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A theory is developed of d i i t i o n  of surface polaritons (SP) by the impedance step formed on depositing on 
a metal a film of thickness d 4 = 27rc/o (o is the surface-polariton frequency) in the region of existence of 
an additional surface wave. In the case under consideration the additional surface wave is a result of the fact 
that the impedance boundary condition for a metal covered by a film contains a second derivative and is of 
the form 
where Z, is the impedance of the surface of the pure metal, ,u = d / ~ , ( w )  and ~ , ( o )  is the film dielectric 
constant and vanishes in the region of resonance with the oscillations in the transition layer (film). The 
amplitudes of the reflected and refracted surface waves, and also the angular distribution of the intensity of 
the volume radiation produced, are found by applying a factorization technique. An anomalously high 
efficiency of tranformation of the surface wave energy into the energy of volume radiation near the resonance 
with oscillations in the transition layer is predicted. Some possibilities of employing the diffraction of SP by 
impedance steps for experimental investigation of the optical properties of surfaces and thin films are 
discussed. 

PACS numbers: 71.36. + c, 73.90. + f 

1. INTRODUCTION scription of the problem becomes much more compli- 

Surface electromagnetic waves [surface polaritons 
(sP)] of the optical band a re  being more frequently em- 
ployed at present for the investigation of the optical 
properties of surfaces and of thin films. The reason i s  
that the SP dispersion i s  not only determined by the di- 
electric constants of the contiguous media, but contains 
information on the properties of the transition layer. 
The transition layer exerts a particularly strong influ- 
ence when the frequency do of the dipole oscillations in 
the transition layer (or in a thin film deposited on a 
substrate) lands in the region in which the SP frequen- 
cies a re  restructured. In this case, a s  shown in Ref. 
1, a gap A having a width of the order of w0(d/A)l i s  
produced in the SP frequency spectrum (d is the transi- 
tion-layer thickness and A = 2nc/wo). An effect of this 
kind and, in particular, the square-root dependence of 
~ ( d ) ,  were observed both in the IR band2 and in the re- 
gion of the electronic-excitation s p e ~ t r u m . ~  

Recently one of us1 has shown that at resonance with 
the oscillations, an additional surface wave i s  pro- 
duced in the transition layer besides the gap. In a cer- 
tain sense, the appearance of the additional surface 
wave can be regarded a s  an effect of spatial dispersion 
in terms of the parameter kd, where k i s  the (two-di- 
mensional) wave vector of the SP. It is known that in 
three-dimensional crystal optics allowance for the ad- 
ditional wave leads, in particular, to a substantial 
modification of the Fresnel formulas for the coeffi- 
cients of the reflection and transmission of radiation 
through a crystal b ~ u n d a r y . ~  It turns out that a similar 
situation ar ises  also in the problem of reflection and 
refraction of surface waves by surface-separation 
lines. An essential feature of the crystal optics of SP 
is the possibility of transformation of the surface waves 
into volume ratiation, so that the mathematical de- 

cated. 

In the absence of additional surface waves this prob- 
lem (that of diffraction of SP by an impedance step) was 
considered earl ier  (see, e.g., Ref. 6). It is precisely 
the theory of the diffraction of SP by an impedance 
step, with allowance for the additional surface waves, 
which i s  the subject of the present article. 

To solve the problem we use, just as in Ref. 6, a 
factorization method and impedance boundary condi- 
tions. In our case, however, these boundary conditions 
contain derivatives of the electric field E ,  along the 
surface. These derivatives play a role similar to that 
of the spatial-dispersion terms in volume crystal op- 
tics. We recall now that in volume crystal optics, 
when account i s  taken of spatial dispersion in the re- 
gion where additional waves exist, it becomes neces- 
sary to use the so-called supplementary boundary con- 
ditions (SBC). The SBC a r e  necessary here because in 
most cases  the nonlocal dielectric tensor of the medi- 
um can be regarded a s  known only for those points of 
the medium which a re  f a r  enough from the boundary. 
On the other hand, in these very cases  (for certain 
models see Ref. 5), when the tensor ~ ( r ,  r') can be ob- 
tained fo r  arbitrary points r and r ' ,  there is no need 
for  the SBC, since the entire information needed to de- 
termine the field amplitude is contained already in 
~ ( r ,  r'). In our case, the analog of the material rela- 
tion i s  the impedance boundary condition, which is like- 
wise generally speaking unknown in the region of the 
impedance step for  an arbitrary transition layer. The 
t e rms  with first  derivatives of E can be written in the 
following general form: 
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where y, and y, a re  functions of x such that kl + y 
= yB(x) a s  Ix l -m. In a certain sense, the problem of 
choosing the functions y, and y, is similar to that 
arising in gyrotropy theory.' It appears that, just a s  
in Ref. 7, it can be solved on the basis of certain gen- 
era l  principles, for example the principle of symmetry 
of the kinetic coefficients. 

