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The motion of particles in randomly inhomogeneous fields is considered. The collisionless Boltzmann 
equation is averaged over the electromagnetic-field fluctuations by using an approximation developed in 
hydrodynamics theory. The approximation is presented in Sec. 2. The kinetic equation derived is also valid 
when the angle of particle scattering over the correlation length of the random magnetic field is not small. 
The diffusion approximation is considered by taking into acount particle scattering by a stochastic electric 
field. A very simple closed equation set is thus obtained. 
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1. INTRODUCTION where V =  c 2 p / ~  i s  the velocity of the particle with mo- 
mentum p and energy E .  We assume that the mean val- The kinetic theory of the propagation of charged par- 
ues of E and H are  zero: ticles in an electromagnetic field with random inhomo- 

geneities is used in many problems of astrophysics, <E)=O, <H)=O. 

plasma theory, cosmic-ray physics, and others. Multi- The angle brackets denote averaging over the ensemble 
ple scattering of the particles by an randomly inhomo- of the random field. 
geneous magnetic field was considered by ~ i l ~ i n o v  and 
~optygin.' In their paper and in later  work^^-^ the 
problem was solved by perturbation theory. The small 
parameter was the scattering angle with the particle 
traversing a distance equal to the correlation length 1, 
of the random magnetic field. This parameter depends 
on the particle energy. For a number of problems (for 
example, propagation of solar cosmic rays in inter- 
planetary space) an important role is played by the en- 
ergy region for which scattering by field inhomogeneit- 
ies becomes strong and perturbation theory no longer 
holds. The purpose of the present paper is to derive 
a kinetic equation that describes the propagation of 
charged particles in an electromagnetic field with ran- 
dom inhomogeneities for the case of strong scattering. 

The posed problem i s  similar to the theory of strong 
scattering of electromagnetic waves and to the problem 
of hydrodynamic turbulence, where there is no small 
parameter. The problem i s  solved by Orszag's schemes 
which makes it possible to obtain a Kolmogorov spec- 
trum is hydrodynamic turbulence theory, and offers 
other  advantage^.^" This scheme is widely used also 
for magnetohydrodynamic t u r b u l e n ~ e . ~ ' ~ ~  

The employed approach, while quite simple, yields a 
kinetic equation for the average distribution function. In 
the weak-scattering limit this equation goes over auto- 
matically into the one obtained earlier. In addition, the 
Orszag scheme will be improved upon below, by obtain- 
ing an equation for the memory time T of the system, 
rather than specifying this time. 

2. DERIVATION OF EQUATION FOR THE AVERAGED 
DISTRIBUTION FUNCTION 

We start from the collisionless Boltzmann equation 

We shall assume that the fields H and E vary at fre- 
quency w<<v/l,. The distribution function f varies ran- 
domly in space and in time, and follows the variations 
of the random force. Interest attaches to the distribu- 
tion function cp=( f) averaged over the ensemble of the 
random field. To obtain an equation for cp we must 
average (1 ): 

To make (2) closed, we change over first to the equation 
for the characteristic function-the Fourier transform 
of the function f (r, p, t): 

a m ,  P, t )  a - + i k v f  (k p, t )  =- - d3qFa (k-q, P, t )  f (q, P, t )  . 
3t  dpa 

Here F(k, p, t) is the Fourier transform of the force F. 

We shall need below the system memory time T, i.e., 
the correlation time for expressions of the type (Ff). 
The physical meaning of the memory of a system is that 
the correlations, i.e., the initial vaIues, are  forgotten 
a s  a result of scattering of the particles in the random 
fields. It is clear at the same time that any initial cor- 
relation (Ff) vanishes after a time wv even in the ab- 
sence of an interaction of the particles with the field, 
merely on account of the convective term (v . V)f in (1 ). 

