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The interaction between nonlinear solitary magnetic-flux waves (fluxons) in a long Josephson junction is 
considered with account taken of dissipative processes and of the bias current. The system is described by the 
perturbed sine-Gordon equation. Perturbation theory calculations show that weak dissipation and a weak bias 
current can significantly affect the dynamics of a fluxon system and lead to the formation of soliton complexes 
moving as a unit with practically constant distances between the solitons (congealing of fluxons). The 
asymptotic results obtained by the perturbation-theory calculations are confirmed by numerical experiments. 

PACS numbers: 74.50. + r 

1. INTRODUCTION 

The dynamics of nonlinear wave processes  in Joseph- 
son junctions (see, e.g., Refs. 1 and 2) i s  of grea t  fun- 
damental and applied interest. A major ro le  in these 
processes, which a r e  described by the sine-Gordon 
(SG) equation, is played by solitons, which a r e  in this  
case elementary excitations of the magnetic flux and 
a r e  therefore called fluxons. Fluxons oscillating be- 
tween the ends of a Josephson line (observed in Ref. 3) 
generate microwave radiation which, on the one hand, 
is one of the means for their diagnostics, and on the 
other hand can be effectively used in various applica- 
tions (see,  e.g., Ref. 4 and the l i terature cited there). 
Since the SG equation i s  integrable5"j the dynamics of 
unperturbed fluxons and of their sys tems is known. In 
Josephson lines, however, dissipative effects, even 
small  ones, can play a substantial role. To compen- 
sa te  for  them one uses  external sources (bias cur -  
rents). The influence of dissipation and bias cur rents  
on individual solitons has  been investigated in sufficient 
detail by perturbation t h e ~ r y . ~  The action of these per -  
turbations on soliton systems,  however, have been f a r  
from adequately investigated. It is known, for exam- 
ple, that SG solitons of like (for example, kink-kink) 
polarity, a r e  always repelled. However, a s  shown by 
experiments with mechanical models (coupled pendu- 
lums) and by numerical  investigation^,""^ in the pres-  
ence of dissipation and of a bias current  solitons of 
like polarity can form complexes that move a s  a unit. 
The attempts made s o  far  to explain this  phenomenon 
a re ,  in our opinion, not convincing for reasons  which 
will be discussed in Sec. 2. 

ject of Sec. 2, one of the main resul t s  of which is a 
simple explanation of the congealing of fluxons, wherein 
complexes moving with practically the same velocity 
a r e  produced. 

In Sec. 3 i t  i s  shown by numerical methods that the 
asymptotic resul t s  obtained within the framework of 
perturbation theory remain valid a l so  in more  general 
cases ,  closer to experiment, when the distance be- 
tween the solitons can also be small ,  and the Josephson 
junctions can be of finite length. In particular, from 
the resul t s  of the numerical experiments i t  i s  seen that 
the soliton complexes a r e  preserved,  despite reflec- 
tions from the ends of the junction (at least if the losses 
a t  the ends a r e  not large). These phenomena a r e  per- 
fectly observable: they should manifest themselves, 
for  example, in a characterist ic  s tructure of the emis-  
sion from the Josephson junctions (see the end of Sec. 
3). It s eems  to u s  that the relevant experiments a r e  
feasible. 

2. PERTURBATION THEORY FOR A SYSTEM OF 
TWO FLUXONS 

A transmission line with a Josephson junction can be 
represented a s  two superconducting s t r i p s  separated by 
a thin insulating layer (Fig. 1). We designate the layer 
thickness by d and i t s  effective dielectric constant by 
c ,,. The dissipation effect due to the current  of the 
normal electrons ac ros s  and along the junction can be 
taken into account by introducing the transverse con- 
ductivity o and the longitudinal resistance r of the nor- 
mal electrons per unit length of the junction. The 
propagation of the magnetic flux along such a t rans-  