In the present article, however, we confine our- 
selves to a transition-layer model in the form of a thin 
film having a dielectric constant that is inhomogeneous 
over the surface. Within the framework of this model 
it can be shown that y1 = 0, and the dependence of y, 
on the parameters of the film can be found. Thus, the 
impedance boundary condition turns out to be fully spe- 
cified, and it i s  therefore perfectly natural that no 
supplementary boundary conditions a re  needed. The 
problem, a s  shown below, was reduced to a solution of 
an integral equation with a kernel that depends on the 
manner in which the dielectric constant E,(x) varies 
along the film. We obtain the solution of this equation 
by a factorization method in the case when E,(x) takes 
the form of a step. This method makes it possible to 
find the amplitudes of the reflected and transmitted 
surface waves, a s  well a s  the angular distribution of 
the radiation diffracted into the vacuum for an arbi- 
trary complex dielectric constant c,(cu) of the film. 
The result, however, can be expressed in terms of 
elementary functions only in the case of weak damping. 
This i s  precisely the case considered in detail in the 
present article. 

2. GENERAL FORM OF THE SOLUTION BY THE 
FACTORIZATION METHOD 

Let a surface wave of the form 

H.=H,=O, H,=Ho0 exp ( ikox-xoz) ,  

be incident on the impedance step from the metal-sur- 
face side that i s  not covered by the film. Here Ha i s  
the magnetic field of the SP in vacuum, ko= (d2/c2 
+ K:)"~; u0  = w / c ( - & ) - ~ ' ~ ;  ImkO > 0, Re n o >  0, E i s  the 
dielectric constant of the metal. We seek the diffracted 
field in the vacuum in the form: 

It i s  easy to verify that H(s), defined in accordance with 
(I) ,  satisfies the Maxwell wave equation. We require 
also that the total field H satisfy on the boundary z = 0 
the impedance boundary condition 

Substituting (1) in (2) and taking the inverse Fourier 
transform, we obtain the following integral equation for 
~ ( w )  

+=dw' wlwii(w-w') 
F(w)+  J r F ( w ' )  = H,,k,wp(w+k,), 

-m 
v ( w ' )  -xo 

where i(w) i s  the Fourier component of y(x); alter- 
nately, introducing the function 9(w) = (k,/w)F(w), we 

have 

If y(x) is a step function y(x) = yB(x), using the well- 
known relation 

we get from (3) 

We put 

The function * (w)  can be represented a s  a function of 
the complex variable w (see, e.g., Ref. 6) by a product 
of two functions: 

such that Q+(w) i s  analytic and has no zeroes in the up- 
per complex w plane, and @-(w) has the same proper- 
t ies  in the lower plane. It is easy to verify that the 
function 

i s  a solution of (4). 

It can be shown in perfect analogy that if a SP of the 
form 

H,=H,=O, II,=IIo, exp (ik,x-x,z),  

Im k,<O, Re x,>O ( i = i ,  2 ) ,  

where k f =  d / c 2 +  u f  and u ,  satisfies the dispersion 
equation 

is incident from the side x > 0 covered by the film, 
then the field of the diffracted radiation can be repre- 
sented in the form 

112' =H,"'=o 

+- dw F('] ( w )  
H:' = I - - e x p ( i w s - V ( W ) Z )  

271 p ( V ( w ) - n A  ( V ( w ) - x J '  
(8) 

- = 

where 

F"' ( w )  = i  
pktHorY-(kt) wY+(w)  

z~.-ki 

3. EXPRESSIONS FOR THE SP REFLECTION AND 
TRANSMISSION COEFFICIENTS, AND THE ANGULAR 
DISTRIBUTION OF RADIATION DIFFRACTED INTO 
VACUUM 

Let z = 0 and x < 0 (the metal surface is free of film). 
Then the integration contour in (1) can be closed 
through the upper half-plane. The integral of (1) is in 
this case the sum of the pole contribution and of an in- 
tegral along an upper-half-plane cut that s tar ts  at the 
branch point w = w/c + i6. It can be shown that at large 
distances Ix I >> K;~D/C the integral along the cut de- 
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creases  like Ix 1 -'I2 exp(zw Ix I/c). Thus, it yields an 
expression for volume radiation produced upon diffrac- 
tion and gliding along the surface. The pole contribu- 
tion, on the other hand, is of the form 

and obviously describes the reflected surface wave, 
which we designate Ho exp(-ik,+). Taking (6) into ac- 
count, we then have the following expression for the 
reflection coefficient: 