We change over therefore to the auxiliary function 

the equation for which is 

- -- a 
a g ( k l ~ . t ) -  e tkv t  j " d 3 q ~ . ( t - q .  p, t )  - g ( q ,  p, t ) e - tqvr ,  (3) 

at ~ P G  

From Eq. (4) for g, which does not contain the Fourier 
transform of the convective term, it i s  seen that the 
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memory time of the correlation (Fg) i s  connected only 
with the interaction with the fields, and that T has the 
meaning of the free path time of the particle. To obtain 
equations for (Fg) we multiply (1) by F and add to the ex- 
pression gaF/at, obtaining thereby in the left-hand side 
agF/at, and average. We use the scheme of Ref. 6, 
where no small parameter corresponding to weak scat- 
tering i s  employed. 

This scheme was developed in the hydrodynamic the- 
ory of turbulence. It is being effectively used of late, 
since it leads to correct results. Thus, in the station- 
ary case we obtain a Kolmogorov spectrum, the spec- 
tral function in dynamics satisfies the non-negativity 
property, and the general equations satisfy the funda- 
mental properties of angular-momentum conservation. 
Following Ref. 6, we replace the resultant semi-invari- 
ant by a T-relaxing term in the right-hand side: - (Fg)/ 
T. In the k, w space this means that 

a 
- S d J q d o l ( ~ , ( k r ,  p, o') F. (k-q ,  p, o - o , + k v )  >-- ( g ( q ,  p, o l - q v )  i 

ap.7 

Alternately, using (4), 

where k={k, w )  i s  a 4-vector. We have used here the 
property of a process that is homogeneous and station- 
ary in the statistical sense: 

When account i s  taken of the equality 

this corresponds to 

( F u ( k - k , )  f ( k ,  p) )- G,=(kt -k)  acp(kt, P )  
1 / ~ - 2 0 t l k V  ape ' 

(5 
<F,(r,  p, t )  f ( r ,  p, t )  )= d'kd6k, (Fp(k-k , )  f ( k , ,  p) )e'k'-'m'. S 

We note that in the scheme of Ref. 6 the problem was 
to calculate the second moments. They a re  expressed 
in terms of the third. In the next step, the third a r e  
expressed in terms of the fourth, in which case the 
semi-invariant of fourth order is replaced by the ?-re- 
laxing term. In our case the problem consists of cal- 
culating the first moment (f)=cp. It is expressed in 
terms of the second (21, and the closure is effected al- 
so in the next step-in the equation for the second mo- 
ment. 

Recognizing that the spatial and temporal scales of 
variation of the average distribution function cp are  
large compared with the corresponding scales of the 
random field, we reduce (2) with the aid of (5) to the 
form 

Here B,, is the correlation tensor of the force: 

B,,, (r,  t )  = d'keik'-'"'G,, ( k )  . 

Expression (6) i s  the kinetic equation for the averaged 
distribution function cp, whose right-hand side takes into 
account the scattering of the particles by the random in- 
homogeneities of the field. We shall show that in the 
case of weak scattering the previously employed scheme 
of closing (2) i s  equivalent to a perturbation theory in 
terms of the small parameter Ic/R << 1 (R i s  the average 
Larmor radius of the particle, R = C P / ~ ( H T ) ' / ~ ) ,  developed 
in Refs. 1-3. The free-path time T i s  in this case much 
longer than T,= lc/v. 

Equation (6) takes then the form 

which coincides with the kinetic equation obtained for 
the case of weak scattering.'-3 We note that it does not 
contain the parameter T. 

It is convenient to use an expression for the tensor D,, 
in terms of the spectral tensor G,(k), since the latter 
can be expressed in terms of the spectral tensor of the 
electric field T,,(k). Indeed, the Fourier transform of 
the force is 

F, (k )  =eE,(k)  + -!- c eWBv.Hp (k). 

