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The influence of the impurities on the stationary Josephson effect in SNINS systems is considered. It is shown 
that the expression for the current amplitude depends significantly on the ratio of the mean free path to the 
coherence range of the superconductor and also on the position of the dielectric bamer in the layer of the 
normal metal. The effect of the Andreev level shift in a magnetic field in a SNZNS system [A. D. Zaikin and 
G. F. Zharkov, Sov. Phys. JETP 51, 364 (1980)] on the current in the system is taken into account. A 
magnetic field enhances somewhat the current amplitude and leads to small current oscillations that depend 
on Hand  are related to the discrete levels of the system. A theory of the nonstationary Josephson effect in 
SNINS systems is developed. The discrete spectrum of the system affects the current-voltage characteristics 
and produces on them oscillations that are also dependent on the position of the dielectric layer. It is shown 
that for certain values of the voltage, such that eV < 2A, the Josephson-current component in an SNZNS 
system diverges logarithmetically. 

PACS numbers: 74.50. + r 

1. INTRODUCTION 

It i s  known that the spectrum of excitations localized 
in a normal metal between two superconductors (SAE 
system) i s  quantized. l If the normal-metal layer con- 
tains a certain irregularity (for example, a thin oxide 
film -SNZNS system), the excitations a re  scattered by 
the film and this alters the form of the spectrum.' 
The Josephson effect is also strongly influenced there- 
by, since the expression for the stationary Josephson 
current in the SNS (or SNZNS) system is determined in 
fact by the form of the excitation spectrum of this 
system. It was proposed in Ref. 2 that there a re  no 
impurities in the system. In the present paper, which 
is a further development of Ref. 2, we investigate the 
behavior of SNZNS systems in the presence of ex- 
ternal fields (impurity field, or  magnetic and electric 
fields). 

We start  from the ~ i l e n b e r g e r ~  quasiclassical equa- 
tions for the matrix Green's function integrated over 
the energy: 

As is customary, the presence of the dielectric in- 
terlayer is taken into account by introducing into the 
system a potential of the form V06(x -xo) (x, i s  the 
coordinate of the interlayer). This potential, however, 
does not enter a t  all in Eqs. (1.1) and must be taken 
into account with the aid of the boundary conditions for 
2, at  the point x,. These conditions can be obtained 
from the ~ o r ' k o v  equations5 in which the potential 
V ,6(x -x,) i s  introduced, using the customary proce - 
dure of integrating these equations from x, - 6 to xo 
+ 6 and letting 6 tend to zero, after which taking the 
Fourier transforms of the exact Green's functions 
with respect to the coordinate difference and integrat- 
ing with respect to energy. These conditions a r e  of 
the form 

g", (us, X"+O) -gY (-u=, x0+0) =g" (u., 50-0) 

-g.(-u=, so-0) =i(v.lVo) [ga(v=,  xo+O) -g.(v*, +a-0) 1. (1.3) 

Here and elsewhere the function 2, depends only on 
the coordinate x and on the Fermi-velocity component 
u,, inasmuch a s  the superconducting system will be 
assumed homogeneous in the y and z directions. At Vo 

a VF = 0 i t  follows from (1.3) that g, is continuous a t  the 
vF- ~ ( v F ,  r )  + [G,+A - - < g .  ( v ,  r )  ), gm (VF. I ) ]  =o, 

ar 21 ('") point x,,, and a t  V,,= .D we obtain the conditions for  the 
impenetrability of the IS boundary4: 

the use of which i s  quite effective for the solution of 
many problems of weak superconductivity (see, e.g., g- (u=, X O )  =gm (-or,  xo) . (1.4) 
Ref. 4). Here 

The order parameter of an SNS system is described 
by the model 

A ( 2 )  = A  exp {'12icp sign x )  [8  (x-dI2) +8 (-x-d l2)  I ,  (1.5) 
g2 + fWf: = 1, vF i s  the Fermi velocity, I is the mean 
f ree  path, w is the Matsubara frequency, and A i s  the which i s  customarily used under the condition d >> to 
order parameter. The square brackets in (1.1) stand [d i s  the thickness of the normal-metal layer, t o  is 
for the commutators, and the angle brackets for the coherence length of the superconductor, 8 ( x )  is 
averaging over the directions of the vector v,. the Heaviside function, and cp i s  the phase difference 

The current in the superconductor is determined between the order parameters of the superconducting 

from the equation (p, = mv,) edges]. 

Using (1.1)-(1.3) and (1.5), we have a t  a low im- 
2, purity density ( sL2  = e' + A') 
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This result can of course be obtained also (albeit after 
more cumbersome calculations) with the aid of the ex- 
pressions obtained in Ref. 2 for the exact  ree en's 
functions of a SNZNS system. We note that Eq. (1.6) 
describes the stationary Josephson effect in impurity - 
free superconducting systems with weak couplings of 
various types a t  arbitrary values of V,. In fact, let 
initially d =  0. Then the current density takes the form 

At large Vo, Eq. (1.7) leads directly to the Ambegao- 
kar-Baratov equation. Equation (1.7) is suitable also 
for the description of such a state in short supercon- 
ducting bridges. When the current density (1.7) i s  
multiplied by the area  of the opening, the results of 
Refs. 4 (V, = 0) and 7 (Vo# 0) a re  obtained directly. 