Ho/Ho,=-xop/ZY- (-ko) Y +  (ko). (11) 

To find the amplitudes of the transmitted surface 
waves, we must transform Eq. (1) somewhat. We note 
that it follows from (7) and (5) that 

where n,,, a r e  the solutions of the dispersion Eq. 
(7). Taking also (6) into account, we transform (1) into 

a:'' *-.dw ikowY- (w) x - ~ z e x p ( - i ~ z - ~ ( ~ ) ~ ) ~  
-* 

Y-(-k,) (w+ko) (V(W)-xi) (V(w)-xr) ' 

(12) 
At z = 0 and x  > 0 the integration contour in (12) can be 
closed through the lower w half-plane. The pole con- 
tributions then turn out to be 

(a) Hv~P-I) =- k~' exp (ikoz) HI - Hz 
+ - e x p ( - i k , x ) + - e x p ( - i k z z ) ,  (13) 

Hw (xo-~t )  (xo-xz) Hoo Hoo 

where the coefficients a r e  given by 

It is easy to show that k2, = (u0 - nl)(nO - K,), SO that the 
f i rs t  of the pole t e rms  cancels out the incident surface 
wave. The two other t e rms  in (13) describe the normal 
and additional surface waves. We call attention to the 
fact that Re k, < 0, but Re k, > 0. Therefore the energy 
flux of the normal wave in vacuum, flows in the posi- 
tive x direction, away from the step. At the same time, 
the energy flux carried in the vacuum by the additional 
wave flows in the opposite direction. The reason is 
that the bulk of the energy flux carried by the additional 
surface wave i s  concentrated in the film, and at c, <O 
the energy fluxes in the film and in the vacuum a r e  op- 
positely directed in the region where the additional 
wave exists. 

Let now z be large enough, namely 

Calculation of the integral (1) by the saddle-point 
method yields the following dependence of the amplitude 
of the volume radiation on the observation angle 0 
(tan0 = - x / z ) :  

pk,02c-z sin 8 cos 8 x- 
Y -  (-ko) Y + (me-'sin 8) (ko+oc-'sin 8) (xo+ioc-' cos 8) ' (15) 

Similarly, 'using (8) and (9) we can obtain expressions 
for the SP reflection and transmission coefficients and 
for the angular distribution of radiation diffracted into 

vacuum when a surface wave is incident on the im- 
pedance film from the side x  > 0 which is covered by 
the film. Denoting the amplitudes of the surface waves 
a t  z = x  = 0 by Ho, H,, and H2 respectively, and the 
amplitude of the cylindrical wave in vacuum by H("),  
we have the following expressions for the rat ios of 
these amplitudes to the amplitude of the incident sur- 
face wave (i = l , 2 ) :  

H', xa(k,-ko) Y-(kc) Ht -= xt - -.=-- 
Hot '(xt+xo) ki Y -  (-ko) ' Hot Z(xj-xt) Y-(ki) Y+(-k i ) ,  

FV)  exp (irmlc+in/4) 
-=-- 
Hoj (Znrolc) '" 

kjoZc-' sin 8 cos BY - (kj) Y + (-oc-' sin 0) 
X 

(kj+oe-'sin 8) (x,+imc" cos 8) (x,+imc-' cos 8) 
' 

4. ENERGY FLUXES CARRIED BY THE SURFACE 
POLARITON. ENERGY CONSERVATION LAW 

The energy flux carried by the SP i s  obviously given 
by 

w=Lv7 S= (z) dz, 
-- 

where S, i s  the energy flux density and L, i s  the length 
of the SP  excitation region. The energy flux density i s  
determined here by the relation (see, e.g., Ref. 5) S ,  
= umu(z), where u , ~ =  adk) / ak  is the group velocity of 
the SP and u(z) i s  the energy density given by 

