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The cross sections for elastic scattering, excitation and ionization of electrons colliding with hydrogen atoms 
in a strong magnetic field (%,NEE, where o, is the cyclotron frequency and E, the Bohr energy) are 
obtained. The results are asymptotically accurate with respect to the parameter ln(+b,/EE>l in the 
essential energy ranges of the incident electrons. The rate of the energy loss is determined. The bound states of 
two electrons in the Coulomb field of a nucleus are found. 
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The behavior of atomic systems in a strong magnetic 
field is  of interest for solid-state physics and astro- 
physics. By strong we mean here a magnetic field such 
that the magnetic length k i s  much l e s s  than the Bohr 
radius a ,  i. e. , iiwc>> E, , where w, is the cyclotron 
frequency and E, is the Bohr energy. The spectrum 
and the wave functions of the hydrogen atom in a strong 
magnetic field were obtained with asymptotic accuracy 
by Hasegawa and Howard.' We consider here only 
states that pertain to the lower Landau band. Under 
these conditions, the transverse motion of the electron 
is determined entirely by the magnetic field and is 
characterized by the quantum number -MI, which i s  the 
projection of the angular momentum on the direction 
of the magnetic field. Motion along the field takes 
place in an effective one-dimensional potential whose 
form depends on M,. Thus, for each M, there is a 
series of levels corresponding to longitudinal motion. 
The lowest level of the atom corresponds to M, = O  and 
is  located below the bottom of the Landau band a t  an 
energy distance E,/vi, where v, = (1/2) ln(a/A). In the 
present paper we assume that v,<< 1, i. e . ,  the ioniza- 
tion energy of the atom greatly exceeds the Bohr ener- 
gy. The electron localization region then takes the 
form of a needle with a characteristic transverse di- 
mension A and a longitudinal dimensional v,a. The ex- 
cited levels with M, = 0 have the usual Bohr spectrum 
E,=-EB/v2,u=1,2,3. . . , and to each level there cor- 
respond two states, even and odd. The wave functions 
of these states have a length -a in the field direction. 
The first excited level of the atom corresponds to the 
ground state in the well with M, = 1 and lies at an ener- 
gy 2E,/v, higher than the ground state. It corresponds 
to a longitudinal wave function that i s  practically the 
same a s  the function of the ground state of the atom. 
The entire energy interval from the ground level with 
M, = O  to levels with binding energy 5Eg is filled with 
levels corresponding to ground states in one-dimension- 
a1 wells with different M,. 

while for the elastic-scattering cross  section in the 
case of slow collisions we obtain an expression that i s  
valid also a t  vo- 1. It will be shown that there exist 
bound states of the electron on the atom, i .e. ,  states 
of the negative hydrogen ion. The affinity energies a r e  
obtained a s  the poles of the scattering amplitude, as- 
suming a strong differences between projections of the 
angular momenta of the electrons on the direction of the 
magnetic field. Under this assumption, the exchange 
effects a r e  insignificant and by the same token the mut- 
ual orientation of the spins, while the correlation ener- 
gy can be calculated exactly. 

We note that for shallow donors in indium antimonide, 
the condition Awe= E, is  reached already a t  relatively 
low value of the field H - 700 Oe. However, the satis- 
faction of the inequality v,<< 1 calls for very strong 
magnetic fields (for example, in a field H - 150 kOe the 
donor ionization energy i s  -8E,). Under astrophysical 
conditions this inequality can be quite strong. 

1. WAVE FUNCTIONS OF AN INCIDENT ELECTRON 
IN THE FIELD OF AN ATOM 

The Schrodinger equation for two electrons located in 
a Coulomb field oE a nucleus and in a magnetic field is  

where H, i s  the Hamiltonian of the atomic electron, H, 
i s  the Hamiltonian of the incident electron in a magnetic 
field and does not take into account the interaction with 
the atom, and V i s  the interaction of the incident elec- 
tron with the atom (i. e. , with the atomic electron and 
with the nucleus). As will be shown below, the prin- 
cipal role in the processes of interest to us  a r e  played 
by relatively large impact parameters p >> A. It is  
possible therefore to disregard exchange effects and 
assume that the coordinates r, describe the atomic el- 
ectron, while the coordinates r describe the incident 
electron. The wave function will be sought in the form 

The motion of the incident electron is  essentially one- 
dimensional, so that the entire collision problem is thus y ( r , , r ) = Z  $o(r l )Fm(r) .  (1) 
one-dimensional. In the present paper we obtain the 
cross sections for elastic scattering, excitation and Here a is the aggregate of the quantum numbers that 
ionization of the atom, and also the ra te  of energy 10s- characterize the atomic-electron state described by 
ses.  We obtain asymptotically exact (in terms of the the function $,(r,). The function $(r), which pertains 
parameter vo<< 1) expressions for the cross  sections in to the incident electron, is  to be determined. Sub- 
the significant energy intervals of the incident electron, stituting the sum (1) in the ~ c h r c d i n ~ e r  equation, we 
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obtain an infinite system of equations for Ta(r) :  