Let now d #  0 (and in fact d>> to). Then a t  V,= 0 
Eq. (1.6) yields the well-known equation for the cur- 
rent density in an SNS junction. e On the other hand, 
if the resistance of the insulating interlayer i s  large: 
R>> 8n2/e2pi [R=2a2Vt/e'pz (Ref. 91, and /.I i s  the 
chemical then we arrive a t  the result of 
Ref. 2 for SNZNS junctions. These two limiting cases 
a re  precisely those of greatest interest. The case V, 
= 0 has been sufficiently well studied. We confine our- 
selves therefore below to the influence of external 
fields and impurities on the Josephson effect in SNZNS 
junctions a t  large values of R (i.e., the tunneling 
through the insulating interlayer i s  weak). In Sec. 2 
we obtain an expression for the stationary Josephson 
current in the field of nonmagnetic impurities. In the 
presence of such impurities, the discrete excitation 
spectrum of the SNZNS junction becomes smeared out. 
This (as in the case of SNS  junction^'^) decreases the 
amplitude of the Josephson current. In Sec. 3 we in- 
vestigate the influence of an external magnetic field on 
the Josephson effect in a SNINS system. It was shown 
in Ref. 2 that the magnetic field in an INS systems 
shifts the Andreev levels by an amount proportion to 
this field. In an SNS junction, the presence of a mag- 
netic field leads to instability of the discrete spec- 
trum. "*" It i s  clear in this connection that the 
Josephson behavior of SNS13 and of SNZNS junctions will 
be significantly different. In Sec. 4 i s  developed a 
microscopic theory of the tunnel current in the pres-  
ence of an electric field in the system (the nonsta- 
tionary Josephson effect). 

2. STATIONARY JOSEPHSON EFFECT IN A SNlNS 
JUNCTION WITH IMPURITIES 

To take into account the presence of impurities in a 
system one can use the usual averaging technique. In 

matrix formalism, the corresponding equation for the 
Green's function takes the following graphic form: 

A thin line denotes here the matrix   re en's function of 
a pure SNS junction,' a thick line corresponds to the 
analogous function for the SNZNS junction, averaged 
over the disposition of the impurities, and the wavy 
line is used to introduce the vertex V0?,b(x - x,). To 
solve Eq. (2.1) we use the condition that the parameter 
V,' i s  small. It suffices for us to find an equation for 
the renormalized quantity 6 in the zeroth order in this 
parameter (i.e., for  the two isolated half-spaces x 
< % and x >x,). Taking (1.4) into account, we obtain 
after standard calculations (for simplicity, we present 
the result a t  low temperatures T<< T,) 

Strictly speaking, we must also take into account the 
renormalization of A. We confine ourselves first  to 
the case of a relatively small number of impurities, 
I > 5". Under this condition, i t  is easy to show'" that 
the renormalization of A can be neglected. Using the 
conditions (1.13) and Eq. (1.2) for the current, we ar- 
rive a t  

It i s  seen that at I > d the presence of impurities has 
little effect on the value of the current. In the opposite 
case, 1<<d, we get from (2.2) and (2.3) 

At temperatures v,/d << T << Tc and a t  arbitrary values 
of I we obtain from (2.2) and (2.3) 

8va T sinrp j= -- 2d d 
ex*{----) 

eHd T+2nulll ST 1 ' 

In' the case I << d, Eq. (2.4) for the current i s  expo- 
nentially small even at T = 0: 

8va 1 
j= ---- - d 

sin rp erp{- T) 
eRd d 

The results (2.4) -(2.6) a re  valid a t  d/2 - Ix,l>> &. 
At Ix,I -d/2 - 5 ,  the tunnel current begins to decrease 
somewhat and a t  x,= i d / 2  (SZNS junction) the corre- 
sponding expressions turn out to be half a s  large a s  
expressions (2.4)-(2.6). This difference between 
SINS and SNZNS systems (in the absence of impurities) 
was already pointed out in Ref. 2. The reason for 
this effect is that a t  low temperature the main con- 
tribution to the current i s  made by excitations with en- 
ergy -v,/d<< A In SZNS junctions these excitations 
a re  present only in one half-space, whereas in the 
SNZNS system (at d/2 - I xo I >> <,) they a re  present on 
both sides of the insulating barrier.  
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Thus, the physical cause of the effect of impurities 
on the Josephson current in SNZNS junctions (just a s  
in SNS junctionslO) i s  the smearing of the discrete 
spectrum of the levels as a result of scattering of the 
electronic excitations by impurities localized in the 
normal-metal layers. The actual difference from the 
case of SNS systems (under the analogous condition 1 
> to) lies in the presence of two systems of levels, 
which leads to different contributions to the renormal- 
ization of the frequency on the opposite sides of the 
insulating interlayer. 

We consider now the inverse case 1 << 6,. Under this 
condition the Eilenberger functions take the form 

and the properties of the system a re  described by the 
Usadel equations14: 

' F*(r)  a lFe(r) l z ]  =O, 2AG. (r) -2wF. ( r )  +D + - -- 
2 G , ( r )  dr 

Gw ( r )  = ( I -  IF. ( r )  1 z)'h, D='l,v,l. (2.8) 

From the Eilenberger equations (1.1) i t  is also easy 
to obtain14 

a 
2aF,  ( r )  +v, - F, ( r )  =2AG. ( r )  + [ G .  ( r )  Fa ( r )  -Fa ( r )  G- (r) 1. 

Or 1 

(2.9) 
We now integrate the boundary conditions (1.3) over 
the directions of the vector v,. Then, taking (2.7) 
into account, we have 

ivr - (F. (xo+O) -F. (xo-0)  ) =F,. (xo+O) =Fie (xo-0) (2.10) 
2 vo 

with analogous relations for the G-functions. We have 
taken i t  into account here that in our problem only the 
x components of the vectors F and G differ from zero: 

F. ( r )= {P , . (x ) ,  0 ,  0 ) ,  G . ( r )= {G , , (x ) ,  0 ,O) .  (2.11) 

Using relations (2.9)-(2.11) under the condition I 
<< 4, we arrive at the boundary conditions for Eqs. 
(2.8): 
aF" zvr -- aFm - [G .  (sot 0 )  F. ( so -0 )  -G. (x,-0)F. (xo+O) I ,  - =-I 
a I + a L,o 2V.L 

(2.12) 
a t  Vo= 0 there follows from (2.12) the usual condition 
of the continuity of the Usadel functions a t  the point x,, 
and a t  Vo= m we obtain the condition aFw/ax= 0 on the 
boundary with an impenetrable insulator14. 