The present paper is devoted to the interaction of mission line, with allowance for the external current 
fluxons with allowance for the dissipation and the bias and dissipation effects ,  can be described in dimension- 
current. To reveal  the main physical factors that de- less  variables by the equation1 
termine in this  case the dynamics of the system, we 

v,;p--vxx+ sin V=ER [v]  , 
consider f irst  the simplest case,  when the Josephson (2.1) 

junction i s  infinitely long and the fluxons a r e  always eR[v]  = - a u , + p u x ~ ~ - f ,  ~ = m a x ( a ,  $, I f l ) ,  (2.2) 

fa r  enough from one another, so  that the interaction be- 
tween them is always weak.'' In addition, the external 
perturbations (dissipation and bias current) a r e  as- 
sumed to be small. The dynamics of the system can 
then be relatively simply and sufficiently completely d 
investigated analytically by perturbation theory ( a s  is 
done for the analogous, in principle, case of Korteweg- 
de Vr ies  solitons in Refs. 10 and 11). This is the sub- FIG. 1. Diagram of Josephson junction. 
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where v = 27&(X, T)/@, i s  the magnetic flux normalized 
to the value of the corresponding quantum 6, = hc/2e, 
and f = j / j ,  i s  the dimensionless density of the bias 
currents, normalized to the maximum density of the 
Josephson current j,. We emphasize that in contrast to 
the Josephson current j ,  sinv the bias current  j i s  
usually constant. We assume accordingly, that f = const. 
The dimensionless coordinate and time (X, T) a r e  de- 
fined relative to the characteristic sca les  of length h 
and time 7 which describe the junction: X =  x/h, 
T =t/r .  

where n, i s  the density of the superconducting elec- 
trons, u = c[d/~,, (26 + d)]lh is the propagation velocity 
of the electromagnetic wave along the junction, and 6 
= ( r n ~ ~ / 4 a n , e ) ' ~  i s  the London penetration depth. Final- 
ly, the transverse (a) and longitudinal (8) dissipation 
coefficients a r e  expressed in t e r m s  of the parameters 
of the junction in the following manner: 

If we neglect dissipation effects (a = 0 =  0), then in the 
absence of the bias current (f = 0) the soliton solution 
of Eq. (2.1), which describes the fluxon in this  case,  
will take the form 

u. ( 2 )  =20 arc sin th  ZCn,  (2.5) 

where o = i 1 (kink and antikink), 

and d ~ / d ~  = V, V= const. The influence of the small  
perturbation ER[V] (E is a small  parameter) on a single 
fluxon can be described by the expression v = v,(Z + E$) 
+- 6v, where v,  and Z a r e  defined a s  before by expres-  
sions (2.5) and (2.6), but V and d ~ / d ~  now have a slow 
dependence on the time T in accordance with2' the 
equations7*12*13 

- 
dX/dT=V+ (1 -VZ)  3 E J R [ v . ] z  sech ZdZ. 

. 4 (2.8) 
-m 

The quantity c$(Z, ET) describes the change of the 
phase of the fluxon, and 6v(Z,&T) describes i t s  defor- 
mation, due to the perturbation 6R [v](6v - E). These 
quantities were obtained and discussed in Refs. 12 and 
13; we shall not consider them here. 

Following Refs. 11 and 14, we can also use (2.7) and 
(2.8) to describe the interaction of two solitons when 
the interaction is small. To this  end we seek an 
approximation solution of Eq. (2.1) in the form 

where v,, ( n=  1 ,2)  i s  obtained from (2.5) and (2.6) by 
the substitutions 

o-on, Z+Z,, X ( T )  +X, ( T ) ,  V +  V,. (2.10) 

The approximation (2.9) can be called adiabatic, since 
we a r e  neglecting here the increments &$, and 621, 
(allowance for them adds nothing substantial). The 

functions dV,/dT and dZ,/dT a r e  determined from Eqs. 
(2.7) and (2.8), in which the substitutions (2.10) must 
be made, and ER [us] must be taken to mean a perturb- 
ing te rm that not only turns on the external perturbation 
(dissipation and bias current), but a l so  the interaction 
between the solitons &,$Z12, i.e., 