The magnetic field Hp(k)  can be expressed in terms of 
the electric field using the electrodynamics equation 

0 
- IIs ( k )  =e,,,k6E, (f:) . 
C 

We then obtain 

F, , (k )=  2 ([6)-kvlG,.,+k,u,)E,(B). 
((I 

Therefore 
ez G,, ( k )  = - ( [ a -kv ]6 , , ,+k , , r . )  ( [ ~ 1 - l i ~ ] 6 n , , + - k , 1 , . !  TYp(l:!. 
I,- 

(7 ) 

In the limiting case of a stationary magnetic field 0'0, 
E - o, T,, - w2, and G,, i s  expressed in terms of the 
spectral tensor of the magnetic field F,,(k): 

eZ 
G,,, ( k )  = - ~ p v o e a ~ ~ F ~ o ( k )  uvvgG ( 0 ) ) .  

c2 

3. DIFFUSION APPROXIMATION 

One of the most frequently employed methods of sim- 
plifying the kinetic equation is the diffusion approxima- 
tion. In the energy range for which the mean free path 
A prior to scattering i s  much less than the character- 
istic scale of the problem, the distribution function i s  
weakly anisotropic in :nomenturn space and it suffices 
to use the first two terms of the expansion of the dis- 
tribution function cp in spherical harmonics: 

h (r .p .  t )  1-3- (8 

where N and j are  respectively the particle density and 
the particle-current density. 

We shall assume hereafter that the spectral tensor of 
the electric field is symmetrical with respect to the re- 
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versa1 of the sign of its arguments k and w: 

O )  =Tm( -k ,  - o ) .  

Averaging (6) over the solid angle of the vector p, with ($ and a re  then connected by the condition that the 
allowance for (7) and (8 ), and using the relation field H be solenoidal) Eqs. (11) and (12) yield the follow- 

ing expression for the diffusion tensor: a I a (dp. &(p)  ) - --P(P.B.(P)).  
o pZ a~ ucZpa exp ( - l , 2 / 4 u 2 ~ Z )  

~ , = 6 , m  
n"'l,(HZ)eZ 1 - crf (1,/2uz) ' 

((. . .)*signifies averaging over the solid angle of the 
vector p, and B(p) is a certain vector function of the where erf(3c) i s  the e r ror  function. In the case of strong 

particle momentum), we obtain scattering, Z,/VT - 1, this equation yields for the diffu- 
sion coefficient a value larger than given by perturbation 

aN I a a~ 
-+divj=--D,-, (9) theory. We note that an experiment on the diffusion of 

d t  P' ap  dP 
solar cosmic rays'' yields a similar deviation from the 

Dp= (2 j b k  
PaPo Tap(k) 
117-iw+ikv ) .  perturbation-theory predictions. 

A similar averaging with weight Pa yields 

pu 8N x,&=- -- 
3 dr, ' 

where 
3e2 m-'(k.u1-kv6.~) ( k . v r k v 6 a )  T o ( * )  ) , (11 ) =-( j d.k 
P U  111-io+skv '! 

From (10) we obtain the following exrression for the 
particle flux density 

With the aid of (11) we reduce Eq. (9) to the form 

The right-hand side of this equation describes the par- 
ticle diffusion in phase space. The first term of the 
right-hand side of (13) corresponds to spatial diffusion 
of the particles, due to the scattering of the particles 
by random spatial inhomogeneities of the magnetic 
field. The term 

describes the diffusion of particles in momentum space, 
corresponding to the acceleration particles by a sto- 
chastic electric field. 

In the important particular case of a magnetic field 
frozen in a certain conducting medium that moves with 
velocity u(r, t) ((u)=O), the electric field E=- ~ " u x H .  
Assuming that 

we obtain the coefficient 
8 p,,p,r.s ( k - -k , )F , , ( k )  

Dp = - EopvEflla d kd'k 
cz ' ( 11,-i,+ikv ). ' 

where is the spectral tensor of the velocity u. 

In this case the particles a re  accelerated as they are  
multiply scattered by the chaotically moving random in- 
homogeneities of the magnetic field; this corresponds to 
the known Fermi acceleration mechanism." In the par- 
ticular case of an isotropic magnetic field 

4. DERIVATION OF EQUATION FOR T 

So far we have analyzed only the general properties of 
T, which was defined as  the free path time. At high en- 
ergies, the property vk>> T-' was used. The scheme of 
Ref. 6 does not make it possible to determine this quan- 
tity, which is in its way a parameter of the theory. We 
obtain below an equation for the particular case of an 
isotropic time-independent random process (E=O, H i s  
a random function of the coordinates) in the diffusion 
approximation. To derive this equation we turn to the 
next approximation in accordance with the scheme of 
Ref. 6. In other words, the equation for the second mo- 
ment is written in exact form, while in the equation for 
the third moments the semi-invariant of fourth order i s  
replaced by a T-relaxing term. The expression for the 
second moment, which enters in (2), and obtained in the 
new approximation, should coincide with expression (5). 
This condition yields an equation for T. 