In the case of interest to us, that of large values of 
the parameter Vo, the problem i s  solved by successive 
approximations in Vil. In the zeroth approximation, 
the Usadel equations in a normal-metal layer can be 
reduced to an equation of the physical-pendulum type: 

d2a,* 2 0  -- -- sin a,*, x S x , .  
dx2 D 

Here F:' = sin a: exp(iicp/2). We assume that the F- 

function on the NS boundary is equal to i t s  value in the 
interior of the superconductor in the absence of cur- 
rent. This condition is valid a t  T << T, (and also for 
bridge structures a t  higher temperatures). This is 
easily verified by considering two half -spaces occupied 
by a normal metal and a superconductor. We assume 
that the order parameter changes jumpwise on the NS 
boundary from zero to i t s  equilibrium value A in the 
interior of the superconductor. Then the Usadel equa- 
tions also reduce to the physical-pendulum equation 

d'a. 2'2 - = -- A 
sin (am-81, 6= arcsin - . 

dxZ D P 

Let the regions occupied by the normal metal and by 
the superconductor be located on the left and on the 
right, respectively. The solutions of Eqs. (2.13)- 
(2.14) can be easily obtained. In the normal metal 

a.=4 arctg exp ( ( 2 o l D )  "x+C,) ,  (2.15) 

and in the superconductor 

a.=6-4 arctg exp {- (ZQ/D)'!*x+C,), (2.16) 

C, and C, a re  arbitrary constants. Matching expres- 
sions (2.15) and (2.16) as well a s  their derivatives on 
the NS boundary, we find that a t  w<< A the Usadel func- 
tion on the NS boundary is equal to i t s  equilibrium val- 
ue A@. In the temperature region T<< T, the main 
contribution to the current is determined precisely by 
this region of Matsubara frequencies. 

Thus, the boundary conditions for Eq. (2.13) take 
the form 

The solutions of Eq. (2.13) with analogous boundary 
conditions were already investigated in detail by us 
when we obtained the stationary states of a Josephson 
junction in an inhomogeneous magnetic field. l5 For 
the case of interest to us  the dw(x) a r e  determined 
from the equations 

(2.18) 
x*=arccos [ (cos am* (x , )  -cos a,* ( x )  ) "/2"' cos am* ( x )  1, x h x O ,  

where 

a re  respectively incomplete and complete elliptic in- 
tegrals of the f i rs t  kind. 

Let now pu = F?)* + FL1)*, where 

F:~'* =pw* cos am* exp(* irpl2) (2.19) 

is the first  approximation for the Usadel function in 
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terms of the parameter V;'. The functions 0: satisfy 
in the normal-metal layer the equation 

In the superconducting regions the equations for 0: 
assume the very simple form 

At infinity, the functions 0: should tend to zero. Using 
this and matching F:" and their derivatives a t  the 
points r d/2, we obtain 

The general solution of (2.20) i s  of the form 

By substituting (2.23) in the boundary canditions (2.12) 
and (2.22) we can determine the arbitrary constants 4 
and B*. 

The current density in the system is obtained from 
the equation 

The presented relations enable us to calculate the 
Josephson current a t  arbitrary temperatures. The 
final result for the current density i s  expressed in 
terms of elliptic functions and is too unwieldy to pre- 
sent here. However, under the condition 

the analysis becomes much simpler. Let initially x, 
= -d/2 (SINS junction). The quantity c~;(x , )  i s  easily 
calculated from Eqs. (2.18) with allowance for (2.25) 
(see Ref. 15): 

If (2.25) is satisfied, Eq. (2.20) has a solution that 
satisfies the boundary condition (2.12) and takes the 
form (we assume here sin a; = ~ / 0 )  

(2.27) 
and this expression is valid a t  distances not too close 
to the point x = d/2 [under the condition d/2 - x >> (d/ 
LO)"*]. From (2.24) and (2.27) we obtain directly the 
result for the Josephson-current density in a dirty 
SINS junction: 

j = 
32n3d (2nTD)" A' sin cp T -- 

e%RR,pPZ1' n2T'+AZ TV 
{ - d  (g) ' }, (2.28) 

Here R, =d/DN(0)e2 is the resistance per unit area  of 
the normal-metal layer. At T << T, the general equa- 
tion (2.28) goes over into 

Let now d/2 - Ixo I >> (D/T)'/' (SNINS junction). The 
calculations yield in this case 

j= 32nZd (2nTD) "AZ sin (p 

eSRRNpPZ12 TVZ 
e x p ( - d ( ~ ) " a ] .  

At T << T, we obtain 

We see that in the considered case I << 5, the Josephson 
current (just a s  in the case of a low impurity density) 
depends on the location of the insulating interlayer 
inside the normal -metal layer. Thus, the current 
density in a SNINS junction turns out to be considerably 
higher than the analogous value for the SINS junction 
[cf. (2.29) and (2.31)l. It i s  seen also that the expres- 
sions for the current in the cases 1 >> 5, and I << 5, a re  
substantially different. The role of the coherence 
length in a normal-metal layer under the conditions 
1 << 6, (just a s  in the case of SNS junctions16) i s  as- 
sumed by the quantity ( D / ~ ~ T T ) ' / ~ ,  whereas for a small 
number of impurities (I >> 6) the analogous quantity i s  
(2 *T/v, + 1 /I )-I. 