The t e rm i s  easily obtained from the nonlinear 
t e rm sinv = sin(vls +- v,,) of Eq. (2.1) and takes the 
formL4 

~ ~ 1 R , ~ = - ( s i n  u-sin u,.-sin v,.) 

or ,  af ter  simple transformations 

t h  Z, 
E , , R , ~ = - ~ o ,  

th  Z, 
- 4oz 

ch Z, ch' Zz ch Z, ch", ' 

(It i s  assumed here that ihe fluxons a r e  fa r  enough 
from one another, s o  that their overlap may be r e -  
garded a s  small.) As  a result ,  Eqs. (2.7) and (2.8) 
yield for each of the fluxons 

dV,ldT=-(-1)"40,0z(l-V2)" exp [ - r (1 -VZ)  -"I 
-aV,  (1-VnZ) -'l3pVn+on ( ~ 1 4 )  (I-VnZ)"f ,  (2.13) 

dX,ldT=Vn+20,0,(1-V) exp [ - r ( l - V 2 ) - ' h ] ,  (2.14) 

where 

r i s  the distance between the solitons. In the derivation 
of Eqs. (2.13) and (2.14) i t  was assumed that 

where P = V, - V2. The inequalities (2.15) and (2.16) 
a r e  necessary to be able to treat  the interaction of the 
solitons by perturbation theory.14 The las t  inequality 
(2.17) i s  not essential from the physical point of view, 
inasmuch a s  a t  those distances a t  which it can be vio- 
lated the interaction of the solitons can be neglected 
(it was introduced only to simplify the calculations). 

We now apply these equations to a system of fluxons 
of equal polarity, i.e., we assume that a ,  = a, = a .  
Confining ourselves for simplicity to the case (3= 0, 
we obtain from (2.13) and (2.14) 

d ~ l d ~ = 8 ( 1 - ~ ~ ~ e x p  ~ - ~ ( I - V ~ ) - ~ ] - ~ P - ~ V / ( I - V ~ )  (dV/dT)P ,  (2.18) 
dVldT=-aV(1-Vz)+o(n/4)  f ( I -VZ)" ,  (2.19) 

dr/dT=P. (2.20) 

If a = f = 0, then dV/dT = 0,  and Eqs. (2.18) and 
(2.20) lead to 

where ll = P ( m ) .  From (2.21)-(2.23) i t  is seen, in par-  
ticular, that the conditions (2.15) and (2.16) will be 
satisfied if f'I << 1 - p. We indicate a l so  that Eqs. 
(2.21)-(2.23) a r e  in full agreement with the exact two- 
soliton solution which follows from the inverse-problem 
method, a s  shown in Ref. 14 for an equivalent problem. 

Let now a # 0 and f + 0. We note f i r s t  of a l l  that Eq. 
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(2.19) can be considered independently of Eqs. (2.18) 
and (2.20). Integrating (2.19), we obtain 

where 

We see that a s  T-  w the velocity V(T) tends to the 
limiting value: 

Expression (2.26) coincides with the limiting velocity 
obtained for one soliton in Ref. 7. If V(0) = V,, then i t  
follows from (2.25) that C = 0,  and therefore V(T) = V,. 
To simplify the analysis we shall assume V(0) = V,. (It 
i s  seen from what follows that this does not make the 
final resu l t s  l e s s  general.) We then obtain from (2.18) 
and (2.20) 

dP/dT=8(1-  V,') " exp [ - r ( l -  V.2)-%] - a P ,  (2.27) 
drldT=P. (2.28) 

Equations (2.27) and (2.28) have the appearance of 
the equations of motion of a particle acted upon by a 
potential repulsive force and by friction -aP. Assume 
for the sake of argument that a t  T = 0 the particle i s  a t  
the turning point r,,. Assuming that the dissipative co- 
efficient a i s  sufficiently small ,  we can neglect f r ic -  
tion in the time interval B <  T << l/a. During this  initial 
stage the solution of the equations (2.27) and (2.28) can 
be represented in the form 

r ( T )  =r,+ 2(I -V.2)"  In c h ( T / T o ) ,  
exp [ ( r o / 2 )  (1-V.2)-'"] (1-V2)-"'.  

