  not been 
proved by us, but if we nevertheless use i t  for  est i-  
mates,  we obtain 

[Here we have taken the value of cp,(O) from Ref. 2.1 
At the limit of applicability of the  nonrelativistic 
equation (26), i.e., for B =B;(Z3) (here we also assume 
that Z a  < l), the following estimate i s  obtained: B,,, 
= - [ ( ~ a ) ~ / 3 n ~ ~ / ~ ] 2 " ~ ~ ,  i.e., the value of the field in- 
duced at  the center  of the atom, obtained f rom Eq. (26), 
is approximately Z2 l3  times grea ter  (Z >> 1) than the 
value of this field obtained on the basis of the Thomas- 
Fe rmi  equation. 

CONCLUSIONS 

1. In the superstrong magnetic field of strength 
BIB, >> Z3a2 in the field of heavy nuclei with charge Z 
> Z,, there should be created Z positrons with polari- 
zation along the vector B. Here there is formed s i -  
multaneously an electron vacuum shell which has a 
sma l l  magnetic moment and a charge -Ze. 

2. The distribution of charge in the vacuum shell  of 
superheavy nuclei (Za! >> 1)  located in a strong magne- 
tic field of strength Z3a2 > BIB, >> 1 can be studied on 
the basis  of a modified relativistic equation of the 
Thomas-Fermi type. We have found a spherically 
symmetric solution of this equation which describes 
the distribution of the vacuum charge in  the region 
r << Za&, where X, =R/mc is the electron Compton 
wavelength. It is shown that for  ( C Y B / ~ B ~ ) ~ ~ ~ R  >> 1, 
where R i s  the nuclear radius, the total negative 
charge of the vacuum electrons inside the nucleus be- 
comes of the order  -Ze. As in the absence of a mag- 
netic field (for Z a i f 2  >> I) ,  in the ca se  considered by 
us the electr ic  field in the internal region of the nu- 
cleus is close to zero ,  and the strength of the electric 
field a t  the nuclear boundary, with allowance for 
screening of the nuclear charge by the vacuum elec-  
t rons ,  i s  equal to a finite value and does not approach 
infinity (with increase of 2 ) .  The value of the electr ic  
field strength a t  the nuclear boundary agrees  in order  
of magnitude with the value of E ,  found previously in 
the absence of a magnetic field.5 

3. In the superstrong fields B >> B, the cri t ical  
charge of the nucleus is significantly l e s s  than in the 
absence of a field. Therefore in fields B >> B,  nuclei 
with relatively smal l  charge Z (Z << 2:') should be- 
come unstable. 
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