3. EFFECT OF EXTERNAL MAGNETIC FIELD ON THE 
JOSEPHSON CURRENT 

Let now an external magnetic field H directed along 
the z axis (parallel to the NS boundaries) be present 
in the normal-metal layer of an impurity-free SNZNS 
junction. It is easy (for details see Ref. 2) to obtain 
a dispersion equation for the energy of the excitations 
under these conditions. It takes the form (E << A): 

Here u, is the electron-excitation velocity component 
in the y direction, and h is the depth of penetration of 
the magnetic field in the superconductor. Strictly 
speaking, Eq. (3.1) is contradictory, since an eigen- 
value of the energy E should not depend on the coordi- 
nates. This is in fact that cause of the instability of 
the spectrum in SNS junctions. "*12 However, if the 
transparency of the insulator i s  low, then i t  follows 
from (3.1) in the principal approximation 

It is seen that in this case there is no smearing, and 
only a shift of the levels by an amount proportional to 
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the magnetic field H and to v, (Ref. 2) and the result 
is valid for arbitrary H. 

The substantial differences in the behavior of the 
spectra of the SNS and SNZNS junctions in an external 
magnetic field should determine also the different in- 
fluence of this field on the stationary Josephson effects 
in these junctions. In the case of the SNZNS system 
i t  is quite easy to take the magnetic field into accaunt. 
The shift of the levels (3.2) leads to a renormalization 
of the Matsubara frequency. Replacing E in (3.2) by 
- iw,  we obtain directly 

1 
IJ,=OF - ieHvp(d72xo) sin 0 cos X ,  x S z o .  

4 
(3.3) 

Here v, = v, cos 8 and v, = v, sin 8 cos X.  Thus, the 
magnetic field Ushifts" the frequency along the imagi- 
nary axis [in contrast to impurities, whose presence 
leads to the frequency shift (2.2) along the real  axis]. 

The remaining calculations a re  quite similar to 
those of Sec. 2. We obtain ultimately (T << T,) 

1. I 
2sinQ a+ (d-2x0) i=-~z j d X  ~ C O S ~ B ~ ( C C I S O )  [ c h  ch . 

eR . o  0 
up cos e 

(3.4) 
At T = 0, expression (3.4) for a symmetrical W I N S  
junction (xo = 0) goes over into 

2 - s i n q d X i  arcsin Q(H)  ',- neRd 
cos' 8d(cos 0) 

Q ( H )  ' 

The dependence of the critical current density on the 
magnetic field is shown in Fig. 1. It is seen that the 
magnetic field leads to a certain increase of j ,  and also 
to oscillations of this quantity. We emphasize that we 
a re  dealing here precisely with the current density. 
On the other hand, the total current through a junction 
with dimensions of the order of (or larger than) the 
Josephson penetration depth will obviously be substan- 
tially decreased by the interference effect. 

For a SINS junction, (3.4) (T = 0) yields 

i.e., in this case the magnetic field does not influence 
the amplitude of the Josephson current. At T >> v,/d 
the current receives contributions only from excita- 
tions whose velocity component v,  differs little from 
v, (8 s v , /~d) ' /~ ) .  For these excitations, the level 
shift is small and consequently the presence of a mag- 

FIG. 1. 

netic field in the normal-metal layer has no effect 
whatever on the critical density of the tunnel current 
a t  these temperatures, and this holds for all xo. 

We see that the Josephson behavior of a SNZNS sys- 
tem in an external magnetic field differs not a t  all 
trivially and quite substantially from the analogous 
behavior of SNS junctions. In the case of the latter, 
the dependence of the Josephson current on the mag- 
netic field i s  quite complicated. l3 For SNINS junctions 
the amplitude of the tunnel current depends on the 
magnetic field only a t  low temperatures, T 5 v,/d, 
and this dependence is somewhat different for different 
values of xo. The phase dependence of such a current 
remains sinusoidal a t  all temperatures. 

4. NONSTATIONARY JOSEPHSON EFFECT IN AN 
SNINS JUNCTION 

When a potential difference is produced between the 
superconducting edges, the tunnel junction begins to 
depend on the time. Since the resistance of the in- 
sulating barr ier  is large, the entire voltage drop is 
precisely across this barrier.  Let the potential dif- 
ference between the superconductors be V ( t ) .  The 
distribution of the electric potential in space can then 
be written in the form 

0 ( t )  = ' / z ~ ( t ) s i g n ( ~ - x ~ ) .  (4.1) 

We assume hereafter that there is no vector potential 
in the system. 

The Gor'kov equations in the Keldysh method1' take 
for this system the form18 

1 a= - 
( { i i . ; ~ ~ ~  f  A-em-VoG(x-x,)+k 

X c ( r ,  r'; t, t r )  =i6 (t-t') 6 (r-r') . 

Here 

With the aid of (4.2) we can obtain for the energy- 
integrated  ree en's functions quasiclassical equations 
that go over into (1.1) in the stationary case. Such 
equations were first  obtained by Eliashberg. lg In our 
case they take the form 

where 
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The Green's function G satisfies the normalization 
conditionla 

In addition, in perfect analogy with the stationary 
case, we get from (4.2) boundary conditions for G a t  
the point xo (we leave out the time arguments here): 

In (4.4), iust a s  in (1.31, we made allowance for the 
fact that G depends in our problem on x and v,. 