At sufficiently large T (but T<< l/a) the repulsion 
force can be neglected, and the friction assumes  the 
principal role. In this  case i t  follows from (2.27) and 
(2.28) that 

where Y, is an integration constant. Since a is small, 
Eqs. (2.29) and (2.31) can be matched together and Y, 

obtained. Assuming that To << T << l/ol and substituting 
(2.29), (2.30) in (2.31), we obtain1' 

, 
r .=ro+k- ' (  I-V.') exp [ ( - r J 2 )  (I-V.') -"I . (2.32) 

I 

The condition that a be small  can in this  case be writ-  
ten in the form a << T;'. 

I Next, integrating (2.31), we have 

It i s  seen from that that a t  T >: l/a the distance r ( t )  
between the solitons tends to a constant limit r,. It 
must be taken into account here, however, that a t  very  
large a T  the friction force, which is proportional to 
d r / d ~ ,  decreases  very rapidly and becomes compar - 
able with the potential force, so  that the lat ter  can no 
longer be neglected. During this  concluding stage we 
can use another approximation, namely discard the 
te rm d P / d ~  of Eq. (2.27), which is now small  com- 
pared with each of the t e rms  of the right-hand side. 
Determining next P from (2.27) and substituting in 
(2.28), we obtain 

where T, is an  integration constant. It i s  easy to verify 
that the condition that @ / d ~  be negligible is satisfied 
at  a ( ~ +  TI)>: 1. 

Matching together (2.34) with (2.33) a t  Tl >: T >> l/a, 
we obtain12 

We see  that Tl is an exponentially large quantity a t  
smal l  a ,  and the logarithmic growth of Y(T), which can 
become noticeable a t  T >> TI, hardly appears if T S- TI. 

It can thus be assumed that the distance Y(T) between 
the fluxons reaches  a certain limit r, within a time T 
- l/a and then remains  approximately constant, a l -  
though in essence there is no bound state of fluxons 
here. It is almost obvious that this  result  does not de- 
pend on the assumption that V(0) = V. We shall not go 
into the details of the r igorous but ra ther  tedious proof 
of this statement, since this  fact follows directly from 
the numerical resu l t s  of the next section. 

This entire picture was  obtained under the assump- 
tion that P =  0 in (2.2). We indicate in this connection 
that in certain papers (for example Refs. 1 and 7) 
another theory i s  proposed, in which the formation of 
fluxon complexes i s  essentially connected with the 
t e r m s  with the third derivative in (2.2). These ideas, 
however, do not agree  with the model and the numerical 
experiments in Refs. 8 and 9 where, a s  above, i t  was 
assumed that p =  0 and nonetheless soliton complexes 
were observed. We assume therefore that our theory 
offers  a more  adequate explanation of the congealing 
effect observed in Refs. 8 and 9. We indicate also that 
i t  can be easily extended to include the case of n flux- 
ons, i.e., quasistationary complexes with an arb i t ra ry  
number of fluxons can be formed on the basis  of the 
very  same  quasiequilibrium mechanism between the r e -  
pulsion forces,  the dissipative effect due to the t rans-  
v e r s e  current  of the normal electrons, and the external 
source. 

3. NUMERICAL SIMULATION 

We discuss now some resul t s  of numerical integration 
of Eq. (2.1) with the right -hand side (2.2) a t  P =0, and 
compare them with the asymptotic perturbation-theory 
analysis of the preceding section. 

Equation (2.1) was solved numerically with two types 
of boundary conditions (BC) a t  the end points of the 
segment (a, b )  of the r e a l  axis: 

ux(a ,  T ) = u r ( b ,  T ) ,  (3.1) 
ux (a ,  T )  =o, v x  ( b ,  T )  =o. (3.2) 

The initial conditions were  assumed to be represented 
by the profile of the exact two-soliton solution of the 
unperturbed SG equation3' : 

Iv,-v21 s h [ ( Z , + Z 2 ) / 2 ]  v ( X ,  0 )  =4 arctg - { 2v c h [ ( Z , - Z z ) / 2 ]  (3.3) 
z ,=[x-x , (o)  ] ( I -vn2)- ' I" ,  n - I ,  2. (3.4) 

~'"=[(1-V*)/(l+V,)l'A/2, v = ( v , + v 2 ) / 2 .  