[H,+v , (~ )  - (E-E.) ] F a ( r )  --- v-p(r)Fa'(r)9  

where E, i s  the energy of the atomic electron in the 
state a ,  andVaa, a r e  the matrix elements of the inter- 
action on the atomic-electron functions. The prime on 
the summation sign means that a l # a .  The set  of quan- 
tum numbers a includes the angular-momentum projec- 
tion -MI on the direction of the magnetic field (which we 
take to be the z axis) and the principal quantum number 
v, which depends on M, and i s  connected by definition 
with the level binding energy by the relation E,= -E,/ 
u2. All the considered states pertain to the lower Lan- 
dau band, the bottom of this band is taken to be the null 
of the energy. 

The matrix elements Van* that a r e  not diagonal in M, 
a re  small compared with the diagonal ones if p>> A. 
They can therefore be neglected if scattering without 
a change of Ml i s  considered. At a fixed MI, by virtue 
of the axial symmetry of the problem, the projection of 
the angular momentum of the external electron on the 
z axis ( - M )  is  also fixed. We can therefore write 

where +,(p) i s  the wave function for the free electron in 
a magnetic field. Averaging Eq. (2) over the trans- 
verse motion of the incident electron, we obtain a sys- 
tem of one-dimensional equations: 

" ' (E-E.) + V v v ( z ) ]  ( Z )  (3) I-Gz- 
The system (3) pertains to definite values of M and M1. 
Here 

1 1  
( 2  P ( - )  @ P P  (4) 

If the atom i s  in a state with M, = 0 or  Ml of the order 
of unity, and the incident electron i s  characterized by 
a large value of M, then the matrix element (4) can be 
written in the form 

where +,(z,) describes the longitudinal motion of the 
atomic electron. (The functions $,(z) a r e  written out 
in Appendix I. ) In the derivation of the formula we took 
into account the fact that MY> 1, i.e., the wave function 
@,(p) of the transverse motion is quasiclassical and has 
a sharp maximum (of width -A) a t  p = ( 2 ~ ) ' / ~ ~ .  The 
function +,(p,), on the contrary, is  concentrated in the 
region p, -A. Under these conditions the matrix ele- 
ment of the potential depends on M only through p and 
on M, only via the value of v. 

Without the right-hand side, Eq. (3) for v =  vo de- 
scribes the scattering of an electron by a potential 
Vu#o(~).  This potential is  shallow (see below) in the 
sense that q = (mV/fi2)(Az)2<< 1; here V is  the charac- 
teristic value of the potential and Az is  the characteris- 
tic radius of its action. In this case, a s  i s  well known, 
the scattering amplitude is determined in first-order 
approximation by the value of the integral of the poten- 

tial over all of z .  In our case, however, it follows 
from (5) that 

It is  therefore necessary to take into account the next 
approximation in the parameter q.  But terms of the 
same order ar ise  when account i s  taken of the right- 
hand side of Eq. (3) (this corresponds to taking into ac- 
count the polarization of the atom by the incident elec- 
tron). For the functions F,&) that enter in it we can 
confine ourselves to the first  nonvanishing approxima- 
tion in the potential1' (it i s  assumed that IE =Eva 1 
<< IE I ,  i. e .  , E =Eva), i. e. , we can attempt to deter- "0 
mine them from the equation 

Equation (7) is  easy to integrate:' and when its solution 
i s  substituted in the right-hand side of (3) we obtain 

- ( $ + P ) ~ ( Z ) + C ( Z ) F ( ~ ) = O ,  (8) 

where the v labels have been left out for simplicity, k 
i s  the wave ~ e c t o r  of the incident electron (ti2k3/2m 
= E  - E%),  U is  a nonlocal ~ o t e n t i a l ~ '  in the form 

where G:',~) is  the f ree  Green's function: 
1 2m 

G:*'*'(z,z9)=-exp(-x,,lz-z'l), x, = ,(E,-E,). 
2x, 

We shall seek the solution of Eq. (8) in the form 

where A,(z) i s  a function that varies slowly in the range 
of action of the potential (to the extent that the param- 
eter q is  small). By virtue of the condition (6) it i s  
nevertheless necessary to take into account the devia- 
tion of A,(z) in this region from a constant. We there- 
fore put 

We write down next Eq. (8) in integral form (it is as-  
sumed that the electron is incident from the left): 

F(z)-e*; - f d Z 1  exp( iklz-zr l )  5 ( z r ) F ( z ' )  
2k 

(12) -- 
and substitute F(z ' )  a s  given by Eqs. (10) and (11) under 
the integral sign. We then obtain for A,(O) the expres- 
sion 