Equations (4.3) have already been used to solve a 
number of problems in the theory of weak supercon- 
ductivity (for example, to describe the nonstationary 
Josephson effect in short, micro bridge^^^^^). The solu- 
tions of Eqs. (4.3) in the superconducting regions a r e  
sought in the form 

- ( z T d i . 2 )  ( ~ T d l 2 ) } , ~ > -  d 
6 * ( u z , x ) = & +  e x p { - ~ + - ) k * ( v ~ ) e x p { ~ + -  ux D, < 2 -  

(4.5) " 
The matrices A ,  a re  known2': 

p * 1 = ~ ~ 1 1 o  ( E ) c + f " ~ ~ )  (e)i;2,  gnl") ( & )  = 
e  

[ ( E *  iO)Z-A2]'h ' 

(4.6) 
b 

f"'^' ( 8 )  = 
[ (e&iO)2-A21"* ' 

exp {*iq ( t )  / 4 )  0  
S i ( t ) =  ( 

0  e x p ( T i q ( t ) / 4 )  

It can be shownz1 that the matrices A and B a re  con- 
nected by the relations 

The following condition also obtains 

A,=A,RC, -;,AA, 

de  - s, ( t ,  t t ) = S , ( t )  ~ t h ~ e - " " - " '  -S + 

2T 2n * ( t ) .  (4.8) 

The solution of Eqs. (4.3) a t  1x1s d / 2  (i.e ., a t  A 
= 0) is trivial. It yields (in the absence of impurities) 

It remains now to obtain the matrices &(v,). Since 
the resistance of the insulating barr ier  i s  high, we can 

represent these matrices in the form 

and to find the current, a s  usual, i t  is necessary to 
calculate the term - V r  of this expansion. Expressing 
the current in terms of the matrix k, we obtain 

Using (4.4)-(4.11) we arr ive  a t  the final result 

j ( t )  = Im 1 J d o d o T ( w ( o )  ~ ' ( o ' ) e ~ ( " - " ' " j , ( o ' )  

+ f A ( e - o )  [ f A ( e )  Y A A - f " ( e )  Y R A 1 ) ,  
PJ= [If g r ( & ) g ' ( E - a ) ]  C O S  p + -  [ I - g l ( & ) g ' ( & - o ) ]  COS 8 -  

+ i [ g ' ( e ) + g 3 ( ~ - a )  ] s i n  p+-- i [g ' (e )  - g J ( e - o ) ] s i n  p-, 

Y " = ( [ f + g i ( & ) g ' ( & - - a ) ]  COS p+f  [ I - g ' ( & ) g J ( & - w ) ]  COS b- 
+ i [ g 2 ( e )  + g ' ( e - a ) ]  sin p + + i [ g t ( e )  - g l ( & - a ) ]  sin $-)-I ,  i ( j )  =R, A ,  

e - o  
~ * ( e ) = t h L t h -  

2T 2T ' 
e  ( d - 2 z o )  ( e - o )  (d+2x0)  

P* = * 
vpa v p a  

In the equation (4.2) for the carrent we used the usual 
r e p r e s e n t a t i ~ n ~ ~ :  

t - 
exp { i e  J v ( t . ) d t ,  ) = J ~ ( o ) e ' ~ ' d m .  

- ." 

At V=O, Eqs. (4.12) lead to the result of Ref. 2 for 
the stationary Josephson current in a SNINS system in 
the absence of impurities. In the case d = x, = 0 the 
result (4.12) coincides with the known expression for 
the current in an SIS junction, f irst  obtained by the 
tunnel-Hamiltonian method. 

We proceed now to investigate the expressions ob- 
tained for wide SNINS junctions. Let first the voltage 
V on the barrier be constant in time. Then 

In this case j ,  does not depend on the time, and j,(t) 
takes the form 
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i ~ ( t )  =il sin ~ ( t )  +j2 cos cp ( t ) .  

At T = 0 we obtain, after the necessary manipulations, 

(4.13) 
 UP 

iir(x0=0) = - f a'da . arctg (tg ( V d / ~ , a + ~ )  ) 
eRd sin (Vd/u,a+~) ' 

4 , 
jim(xO=O) = - a da {[A ' -  (8,-ev) ' ] l h  

eRd 0 ..-0 
sln (e,dlu,d) 

(6,-eV)d x cos . + (ev-em) sia: ( - )  1 '  ~ I V I < A .  
UPU ulra 

Here E,, and E, a re  the positive roots of the equations 

and N and M a r e  maximal numbers, such that E N ,  &, 

s e I V I  . Under the condition v, Id << e I v I << A, expres - 
sions (4.14) take the form 

2up I l+cos (evdiu.) 
j," (xo=O) = - ln 

eRd I - cos (evdlv,) 

It is seen that the current-voltage characteristics 
of SNZNS systems i s  far from trivial already a t  e I V I 
< A, and i ts  form also differs substantially fo r  dif - 
ferent positions of the insulating barrier.  The normal 
part  j: of the Jo~ephson~current  in a SINS-system in- 
creases monotonically with increasing V and reaches 
a maximum a t  eV= A. The increase of the current 
a t  eV - A is a consequence of the presence of a square- 
root singularity in the state density of the supercon- 
ductor. The anamolous term j: of such a system os-  
cillate with a period rvF/d, since the position of the 
singularities in the state density in the normal-metal 
layer changes with increasing potential difference 
across  the barrier.  The current j; (xo = 0) remains 
practically unchanged in magnitude (e I V I  < A )  and only 
oscillates weakly with a period 2rv,/d. The formal 
expression for the anomalous part  of the Josephson 
current contains in this case, a s  seen from (4.15), 
logarithmic divergences a t  the points V = nv,n/ed. 
This i s  caused by the fact that the Green's functions of 
the system have pole singularities that reflect the 
presence of discrete levels. This behavior of the 
current jl(V) in a SNZNS system recalls in a certain 

sense the behavior of the analogous current in SIS 
junctions, for which the expression diverges logarith- 
mically if e V = 2 ~ . ~ ~ * ~ ~  This singularity of the voltage 
dependence of the Josephson current (called the Riedel 
peaka4) in SIS junctions is due to the presence of a 
square-root divergence in the state density of the 
superconductor a t  energies close to the gap in the 
spectrum. The divergence in the expression for the 
current j ,  in a SNINS system results  from the presence 
of a discrete spectrum on both sides of the insulating 
barr ier .  