The group velocity of the SP can be easily found by dif- 
ferentiating the dispersion equation with respect to o. 
Near the resonance, when I o - wo 1 << w,, the main con- 
tribution to u, is made by the derivative a p / a o  
= - p(w - w0)-'. In this case the expression for the 
group velocity takes the form 

where the index i = 1,2  corresponds to the normal o r  to 
the additional surface wave. The energy density in the 
film is very high under the indicated conditions, s o  that 

where U, i s  the energy density in the film. Thus, the 
expression for the energy flux carried by the surface 
wave is of the form 

where H, i s  the amplitude of the magnetic field at  z = 0. 
We note that the same Eq. (17) i s  obtained if S i s  
replaced by the usual expression for the Poynting vec- 
to r  S = ( c / 4 ? r ) ~ x  H. It i s  easily seen that a s  p - 0, 
when uZ>> ul ,  I kll - k,, and u,- u o  Eq. (17) goes over 
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into the expression for the energy flux of an SP  on a 
clean metal surface, neglecting the penetration of the 
field into the metal: 

To obtain equations for the ra t ios  of the energy flux- 
e s  of the reflected and transmitted surface waves to the 
energy flux of the incident wave, it is necessary to 
know the expressions for the squared moduli I Hy l of 
the corresponding fields. Equations (11)  and (14 )  a s  
well a s  (16) make it possible to obtain al l  the informa- 
tion on the character of the transformation of the sur-  
face wave into other surface waves and into volume ra- 
diation upon diffraction by an impedance step. How- 
ever, the functions @+ and *- in the equations indicated 
above a r e  expressed in the form of contour integrals 
which do not reduce generally speaking to any simple 
elementary o r  special functions. Nonetheless, in the 
case of weak damping of the surface waves it i s  possi- 
ble to express the moduli I * ,  I and I \k-l relatively 
simply in terms of n and k t .  The expressions for the 
squared moduli of the fields I H, 1 therefore take like- 
wise a simple form if the damping of the surface waves 
is neglected. We present here the equations for the 
energy flux conversion coefficients for precisely this 
case. 

After substituting the squared moduli of the fields 
I Hy 1 in the expressions for the energy fluxes (17 )  and 
(18 ) ,  we obtain the following equations for the conver- 
sion coefficients of the SP energy fluxes: 

wo .wi -=-- ki= -4xoxr - (kz+ko)3(kz-lkil) 
Woi Woo k," (x ,+xo) ' (xz+lc0)~k.f  lkll)" 

Wo .W2-4% koz(kz-lktl) -=-- 
Woz Woo xz ' (kz-ko)'(k0+lkl~) 

' 

where the index 0 corresponds to the SP on the metal 
surface free of film, the indices 1 and 2 correspond 
to the normal and additional waves in the presence of 
the film, and Woi (i = 0 , 1 , 2 )  is the energy flux of the 
surface wave incident on the impedance step. We take 
particular notice of the fact that the SP energy-flux 
conversion-coefficient matrix obtained by us  turns out 
to be symmetrical 

We consider now the angular distribution of the de- 
pendences of the radiation diffracted into the vacuum. 
The total energy flux dv) radiated into the vacuum is 
defined obviously a s  follows: 

Obtaining IH ( ' ) (B )  l 2  from (15)  and ( 1 6 ) ,  we get the fol- 
lowing expressions for the angular distribution of the 
volume-radiation intensity: 

W"' 2xiki2(kz-lktl) -- - k2k.l (kz-k=) 
wo, (lkil+ko) ( k z + ~ k i ~ ) ~  ' ( ~ k i  I - ~ J  (ko+k=) (k2+k=)'(lkIl +k)' J 20) 

0 .  o k==- - -sm 0, k,= - cos 8. 
c 

A characteristic difference between the angular dis- 
tribution (20 )  and that considered in Ref. 6 for the case 
of diffraction of SP by the boundary line of two metals 
with different impedances is that the radiation intensity 
vanishes in the direction normal to the surface. The 
reason i s  that in our case the impedance boundary con- 
dition contains derivatives. 

In the absence of damping it follows from the energy 
conservation law that the sum of the fluxes Wi of the 
surface waves reflected from and passing through the 
impedance step, and also of the energy flux w ( ~ )  of the 
volume radiation produced a s  a result of the diffrac- 
tion, should equal the energy flux of the incident sur- 
face wave WOi: 

Using the explicit expression for the SP dispersion 
law, it can be verified that (21)  i s  identically satisfied 
in all the cases  discussed here. 