I -1 

~ ~ ( 0 ) -  [ i + ,  1 d z l e ~ k l ~ r @ c z ~ ) r ( i - ~ ( z g ) )  ] (13) -- 
A 

and for cp,(z) the equation (the increment Auto the po- 
tential i s  neglected here) 

-- 
x{exp[tk(zl-z+lzl-a!)]-exp[lk(z'+lz'l) I). (14) 
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The second term in the square brackets in (13) i s  sig- 
nificant only at small k, when it becomes of the order 
of unity. Its exponential can therefore be replaced by 
unity and A,(O) can be represented in the form 

The quantity k,, a s  a pole of the scattering amplitude, 
determine! the binding energy in the one-dimensional 
potential U(z). The fact that the potential i s  shallow 
means that k,Az<< 1. The expression for p,(z) is  ob- 
tained from (14) if the small quantity q,(zl) in the in- 
tegrand is  neglected. To calculate k, we need 4p,(z') 
at k -k,<< l/Az. We then obtain from (15) 

z .' 
cp, ( z )  =- j dz' Jdz'r~, , (z"),  k-+~. (16) 

0 0 

For k, we have thus4) kb = km+ &,, 

We proceed to calculate k, from Eqs. (17). To this 
end we consider f irst  the diagonal matrix element 
Uvw0(z), which i s  determined by expression (5) (accur- 
ate to the factor 2m/Fi2). In these calculations we use 
the functions (AI. 1) from Appendix I. At large p (much 
larger than the localization region voa of the atomic 
electron in the ground state) this i s  the quadrupole po- 
tential 

The width of the region of i ts  action i s  Az -p, and the 
characteristic value is  ~ - e ' ( v ~ ) ~ / p ~ ,  SO that 7 - vta/ 
p<< 1. At small p (p<< voa) the potential is  represented 
a s  a sum of potentials of a charged filament and a point 
charge of opposite sign: 

where 
(19) 

Here E, and E* a r e  integral exponential functions, and 
C is  the Euler constant. The last two terms in (19) de- 
scribe a potential produced a t  the point z by a filament 
whose linear charge density is -e[~l,~(z)]~. The fila- 
ment potential has a characteristic effective range Az - voa and a characteristic value V - (e2/voa) ln(voa/p), so  
that q - v, ln(v,,a/p). This value of small  if 

The point-charge potential prevails over the filament 
potential in the region l z I < v,a/ln(voa/p), which in turn 
i s  much smaller than the radius Y,, of the bound state in 
a one-dimensional Coulomb potential cut off at a depth 
e2/p(r0-a/ln(a/p)). In this region the amplitude of the 

wave function A,(z) has therefore no time to change. 

We turn now to the off-diagonal elements of the poten- 
tial UwOY that determines the value of &,. The product 
JlVO(z) qV(z)is small for  a l l  the excited states v >> 1 and 
for the continuous spectrum states a t  E,<< IE,, I ,  i. e. , 
a t  I v I > >  v,, since the wave functions of these states a r e  
small in the localization region of the ground-state func- 
tion ( l z l - voa). Therefore the main contribution to the 
result of the summation of the intermediate states in the 
second formula of (17) i s  made by the states of the con- 
tinuous spectrum with E,- IEwo I ,  for which the wave 
functions in the region lz l - voa a r e  determined by ex- 
pression (AI. 5) of Appendix I. Then the matrix ele- 
ments of the potential U*,(z) can be easily calculated in 
the limiting cases of small  and large5' p: 

Using now Eqs. (17)-(19) and (21) we can calculate I,: 

We note that the binding energy of an electron in the 
hydrogen atom was calculated with a computer.' A 
multiparameter variational problem was solved for the 
three-dimensional Schrodinger equation and it was 
found that the bound state of the electron in the atom 
(this state exists a t  H = 0 and has a binding energy 
a0.055EB) vanishes in the strong-field limit. Kadomn- 
tsev and Kudryavtsev3 considered heavy atoms and used 
the self-consistent-field method. It can be concludedfrom 
their results that suchabound state is preserved in a 
strong field. Actually, they obtained the electron-affinity 
energy forthe hydrogenatom atM, =OandM = 1. They 
noted a t  the same time that they did not take into ac-  
count the exchange correction. It can be shown, how- 
ever,  that under their assumption v,<< l this approxi- 
mation i s  parametrically exact (at v,<< 1 the exchange 
interaction must be taken into account only when the 
values of M and M ,  coincide and, moreover, M and M ,  
a r e  good quantum numbers). Equation (23) shows that 
at large values of M, at which this equation is valid, 
there exists a bound state. If it i s  applied to the values 
M - 1, then it yields an affinity energy (9/64)E,/ v that 
is  close to the value (1/8)E,/vz obtained in Ref. 3. 