The current divergences in SNINS systems (just a s  in 
SIS systems) are,  however, only formal. Actually the 
discrete levels should be somewhat broadened by in- 
elastic relaxation, which can be due to various causes 
(for example, inhomogeneity of the NS boundaries, 
the presence of a small  number of impurities, etc.). 
Equation (4.15) is therefore not valid in the vicinities 
of the divergence points. It can be replaced near such 
points, with logarithmic accuracy, by 

Here 7% is the characteristic time of the energy r e -  
laxation of the quasiparticles in the N layer. In ad- 
dition, all the results a r e  valid only if the character- 
istic tunneling frequency v,, which has  the meaning 
of the reciprocal time of the electron jumping' 
through the insulating barr ier ,  in comparison with 
l / rcN and the analogous quantity l / rcS for a super- 
conductor, thereby ensuring smallness of the non- 
equilibrium effects. In other words, i t  was assumed 
that the current could be calculated by perturbation 
theory. If (4.16) i s  large, s o  that the indicated condi - 
tions a re  not satisfied, then the employed calculation 
method is not valid in the vicinity of the points V 
= ~u,n/ed. We shall not dwell here in greater detail 
on this question. 

The result (4.13) is quite understandable. Its ex- 
planation i s  that a t  e I V I  > A there a re  not quasiparticle 
excitations in the superconductor. Therefore an elec- 
tron that has tunnelled through the insulating ba r r i e r  
from the Fermi surface of the normal-metal layer may 
turn out to be above the superconductor gap only under 
the condition1' e 1 V I  > A. We recall for comparison 
that a similar situation obtains in an SIS junction. The 
normal current jo and the current j, (frequently called 
the quasiparticle and pair interference current) a r e  in 
this case (likewise T = 0) different from zero a t  vol- 
tages e 1 V 1 > 2A, inasmuch as under this condition a 
pair can break in one superconductor and electrons 
can tunnel into the continuous spectrum above the gap 
of the other superconductor. We note also that the 
result (4.13) is valid a t  any position of the insulator 
layer inside the normal metal. We emphasize likewise 
that (4.13) i s  valid only in the absence of impurities 
( I  > d ) .  The normal-metal layer acquires in a certain 
sense the properties of a superconductor even if the 
BCS-interaction constant is zero, since there a r e  no 
reasons that could lead to a destruction of the super- 
conducting correlation between the Cooper pairs that 
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pass through the N layer. I f ,  however, impurities 
a re  now introduced into the normal-metal layer, the 
situation changes markedly. Thus, a t  1 << d the pres- 
ence of the superconducting edges will have little ef-  
fect on the state density in the normal metal near the 
insulatinginterlayer. In this case the result for the 
normal current in a SINS system coincides in the 
principal approximation with the well-known expression 
for the current in an SIN junction: 

and in a SNZNS system the current-voltage characteris- 
tic will differ little from Ohms law. 

Let us return, however, to the case when there a re  
no impurities. We present now expressions for the 
currents in the SINS system (xo=id/2)  at v,/d<<el V]  
- A < < A  (T=O): 

4nd (c I V I -A) 
sin ------ - ; 

UF 

upz A (4.17) 
jIV = 

6eRd2 (el VI -A) (ezVZ-A') 
',,G' 

Here G i s  ~ a t a l a n ' s  constant, c,, is determined from 
(4.20), N, i s  a minimal number such that cNl 2 eV - A 
and N, is a maximal number such that cN2 C A. The 
expression for the term I,(V) in (4.181, which deter-  
mines the contribution made by the continuous spec- 
trum to the current, will be written out below. 

Similar expressions hold also in the case x, = 0. We 
shall not present these corresponding equations, so  a s  
not to encumber the exposition. Attention should be 
called, however, to the fact that a t  e I V I  > A the ex- 
pressions for the currents j, and j, contain terms that 
oscillate a s  function of V with respective periods mF/  
2d and rmF/d. Oscillations of this type on current- 
voltage characteristics (albeit in systems with a some- 
what different geometry) were first  investigated ex- 
perimentally by  oma ash'^ and theoretically by McMil- 
lan and ~nderson". The physical cause of the oscil- 
lations on the plot of the current against the voltage is 
an interference effect that leads to spatial quantization 
of the energy of the excitations. In a SINS system such 
an effect was noted in a number of  experiment^^^'^^. 
An oscillatory j (V)  dependence was indicated also in 
theoretical  paper^^^*^' The cited references were de- 
voted to the nonstationary Josephson effect in a SINS 
system. The Green's functions of the system were 
calculated the method of eigenfunction expansion of the 

single-particle problem, followed by a solution of 
~ o r ' k o v ' s  equations ." 

With further increase of V, the expressions for the 
currents j ,  and j, becomes somewhat more complicated. 
In this case a contribution to the current is made not 
only by the lower but also by the higher energy levels 
of the excitations in the normal-metal layer, and also 
by the continuous spectrum at eV> 2A (T = 0). The 
resultant equations a r e  all of the same type. We write 
down, for example, the result for j, in the SINS sys-  
tem at  eV> A (T<< T,): 

In this equation, c, is determined from (4.14) and N 
i s  in this case a maximal number such that E ,  c eV - A. 
At E,<< A and T=O Eq. (4.19) goes over into (4.17). 
We have furthermore 

AteV>>Aand T=O we get 

I,=A/eR. 