The BC (3.1) define a periodic continuation of the solu- 

707 Sov. Phys. JETP 54(4), Oct. 1981 Karpman eta/. 707 



FIG. 2. Plot of r(T) obtained from the numerical solution of 
Eqs. (2.1) and (2.2) with the BC (3.1), where a = -6 and b = 8, 
and with initial conditions (3.3) and (3.4) corresponding to a 
system of two fluxons with initial velocities: a) V1 = 0.77; V, 
= 0.93 (V= V*) at p = 0, a= 0.8, and f fir 0.16; b) V1= 0.8; 
Vz= 0.9 (V*V,) at B = 0, a = 0.1, and f = 0.3. 

tion over the entire  r e a l  axis. It corresponds to  propa- 
gation of the waves along a r ing and, obviously, s imu- 
late  an infinite line, if the fluxon dimensions and the 
distances between them a r e  much smaller  than the 
length of the segment b-u. 

The BC (3.2) correspond to a Josephson line of finite 
length neglecting radiation (and other losses)  a t  the 
ends. The influence of the losses  a t  the end of the line 
on the evolution of one fluxon was  recently investigated 
(numerically) in Ref. 16. It can be proposed on the 
bas is  of the r e su l t s  of that reference that if the losses  
a t  the end of the line a r e  small  enough, the resu l t s  
that follow from the BC (3.2) do not change substantial- 
ly. 

The actual values of the parameters  in the initial 
conditions were chosen such as to clarify the meaning 
of the assumptions made in the derivation of the analy - 
t ic  relations of the preceding section. Figure 2 shows 
the distance r (T )  between the solitons for two cases. 
Curve a was  obtained for  the case when the solitons 
overlap strongly4' a t  T = 0, and their velocities under 
the initial conditions (3.4) a r e  V, = 0.77 and V2 = 0.93. 
In this  case V= (V, + V2)/2 = 0.85, which ag ree s  with 
the value of V ,  calculated from formula (2.26), 
(a = 0.08, f 5 0.16). Thus, the conditions under which 
Eq. (2.32) was obtained a r e  well satisfied here. In the 
case considered, this  equation yields r, = 4.1, whereas 
the numerical value is r(160) = 4.9. 

Curve b obtained for the case when the distance be- 
tween the solitons a t  T = 0 is quite la rge  ( larger  than 
the sum of their characteris t ic  dimensions), and the 
initial velocities a r e  such that4' V = 0.85 + V* = 0.92. 
The numerical resu l t s ,  which a r e  not presented here,  
show that with increasing T the average velocity of the 
system approaches the asymptotic value V* = 0.92 in 
accordance with (2.24). A s  for  the distance between the 
solitons, i t  is seen from the figure that i t  initially de- 
c reases  and then increases  slightly, approaching the 
stationary value Y* = 3.5. Although a quantitative com - 
parison with the asymptotic formula (2.32) cannot in 
fact be carr ied out here,  since the conditions under 
which this  formula was derived a r e  not satisfied, the 
qualitative resul t ,  namely that r tends to an asymptotic 
value of the same order  a s  (2.32), remains  in force. 

FIG. 3. Numerical solution of Eqs. (2.1) and (2.2) for two 
fluxons with BC (3.2) at a = -8, b = 10, P = 0, ff = 0.08, and 
f c0.16 and initial velocities Vl = 0.77 and V2 = 0.93 (V = V,). 