2. ELASTIC SCATTERING 

From Eq. (12) follow asymptotic expressions for the 
function F(z): 

F ( z )  =e*'+f*e*'"', z+*-, 

where the elastic scattering amplitudes f * a r e  deter - 
mined by the formula 

The cross  sections for the forward (0') and backward 
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( 6 )  elastic scattering 

o*-2n 1 l f*lap dp 
a 

take different forms, depending on the value of k. We 
consider first forward scattering. We can separate 
here three regions of variation of k: 

In regions 1) an6 2) we can put k = O  in the expression 
for p, and fn the term that contains the polarization in- 
crement W i n  Eq. (24). In the term containing Uveol 
in the case of forward scattering, the exponentials can- 
cel out and k does not enter likewise in this term. 
Therefore in regions 1) and 2) the expression for  the 
amplitude f+  takes the simple form 

f+-ikd(k-ikb). 

Figures l a  and l b  show the schematic form of V * l 2  
as a function of p for the regions 1) and 2) of the varia- 
tion of k. It i s  seen from this figure that in region 1 )  
the principal contribution cross  section i s  made by p 
>> vg, and using Eq. (22) for k,, we obtain 

In region 2) the cross  section is determined by the 
values p - vg a t  which the exact values of k,(p) cannot 
be calculated in explicit form. We can therefore write 
U+ in this region of k only accurate to a coefficient of 
the order of unity: 

In region 3), the contribution to the amplitude due to al- 
lowance for the polarization i s  negligibly small and the 
calculation leads to the result (which we write down 
again accurate to within a coefficient) 

Only a t  very large k (k 2 l / ( ~ a ) " ~ ) ,  when the cross  sec- 
tion is determined by the values p - A, does the depen- 
dence of U* on k take the usual asymptotic form 0' 

a k" (0' - ~ ~ / ( k a ) ~ ) .  The reason i s  the allowance for the 
approximate character of Eq. (6) [cf. Eqs. (4) and (5)]. 
The integral in it i s  not strictly equal to zero and i s  
only exponentially small a t  M >> 1. At very large values 
of k ,  the main contribution to the amplitude is made by 
the term - ( t 2 / m k ) I l  where I  is the integral (6). This 
contribution i s  of the order of &a)-' at p -  A. 

FIG. 1.  Dependence of lf * l2 on p in different regions of varia- 
tion of k: a) kc.c v,,/a, b) vo/a <<k<<l/voa. 

We turn now to backward scattering. The amplitude 
f'can be written in the form f-=f ++A$. The main 
contribution to Af i s  determined by the integral (this i s  
valid a t  kc< l / h ,  see below): 

With the aid of expression (5) and (AI.l), the integral is 
easily calculated, and we obtain 

where K O  i s  a Macdonald function; Af can exceed f + at  
large p ,  but nevertheless in the region I), a s  can be 
shown, the contribution of Af to the cross  section i s  
negligibly small. Therefore 0- = a+ in region 1). In 
regions 2) and 3) the quantity k, in the denominator can 
be neglected in the essential region of values of p. The 
contribution of 4 to the cross  section takes in this case 
the form (the cross-section term containing the product 
f *Af i s  inessential) 

As seen from a comparison of (30) and (26), AU remains 
smaller than o +  a t  kc< l / a ,  so that the scattering i s  iso- 
tropic. At k >> l / a  the scattering is anisotropic, and 
backward scattering predominates (o'= Aa7> a'). Only 
a t  k>> 1 / ~  does a+ become larger than o-. In this case 
u-= AU= a ~ ~ / 2 ( k a ) ~ ( k h ) ~  and is determined by the scat- 
tering of electrons6' with M = O .  The general form of 
the cross  section for elastic scattering, a s  a function 
of k ,  is  shown in Fig. 2. 

We note that the cross section diverges a s  k - 0. 
The reason i s  that in the case of uniform motion an el- 
ectron with zero energy i s  totally reflected from an ar- 
bitrarily weak potential of the atom. Electrons with ar- 
bitrarily large impact parameters thus undergo total 
reflection. It can be shown that the divergence takes 

FIG. 2. General form of the cross section for elastic scatter- 
ing as a function of the energy Eo of the incident electron. The 
abscissas are the values of ka = (E~/EB) ' /~  (Eg is the Bohr 
energy). (1) and o- (2) are respectively the forward and 
backward scattering cross sections; o+ is given by Eqs. (25). 
(26). (27); u-m u+ at ka<< 1, and at ka >> 1 we have u-= Ao 
[Eq. (30)l; ka = l / v o  corresponds to an energy Eo equal to the 
atoionization energy. 
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place in an arbitrarily weak magnetic field. This ef- 
fect is  similar to the appearance of a bound state in an 
arbitrarily weak magnetic field in any attracting three- 
dimensional p ~ t e n t i a l . ~  Divergence exists a t  an a r -  
bitrary law of variation of the potential with distance, 
with the exception of a zero-radius potential and of long- 
range attracting potentials that decrease more slowly 
than l/r2. 