To investigate the integral I,  we use the following c i r -  
cumstance. Assume that we have the integral 

Here A > 1 and B >> 1. It is easy to show that 

Using this equation, we easily obtain for I,  (T = 0) 

At eV>> A we have from (4.21) and (4.22) 

Thus, a t  large V the current-voltage characteristics 
of SINS systems yield Ohms law. A similar result 
holds also for SNINS systems. We note also that in 
Eqs. (4.21)-(4.23) we used the strong inequality v,/d 
<<A and left out the corresponding small terms. 
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We now write down the expression for the term Z,(V) 
in (4.181, which determines the contribution made to 
the current j: by the continuous spectrum: 

(8'-A') "A' cos (2ed/upa)  * [Aa-(8-eV)']"[ez-Azcos~2ed/opa)] ' 

Here M=max(A, eV-A). At T=O and eV>> A, Eq. 
(4.24) yields 

The general form of the voltage dependences of the 
currents j,, j,, and j, in a SZNS system at  T = 0 is 
shown in Fig. 2. The currents j, and j, in a SNZNS 
system behave in similar fashion. It is difficult to 
plot j, (V) for SNZNS systems in view of the consider- 
able irregularity of this function. We indicate only 
that this current component has logarithmic singulari- 
ties of the type (4.15) a t  eV < 2A. At large values of 
V the behavior of j,(V) in SNINS and SZNS systems is 
of the same type. 

We present now certain equations that determine the 
nonstati~nary Josephson effect in the considered sys - 
tems in the temperature region v,/d << T << T,. At 
e ( v ( c A the currents j, and j ,  a r e  exponentially small. 
For example, for j, in a SINS system we have 

~t ~ I v / > A  we have 

The pair current jr) decreases exponentially at T 
>> g / d .  For example, in a SNINS system the expres- 
sion for this current is 

The anomalous j t  has no factor that decreases expo- 
nentially with temperature. Thus, a t  v,/d << e 1 v 1 << A 
we have 

The value of j t  ( T = 0) i s  determined by Eqs. (4.15). 
When necessary, i t  is easy to calcul~te  the expressions 
for the currents in other particular cases, too. 

From the general equations (4.12) obtained by us i t  
is easy to derive an expression for the current in a 

NZNS system, i.e., in the case when the order parame- 
ter  A vanishes on one of the edges. It is clear that in 
this case only the normal current differs from zero: 

j f a 3  d ( t h -  tb- 
e R o  -- 2T 

The current-voltage characteristic of such system a t  
eV>> v,/D and T = 0 leads to Ohms law. In the case 
T >> v, / d  we have 

v.2 
-sign V, e l V I t T  

(4.31) 
T K e l V I C A  

At such temperatures, the j,(V) dependence in NZNS 
systems becomes Ohmic only a t  large voltages eV>> A. 

Let us return, however, to the study of SNINS sys - 
tems. Let now an alternating voltage V(t) = V 
+ V, cos q t  be applied to the barr ier  in addition to the 
dc voltage V. In this case 

J, i s  a Bessel function of order n. The current is given 
by 

Here j,(w) and j,(w) a re  determined by Eqs. (4.12). 
It is clear that in this case, too, we get oscillations of 
the current a s  a function of voltage, a s  well a s  loga- 
rithmic peaks of the Josephson component of the cur- 
rent (in SNINS systems). In addition, effects of this 
type appear here also in the dependence of the a l ter-  
nating component of the voltage on the frequency o,. 

If the condition 2eV=nwl is satisfied the systems in 
question a re  subject to exactly the same effect a s  SIS 
junctions (Shapiro steps32), in which direct current 
flows through the junction. For SINS junctions a t  T 
= 0 this current in the principal approximation (we 
assume for simplicity that eV<< A and w, << A) is equal 
to 

nu, 2eV ,, - - ( - I ) ~ J "  (-1 sin q. ' - aeRd 0, 

If there i s  no dc voltage on the barr ier  (V= O), and the 
frequency and amplitude of the alternating voltage 
satisfy the condition eV, << ow, << 4 the expression for 
the current in the system takes the simple form (T 
cv,/d): 

Here j ,  i s  the density of the stationary current in the 
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SNINS junction2. In SINS systems, the expression 
(4.34) yields 

A similar expression (containing unfortunately e r ro r s )  
was obtained by another method in Ref. 33. 

In a SNINS system, the expression for the current 
j ( t )  become logarithmically large i f  the frequency sat -  
isfies the condition w, = m,n/ed (in the presence of a 
dc. voltage component: eV + w, = ~v,n/ed). A photon of 
frequency w, is then resonantly absorbed by the tun- 
neling electron and the conductivity of the junction be- 
comes large. 

Thus, the nonstationary properties of SINS and SNZNS 
systems differ greatly, owing to the different struc- 
tures of the energy spectra of these systems. We note 
also that the results obtained by us from the general 
equations (4.12) a r e  valid under the conditions 

These inequalities ensure smallness of the nonequi- 
librium effects and a t  the same time make i t  possible 
to speak of the presence of a discrete excitation spec- 
trum in the normal-metal layer. They also make i t  
possible to use expressions obtained for the Green's 
functions in the BCS model. Furthermore, the first  
of these inequalities imposes a restriction on the value 
of d. The current-voltage characteristics of the in- 
vestigated systems likewise differ substantially from 
the analogous characteristics of SIS  junction^^^^^^. 