Figures 3 and 4 show the numerical  solution and the 
distance between the solitons for the BC (3.2), i.e., for 
a Josephson junction of finite length, under initial con- 
ditions that agree  with those for Figs. 2(a) and 2(b), r e -  
spectively. It i s  seen that there i s  good agreement be-  
tween the two types of BC. Notice must  be taken, how- 
eve r ,  of certain characteris t ic  features of the BC 
(3.2). Upon reflection from the end, the polarity of the 

FIG. 4. Numerical solution of Eqs. (2.1) and (2.2) for two 
fluxons with BC (3.2) at a = -6, b = 8, S = 0, ff = 0.1, and f 
= 0.3 and initial velocities Vl = 0.8 and V2 = 0.9 (V*  V*). The 
dashed lines shows the plot of r (T)  for the BC (3.1) from Fig. 
2b. 
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fluxon i s  reversed (a- -a). Therefore when choosing 
the instants of time T for which the distance between 
the solitons was determined, only those T were  consid- 
e red  a t  which the fluxons had the s ame  polarity and 
were far  enough from the end points. Since i t  is quite 
difficult to satisfy well the last  requirement, a certain 
straggling r ( ~ )  was obtained. It i s  seen a l so  that for  the 
case shown in Fig. 3 the limiting distance i s  somewhat 
larger than in Fig. 2(a). We note that with increasing 
length of the line b - a ,  the difference between the two 
cases  decreased. As  for the case shown in Fig. 4 ,  Y(T) 
agrees  there very well with Fig. 2(b) [the dashed line of 
Fig. 4 is a plot of r (T)  from Fig. 2(b)]. 

Thus, a finite length of the Josephson junction and 
strong interaction between the solitons do not change 
the main resul t s  obtained on the basis  of perturbation 
theory in Sec. 2. The gist of the lat ter  i s  that fluxons 
of equal polarity, in the presence of a bias current  and 
of dissipation due to the finite conductivity of the junc- 
tion, form despite their mutual repulsion complexes 
having the following basic properties: 1) the distance 
Y(T) between solitons in the complex tends to an 
asymptotic value r *  that is practically constant [in fact 
it increases slowly (logarithmically) a t  very  large TI; 
2) the velocity of the complex (i.e., the ari thmetic mean 
of the soliton velocities) tends to an asymptotic value 
V* that coincides with the limiting velocity of one soli- 
ton a t  the same bias current  and dissipation. 

An experimental check on these conclusions i s  rea l -  
izable in junctions with length of the order  of o r  la rger  
than (2-3)X, where X is the Josephson length (2.3). As 
already indicated in the introduction, the fluxons oscil- 
lating between the ends of the line generate electro-  
magnetic radiation whose spectrum is determined by 
the frequency of their oscillations in the junction and by 
their number. From the current-voltage characterist ic  
it i s  always possible to determine how many fluxons a r e  
excited in the j ~ n c t i o n . ~  If n fluxons (n> 1) a r e  excited, 
and the fundamental frequency in the spectrum is close 
enough to the frequency of one fluxon, then th is  obvious- 
ly should be evidence that the fluxons form a single 
complex and move with the same velocity. 

In conclusion the authors thank Professor  K.K. Lik- 
horev and Professor A. .Scott for helpful discussion of 
the resul t s  and for valuable bibliographical hints. 

Note (10 J u l y  1981). In a recent  art icle,  B. Dueholm 
et a l .  [phys. Rev. Lett., 46, 1299 (1981)], repor t  ex- 

perimental observations, in long Josephson junctions, 
of bound fluxons with like polarity (in their terminol- 
ogy -"bunched fluxon configurationsw), which agree 
well with the theory developed above. 

' )As seen from Sec. 2, this calls for the parameters of the 
fluxons to be close enough to one another. 

' ) ~ ~ u a t i o n  (2.8) differs from that given in Ref. 7 and was taken 
from Refs. 12 and 13. 

') The use of the asymptotic solutions of the unperturbed SG 
equation under the BC (3.2) obtained in Ref. 15 i s  less  con- 
venient. 

4, The initial profiles of v ,  = 2a /2a for the cases a and b a r e  
shown in Figs. 3 and 4 .  
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