The plateau in the plot of o'(k) i s  due to the mutual 
cancellation of two factors: the decrease of the charac- 
teristic values of the impact parameters with increas- 
ing k (p - l /k),  and the increase of Aj at these values of 
p .  The last factor i s  connected with the specific prop- 
erty (6) of the potential, owing to which the interaction 
of the electron with the atom becomes stronger when the 
wave function begins tovary within the range of the action 
of the potential. 

For the values p>> v,,a, which determine the cross  
section at k<< v,/a, the polarization of the atom shell i s  
small, even if v, - 1. We can therefore obtain an exact 
expression for o in slow collisions, without assuming v, 
to be small. In analogy with the procedure used above, 
it i s  easy to obtain 

Here Q is  the quadrupole moment of the atom, and p is  
the polarizability of the atom in an electric field direct- 
ed along the magnetic field. At v,<< 1 these quantities 
a r e  given by Q - (voal2/2 and p - 5vo(voa)3/4. 

3. INELASTIC SCATTERING (AM = 0 )  

We consider f irst  the case E, =E,>> E, (E, is  the en- 
ergy of the incident electron, E,= -E,, i s  the ionization 
threshold). In this region the Born approximation can 
be used to find the cross  section for inelastic scatter- 
ing, i .e . ,  we can leave out of Eq. (3) a l l  the diagonal 
potentials and retain in the right-hand side only the term 
with v= v,. Indeed, the values p voa a r e  the ones that 
determine the cross  section (see below). In this case 
E,>> h2ki/2m, and since Eo>> E, we can neglect the 
elastic scattering in the initial state and put F,, 
=exp(ikz). Scattering in the final state can also be 
neglected, inasmuch a s  for the most probable transi- 
tions the energy of the incident electron at E ,  -E, 
>> E, is  much larger than the Bohr energy after the col- 
lision, while the energy of the electron bound to the 
excited atom is of the order of the Bohr energy at p 
- v,a. Thus, the amplitude ft of the transition of the 
atomic electron from the ground state into the state v 
[with scattering of the incident electron forward (+) and 
backward (-)I is given by 

Here k, = (2.rn/WZ)' l2(E0 - EI = E,)' l2 is the wave vector of 
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the incident electron after the collision. 

We turn first  to ionization. Assuming E,>> E, , we 
use the functions p,(z) (AI. 5) of Appendix I) and obtain 
for q,,,,(k ') 

for the odd states v, and for the even ones this expres- 
sion must be multiplied by (k ' v , ~ ) ~ / [ l +  (q,~,,a)~]. For 
the cross  section of a transition to a state of definite 
parity in a unit interval of the values of q, we then 
have7) 

k" - 4n 0,*=2n-J ~ f , * ~ ~ p d ~ =  ~ c p , ( k ~ k ~ )  I*. 
0 

k,k (kFk,) 'a2 

Equation (32) has a simple form in two limiting cases: 
E, -E,<< E ,  and Eo>> E,. In the first  region, the scat- 
tering is  isotropic and the transitions of the atomic el- 
ectron into states of different parity (at a given energy 
E,) a r e  equally probable. We then obtain for the total 
cross  section of the transition in a unit interval of 
values of q, 

Integrating this expression with respect to q,, we ob- 
tain the total ionization cross  section ( Q  = [k2 - (I/ 
v,,a )2]1 r2) : 

In the region Eo>>E,, the largest probability i s  pos- 
sessed by transitions with E,-Ex. Scattering in these 
transitions (as in a l l  transition with E,<< E,) i s  aniso- 
tropic: forward scattering predominates and the atomic 
electron goes over mainly into odd states. The value 
of o,, in this case i s  given by 

and for or we then have 

Er E,>E,. 01=4n (voa)'--- 
2 E o '  

The general form of the ionization c ross  section i s  
shown in Fig. 3 .  

In the case of slow collisions, the interaction in the 

FIG. 3. General form of ionization cross section a s  a function 
of the excess of the incidentrelectron energy Eo over the ioni- 
ation threshold E l .  Dl is determined by Eq. (35) at E o -  EI 
<<El and by Eq. (37) a t  Eo>>Er .  
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final state between the incident electron and the atom is 
substantial. The total inelastic-scattering cross  sec- 
tion i s  determined by the excitation of the atom, and can 
be estimated a t  

The variation q a k ,  i s  the general law for the threshold 
behavior of a reaction cross  section in the case of a 
short-range interaction (this relation may be easily es- 
tablished in analogy with the proof for the three-di- 
mensional case (Ref. 5, p. 698 of Russ. original). 