In the case considered 

therefore we have in place of (5) 
1 

t-t' 
< ~ = ( k - q ) g ( q ,  P, t )  )= j d t r  ~ x P ( -  - i q v t f )  F ~ , , ( ~ ) L ~ Q ( ~ ,  P, 0 )  

0 

X exp(- ikv t ' ) .  (14) 

The new approximation leads to the following equation 
for the second moment: 

a L 
t-t' - (Ha ( k - q ) g ( q .  p, t )  >=e-'qV1L. Id3y,e-'.$"'I dl' exp (- - 

at 
0 

+ e x ~ ( - i ( q , - q ) v t ' ) F , , ( q )  (H,(q-q, )g(k-q+q, ,  p, t ' )  )) 
+e-'9" ( g ( k , p ,  t )  )e'kvL. (15) 

Substituting the expression (14) for (Hag) in (15), and 
changing to the r-representation, we obtain, taking (8) 
into account, 

1 2 2  - ( t )  c. . ,v~,=O, Q = 5.  jdt ,  $("t i )  {L e-t*it - - 3 R 
0 

This equation should be satisfied at any direction of the 
vector v, therefore 

91 7 Sov. Phys. JETP 54(5), Nov. 1981 S. I. ~GnshtGn and L. L. Kichatinov 917 



This i s  in fact. the equation for T. 

In the particular case ~ l ( r ) = e - ' ~  we obtain for 7 the ex- 
pression 

The diffusion coefficient corresponding to this choice of 
the function IC, is of the form 

Here T i s  eliminated with the aid of (17). 

At 51~,<<1 (weak scattering) ~=3v/51~a -A/v. At 517, - 1 (strong scattering) 7 -a/v -A/v. Thus in both weak 
and strong scattering T does indeed coincide with the 
free-path time. This agrees with the assumptions made 
above concerning the value of T. 

If we consider the limit 51~,>> 1, then it follows from 
(17) that r=l/n. This time corresponds to isotropiza- 
tion of the distribution function in momentum space. In- 
deed, in this case the motion of the particle i s  close to 
Larmor rotation and, when averaged over scales larger 
than I,, all the momentum directions become equally 
probable within the Larmor-rotation time 1/51. In this 
case, however, the scheme of Ref. 6 yields an incorrect 
value for the diffusion coefficient. The point i s  that the 
problem has now one more memory time, namely the 
time of passage of the particle along a force line 
through an inhomogeneity is much longer than l/a. It 
i s  this which i s  responsible for the spatial diffusion. 
The presence of at least two memory times does not 
make it possible to use the Orszag scheme directly. It 
is necessary to use here the drift approximation and 
generalize the scheme of Ref. 6 so as  to take the two 
memory times into account. The solution of such a 
problem i s  beyond the scope of the present analysis. 

5. CONCLUSION 

Orszag's scheme6 i s  widely used in the theory of hy- 
drodynamic, magnetohydrodynamic, and two-dimen- 

sional turbulence, where the beneficial aspects of this 
approach were demonstrated. In the present article, 
this method was developed to obtain an averaged kinetic 
equation. This made it possible to describe strong 
scattering of particles, which up to now was treated 
within the framework of certain model representations. 
The transition ot the high-energy limit, when the scat- 
tering is weak, leads to the known kinetic equation ob- 
tained by perturbation theory. The advantage of this 
approach is the simplicity of the deviation and of the 
obtained closed system of equations: The kinetic equa- 
tion (6) and the equation for T (16). At the same time, 
the employed scheme does not make it possible to go to 
the low-energy limit. 
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