We note that the general equations (4.12) do not lead 
in the case d -- to the simple Ohms law j = V/R, a s  
might be expected for an NIN junction: they retain a 
contribution from the discrete spectrum. The reason 
is that the formal transition d - m i s  not allowed in our 
equations. Actually, our analysis presupposes small- 
ness of the Andreev-level broadenirg (- 1/r .) in 
comparison with the distance between such levels 
(-v,/d). At sufficiently large d, for real  systems, 
this condition no longer holds and the spectrum in the 
junction actually becomes continuous. At the same 
time, by making rcN arbitrarily large we restrict  by 
the same token [as is seen from (4.36)] the validity of 
our calculations to small current (v, - O), since no ac- 
count i s  taken in them of the nonequilibrium effects that 
are  due to the change of the distribution function on ac- 
count of the current flow, and manifest themselves 
under the condition vTrcN 1. TO be able to take the 
limit a s  d - m i t  i s  necessary, as indicated above, to 
take into account the finite nature of the mean free path 
1. It i s  easy to verify that in this case we obtain na- 
turally, the usual Ohms law. 

5. CONCLUSION 

We have investigated the influence of external fields 

and of impurities on the Josephson behavior of super- 
conducting systems containing insulator and a normal- 
metal interlayers. The expressions for the supercon- 
ducting current at various impurity densities (1 >> 5, 
and 1 << 5,) turn out to be qualitatively different. In the 
case of a small number of impurities, the quantity that 
plays the role of the reciprocal coherence length for 
the normal-metal layer takes the form 2/5, + 1/1, 
while a t  1 << 5, the analogous quantity is (~/2nT)'/ ' .  In 
the former case under the condition I << d (but I < 5,) 
the amplitude of the current is exponentially small even 
a t  zero temperature, whereas when the number of im- 
purities is large the current does not have an exponen- 
tially small factor a t  zero temperatures. We note that 
similar results a re  obtained also in the case of SNS 
junctions which do not contain an insulating interlayer 
(cf. the results of Refs. 10 and 11). The mechanism 
whereby the impurities influence the current is the 
smearing of the wave functions of the Cooper pairs 
that penetrate into the normal-metal layer. This i s  
taken into account automatically by shifting the Matsu- 
bara frequency along the real axis. It has also been 
established that the superconducting current depends 
significantly on the location of the insulator layer in- 
side the normal metal. 

We investigated the influence of the magnetic field on 
the stationary Josephson effect. It was shown in Ref. 
2 that the presence of a magnetic field in a SNINS 
system leads to a shift of the Andreev levels. Using 
this result, i t  is easy to calculate the superconducting 
current. In this case there likewise takes place a 
shift of the Matsubara frequency, but now along the 
imaginary axis. The critical current density in a 
SNINS junction in the presence of a magnetic field in 
the case of T = 0 increases somewhat and oscillates 
weakly a s  a function of the magnetic field, while in a 
SINS junction i t  remains unchanged. At high tempera- 
tures T >> v,/d the shift of the Andreev levels in a 
magnetic field has little influence on the current. We 
recall that in SNS junctions the spatial quantization is 
destroyed by a magnetic field,"*12 and as a result the 
Josephson effects have a different character under 
these conditions. l3 

A theory was developed for the nonstationary 
Josephson current in SNINS systems. It turned out 
that the behavior of such systems in the presence of a 
voltage on the insulating layer is far  from trivial. 
The current-density characteristics exhibit oscilla- 
tions due to the presence of discrete levels of the 
electronic excitations in the normal layer. The Jo- 
sephson current j,(V) in a SNZNS system at  eV<2A 
has logarithmic peaks spaced ~ u , / e d  apart. This ef- 
fect is attributed to the possibility of resonant tunnel- 
ing of the electrons a t  voltage values corresponding to 
coincidence of the energy levels on the right and on 
the left of the insulating barrier.  Thus, the nonsta- 
tionary behavior of SNINS systems differs noticeably 
from the analogous behavior of SIS junctions. At the 
same time, there a re  also many common properites of 
these two types of weakly coupled superconducting 
systems. 
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Thus, the properties of SNZNS systems turn out to be 
quite complicated and varied, owing to the large num- 
ber of factors that influence their behavior (complexity 
of the geometry, presence of a discrete spectrum, 
and others). 

The experimental investigation of the dependence of 
the normal current on the voltage in SZNS systems is 
the subject of Refs. 27-29. In these studies, experi- 
mental proof was obtained of the presence of a dis- 
crete excitation spectrum in SZNS systems and of the 
associate oscillations of the state density in the N lay- 
e r .  These oscillations manifest themselves, in par- 
ticular, in the oscillatory dependence of the current 
on the junction voltage, which was observed in Refs. 
27-29 a t  low a s  well a s  a t  sufficiently high (T > v,/d) 
temperatures. The distances between the maxima and 
minima of the corresponding experimental curves a re  
of the order of A V -v,/ed, providing direct evidence 
of the presence of discrete levels in the system. 

No experiments for the general case of SNINS sys- 
tems have been reported so far.  From our point of 
view, i t  i s  of interest to carry  out further experimental 
investigation of the stationary and nonstationary Jo- 
sephson effects in SNINS systems. In particular, i t  
would be of interest to study in detail the dependence 
of the stationary Josephson current on the temperature, 
on the location of the insulator layer, on the impurity 
density, and on the magnetic field, a s  well a s  to in- 
vestigate a number of nonstationary effects (oscilla- 
tions of the current component j, ,  j,, and j,, logarith- 
mic peaks on the plots of j, against the voltage and the 
frequency, etc.). Such investigations would be useful 
for further study of the proximity effect. 

In conclusion, we thank A. F. Volkov for a helpful 
discussion of the results. 

' w e  note that this result i s  valid only in first-order expansion 
of the current in 1/R. In the succeeding orders  of such an ex- 
pansion, the normal current can be the results of the exist- 
ence of a nonequilibrium mechanism of penetration of the 
electric field into the superconductor. The contribution of 
such a mechanism can be neglected because of the large 
value of R . 

2 ' ~ h e r e  i s  no quantitative agreement between our results for 
the currents in a SINS system and the analogous results of 
Refs. 30 and 31. It can be verified that the final expressions 
in these references a re  inaccurate. 
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