4. INELASTIC SCATTERING (AM+ 0 )  

The probabilities of excitation with AM# 0 a r e  rela- 
tively small (proportional to A'), but these transitions 
a r e  of interest inasmuch a s  a t  E,< E,- E, other inelas- 
tic processes a r e  impossible. When these transitions 
a r e  considered, it is  necessary to use Eq. (3) in the 
lowest order in h.  We consider f irst  the transition with 
AM= 1. The system (3) i s  then reduced to two equa- 
tions: the equation for the function F,,, that describes 
the transition to the ground state with Ml = 1: 

and the Eq. (8) for F,. The diagonal potential 6,,,, 
hardly differs from the potential 6 [Eq. (9)], while the 
off-diagonal potential takes a t  p>> h the form 

We have used here the fact that v, = v,. Equation (38) 
i s  easily solved since the solutions of the correspond- 
ing homogeneous equation were already obtained in Sec. 
1. Obtaining in the usual manner a solution satisfying 
the boundary conditions 

we obtain for the excitation amplitudes & 
1 

p=-- 2k, ~ Z F . . ~ ( z ) ~ ~ , q ( z ~ F , ( z ) .  (40) 
-- 

where Ci describes inelastic scattering of an electron 
with wave vector k, incident from the right (-) and from 
the left (+). Substituting in (40) Eqs. (101, (151, (39), 
and (AI.l), we get for g*: 

k h ( k ~ k r ) K t [ k ~ k r ) ~ l  , 

g * i ( k - i k )  k - i k  I + [  (kFki)voa/211 ' (41) 

where K ,  i s  a Macdonald function. The excitation cross  
section u, i s  expressed in terms of the amplitudes in 
the following manner: 

k - 
CI~=O~++U*-,  or* =2n Lj Ig* 12p dp. (42 

0 

We consider f irst  the behavior of the cross  section 
near the excitation threshold at k,<< v,/a (i. e . ,  El 
<<v3$,,; El is the excess of the initial energy of the 
electron over the threshold, E,, = E,, - E,, = 2EB/v0 is 
the excitation energy). In this case the main contri- 
bution to the cross  section is  made by values p>> v,a. 
Then k =k,, = (2mEol/62)1/2>>k, and Eq. (42) yields, 
when (22) i s  used for k,, 

where @=8(3~/32)~v~/(k,a) ' .  At the very threshold 
when P>> 1 we obtain 

where y i s  the numerical factor, y = (22)28a/105~2 
m11.2. The maximum of the integrand corresponds 
here to p - l/kol - v;''a. At /3<< 1 Eq. (43) yields (the 
number under the logarithm sign was obtained by num- 
erical integration) 

The main contribution i s  made here by the values p 
- va(vo/kla)113. We now proceed to the energy region 
for which k,>> v,/a. For this region the values p<< v g  
a r e  significant, namely l n ( ~ & / ~ )  - (k,~/v,) ' /~.  At suf- 
ficiently large k, (k, 2 l/v,,a) these values of p fall in an 
interval in which the inequality (20) i s  violated and our 
analysis i s  strictly speaking incorrect. We turn there- 
fore first to the region v,/a<< kl<< l/vg. In this region 
the characteristic values p<< l/(k 7 k,) and we can use 
the expansion of the Macdonald function K,(x) - l / x .  
The upper limit in the integral must be replaced here 
by -v,a. Calculation of the integral yields 

where 6(x)= (1 -x3I2)/(l - 2)  a s  a function that changes 
within a considered interval from 1 at k,<< k,, to 4/3 
a t  k,>> k,,. Let us  examine, finally, the region k, >> 1/ 
v g .  In this region the Born approximation i s  valid, a 
fact corresponding to the same formula (41) at k, = 0. 
The integral (42) then diverges a t  the lower limit. The 
reason for the divergence i s  that a t  p -  A it is incorrect 
to treat the transverse motion quasiclassically, i. e .  , 
to replace (4) by (5) in the potential. The cross  section 
can be obtained with logarithmic accuracy, by cutting 
off the integral for small p at the value p - A. We then 
obtain8 ' 

1 ka' 1 
0 ~ + = 4 n h ~ ~ l n -  ; a,-<a,+; k,a B -. 

(k ,a)  h vo 
(47) 

Equations (44)-(47) determine the cross  section for the 
excitation AM = 1 in the entire energy region. The gen- 
era l  form of the cross  section is  shown in Fig. 4. 

We emphasize once more than the main contribution 
to the cross  section for the considered transition, in 
the region of its maximum, is made by p>> voa (we re- 
call that v g  is  the largest geometrical dimension of the 
scatterer and constitutes the length of the wave func- 
tion of the ground state of the atomic electron along the 
magcetic field). The reason i s  that at large p the poten- 
tial U contains bound states with low binding energy (k, 
o ~ p - ~  at  p > > p g )  and the energy of the slow electrons is  
almost at resonance with them. 