5. DISCUSSION OF RESULTS 

All the results  reported above a r e  the consequence of 
the use of the impedance boundary condition ( 2 ) .  It i s  
known that it i s  valid only i f  the fields vary very slowly 
in vacuum: k,,d << 1 and k,, 6 << 1 ,  where 6 = c 1 E I - ' I2/w is 
the depth of penetration of the field into the metal, and 
k,' is the characteristic length of the variation of the 
fields in a direction parallel to the surface. An analy- 
s i s  of the solution obtained above for the case of a 
jumplike change of E,(x) shows that the electric field 
near the impedance step diverges like Y - ~ ' ~ .  Therefore 
the impedance boundary conditions a r e  not valid at 
small distances r from the impedance step, r s  max(d, 
6) -r,. At the same time it i s  clear that if the imped- 
ance step i s  smeared out and the width in the region p 
where cl (x )  varies from 1 to cl(m) is such that p > r o ,  
the boundary conditions ( 2 )  a r e  valid on the entire sur- 
face z =O. Thus, the integral Eq. ( 3 )  holds only 
a t  p > r o .  

Let u s  determine now the conditions under which the 
smearing of the impedance step by an amount p >ro 
does not effect significantly the solution of Eq. ( 3 ) .  To 
this end we represent the integral te rm in ( 3 )  in the 
form 

The quantity (ap/ax),-,, can be regarded a s  constant at 
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FIG. 1. SP energy-flux conversion coefficients for a silver 
film (Ewp =3.8 eV) of thickness d =40 A ,  deposited on the 
surface of aluminum (Ewp=15 .8  eV): 1) W ~ / W , ~ ;  2) w,/Woo; 
3) Wo/Woo. 

I w - w' I p-l. Therefore, if the main contribution to 
(22) is made by I w1 1 << p-l, than at Iw 1 << p-I we can set  
(aP/8x),,.= 1, which i s  equivalent to a transition to 
Eq. (4). An analysis of the solution obtained above for 
(4) [see (6)] shows that the main contribution to (22) at 
(ap/ax) ,= const) is made by Iwll s max(k,, lw I ) .  Thus, 
the transition to the limit a s  p-  0 should be understood 
in the sense that 

ro=max (a ,  P )  <p<dl el 1 -I. (23) 

Condition (23) takes account of the fact that k, 6 d-I I c, l . 
We note that at frequencies that a r e  close to resonance 
with the oscillations in the transition layer, Eq. (23) i s  
valid for any p >yo. 

It was already emphasized above that the questions 
that ar ise  in the presence of impedance boundary con- 
ditions with derivatives turned out to be analogous in a 
certain sense to those that must be discussed in the 
analysis of reflection and refraction of volume waves 
by boundaries of gyrotropic media. It i s  known that in 
the latter case the kinetic-coefficient symmetry prin- 
ciple has made it necessary to take account in the 

FIG. 2. SP energy-conver- 
sion coefficients: 1)  Wo/ 
w,; 2) W,/W,. 

FIG. 3, Energy dependence 
of volume radiation W(')(O)/ 
woo- 

boundary conditions a surface current proportional to 
the gyrotropic constants. In our case, however, when 
considering the diffraction of waves by an impedance 
step, the boundary conditions (2) also contain a term 
proportional to a d a x ,  but this i s  equivalent to the ap- 
pearance of a certain linear rather than surface cur- 
rent. Formally, by a method similar to that used 
above, we can obtain expressions for the fields without 
taking this linear current into account. This is equiva- 
lent to using in (1) the function @(w) in place of F(w). 
Then, however, the energy conservation law i s  not 
satisfied, and this situation takes place apparently for 
any model of an impedance step in the region where the 
SP is at resonance with oscillations in the transition 
layer. 

The results  of the calculations for the SP energy flux- 
e s  and for the volume radiation a r e  shown in Figs. 1-4. 
We wish to call attention here primarily to the fre- 
quency dependence of the impedance of the volume ra- 
diation produced when a surface wave is incident on the 
step from the clean metal surface. Since the reflection 
coefficient for this SP i s  always small [ s ( a  + I-' 
a s  I c 1 -m]  and the intensity of the additional surface 
wave excited under these conditions is small 
[ ~ 4 ( 1 +  lc 1 'lI2], the volume-radiation spectrum will 
contain waves in a narrow spectral interval having a 
widthg of the order of the true (indirect) gap 

This phenomenon may be the basis for an experimental 
method of investigating the oscillation spectra in thin 
films, and is in a certain sense similar to the forma- 
tion of residual rays  upon reflection of white light from 
ionic crystals. 

FIG. 4. Dependence of the 
integrated coefficient w(V)/ 
Woo of conversion of SP 
energy into volume radia- 
tion on the frequency in the 
vicinity of a resonance with 
the oscillations in the trans- 
ition layer. 
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