We consider now briefly transitions with change of the 
angular momentum projection AM, > 1. To estimate the 
amplitude of such an excitation we can use Eq. (41) with 
the natural substitutions UV1%(z) - UvMlY0(~),kl - kY,. 
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FIG. 4. Dependence of the excitation cross section D l  on the 
energy E o  of the incident electron for the transition iMi = 0 
-MI = 1. The abscissas are the values of kla = [ ( E , -  E,,) 
/EB] 'I2 where hot is the excitation energy and EB is  the Bohr 
energy. The behavior of the cross section is different in dif- 
ferent ranges of variation of this parameter: I) kla << vo5/2, 
u t m ( k p ) ,  Eq. (44); 14 << k p  << Yo, cia ( k l a ~ - l b ( k l a ) ,  Eq. 
(45); 111) v,<< k,a<<v;l, Eq. (46); IV) kla >>v; , olu  (kla)-2, 
Eq. (47). The ordinates are the characteristic values of the 
cross sections in these regions in the unit of the square of the 
magnetic length A .  

The nondiagonal potential UuMl, contains the factor A" 
and at small p is proportional to (p)-'l. Therefore the 
integral (42) diverges at small  p in power-law fashion 
and this divergence must be cut off at p -  A. As a re-  
sult, oMl i s  proportional to A'. At p-  A we have kb 
" l / v g .  Therefore at AM, > 1 we have a,,- A2v:{(Ml) 
(this value corresponds to the maximum of u,,, 
which takes place at k" l / vg ) ,  where 5(M1) is  
a factor determined by the overlap of the functions of 
the transverse motion of the atomic electron with angu- 
lar  momentum projections 0 and M,. This factor de- 
creases rapidly (exponentially) with increasing M , .  
Thus, the cross  sections for excitation of the levels 
with M, # 1 a r e  small compared with u,. Moreover, 
even the total cross  section for the excitation into all  
levels with M, # 1 is small compared with u,, for al-  
though the effective density of the states increases with 
increasing M ,  (in proportion to MI), the cross  section 
increases exponentially a t  the same time. 

5. ENERGY LOSSES 

The results  reported above allow us  to obtain the 
value of the effective deceleration B: 

At incident-electron energies lower than the excitation 
energy of an atom with AM = 0, the main process that 
determines the value of B is excitation with W=l. In 
this case 

and the dependence of B on E, i s  determined entirely by 
the corresponding ol dependence (see Fig. 4). At E, 
> E, - E, the principal transitions a r e  those with AM 
= 0. In a narrow range of variation of E, ( I E, - E, I 

2 EB ) the losses a r e  determined by the excitation pro- 
cesses,  and in the entire E, - E,>> E,  region they a re  
determined by ionization processes. If E, exceeds E, 
only insignificantly (E, - E,<< E,), the energy loss for 
a l l  the transitions is practically equal to E I ,  so that 

where U, is  the total ionization cross  section (see Fig. 
3). At high energies E,>> E ,  the principal losses a r e  
determined by the processes of ionization into states 
with energy -EI, for which the cross  sections a r e  given 
by Eq. (36). The effective deceleration i s  in this case 

m 

B= o,(E,+h2qv2/2m) dq.=4nEB/k2. (48) 
I 

We note that B (48) does not depend on the magnetic 
field. The reason is  that with increasing field intensity 
the total c ross  section of the inelastic processes de- 
creases  in proportion to v: [Eq. (37)], and the charac - 
teristic loss of energy by a fast electron (-E,) increas- 
e s  by the same number of times. 

Equation (48) i s  valid in a more general case than 
considered in the present paper. It sufficies to satisfy 
the inequality a>> A [and not ln(a/h)>> 11. The can be 
demonstrated by deriving (48) by the usual method of 
calculating the energy losses of fast electrons with aid 
of the sum rule (Ref. 5, p. 715 of Russ. original). It 
can be shown similarly that the total cross  section o, 
of the inelastic processes for fast electrons without 
assuming smallness of v, i s  of the form 0,=4r(ka)-~ 
x (v, 1 z2 1 v,), where the matrix element is  taken between 
the functions of the ground state of the atomic electron. 
At v,<< 1 the latter is equal to ( ~ , a ) ~ / 2  and we arrive a t  
Eq. (37). 

We note in conclusion that the below-threshold reson- 
ance effects which were not considered above do not af- 
fect the values of the cross  sections. Resonances of 
this type lead to a strong increase of the scattering 
amplitude only for narrow intervals of p and k. 

We a re  grateful to B. A.  Aronzon and E. Z. ~ e i l i k h o v  
for initiating this work. 

APPENDIX I 

At v,<< 1 the normalized wave functions +,(z) a r e  
simple in form. 

For the ground stage (v,) 

(AI. 1) 

for excited states of the discrete spectrum ( v  - 1,2,  
3, .  . . ) we have for odd states 

where L a r e  Laguerre polynomials; for even states a t  
lz I >> v,,u the function $,(z) i s  described by Eq. (AI.2) 
in which we make the substitution z - l z I ,  and for lz 1 
S voa we get 

9" ( z )  -+ (2vOa/vSa) 'v, ( I z 1 /v,a- 1 )  ; (AI.3) 

for the states of the continuous spectrum (normalization 
to 6 (q , -q~) ,qv=l / Iv la )  
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where W i s  a Whittaker function. The functions #,. a r e  
chosen in the form of even and odd standing waves. 
For the odd wave 0 =argr(i/q,a), and for the even one 

0-arg r(llq.4) -am sin{n/ [n'+E'(q.)] ") ; 

t (4.) - [i-exp(-2nlq.u) ] /2ve. 

For l z l s v& and q,vg<< 1 in the case of an even wave 

cp(r) - {qa[l-exp(-2nlqa)]/Z (n'+c'))'h ( i -  12 1 /voa), 

and in the case of an odd wave 

9 . (~ )+  (214) {2qal[i-exp(-Znlqa)] )". 

At qp>> 1 the effects of the Coulomb interaction can be 
disregarded, and the functions #,(z) take the form of 
the functions corresponding to potential -e2b(z)/vo; for 
the even wave 

and for the odd wave 

In all formulas (AI. 1-5) no account was taken of the 
logarithmic divergence of d#/dz a s  z - 0 for the even 
states (this influences little the value of $1. 

APPENDIX I1 

SPECTRUM OF ELECTRONS AFTER IONIZATION 

In the case E,>> E,, the transitions for which the in- 
cident electron loses a considerable fraction of its en- 
ergy make no substantial contribution to the total ion- 
ization cross section. They can be of interest in them- 
selves, however. The quantity o, has its principal 
maximum at E, << E,. With further increase of E ,  the 
cross section o, decreases, but a s  seen from (33) it 
begins to increase again at E," E,. At E, - E,<< E,, 
when the incident electron loses practically all its 
energy, we obtain for a,: 

The scattering becomes isotropic for all these values of 
E,, and the atomic electron has a s  before the largest 
probability of going over to odd states. 

We continue the analysis of the case E, -El>> EB. 
Equation (AII. I ) ,  just a s  a l l  the results above, i s  valid 
so long a s  the energy of the incident electron after the 
collision i s  much larger than the Bohr energy, i. e. , so 
long a s  k,a>> 1. If k,a s 1, then in the final state it i s  
necessary to take into account the interaction of the in- 
cident electron with the n u c l e u ~ . ~ )  The scattering am- 
plitude f: differs in this case from f: determined by 
expression (31) only by the factor F,,(O), where FJO) is 
the value at z =  0 of the wave function of an electron 
scattered by a Coulomb potential ocl/(p2 + z2)"2 (see 
Sec. 1). The latter can be easily obtained from expres- 
sions (5.34-35) of Ref. 1."' As a result, the diver- 
gence of the cross  section o,,ock;' (34), (AII.l) i s  cut 
off as k ,  - 0 at  the value k,- l / a  by the factor 

Here J is a quantity of the order of unity, which is equal 
to 1 at  k,a>> 1 [in this case the entire factor i s  equal to 
1 and the result (33) i s  valid], and depends weakly (log- 
arithmically) on the value of k at k,a s 1. 

If after the collision the low energy i s  possessed by 
the atomic electron (qua 5 I), then after calculating the 
matrix element U,,, it i s  necessary to use the functions 
(AI. 41, which take into account the long-range charac- 
t e r  of the nuclear field. As a result, the cross sec- 
tions o, obtained above must be simply multiplied by 
the expression 

(Znlqa) [i-exp(-Zn/qa) I-'. 

We note, however, that processes with qua 5 1 do not 
influence the total cross  sections of the ionization in 
the considered case E, - E,>> E, . 

Transitions with excitation of the atom at  E, - E, 
>> E, a r e  much less probable than transitions with ion- 
ization. In analogy with the procedure used above for 
ionization we can obtain for the total excitation cross  
section q,: qX/o,- ((E, -E,)I(E, )-312 for E, < E, - E, 
< E, and -v: for E,> E,). 

When finding the binding energy of an electron in an atom 
(see below) this is permissible if the condition (20) i s  satis- 
fied. 
It i s  assumed that the atom i s  in the ground state v, prior t o  
the collision, s o  that a t  a l l  v'+ vo the value of $42) should 
contain only diverging waves a s  z - * * . It i s  this require- 
ment which serves  a s  the boundary condition for the solution 
Eq. (7). 

3 ) ~ c t u a l l y  a t  ln(vg/p << 1 /vg/ to  and k << l/v@ the function F($) 
in (9) can be taken_outside the integral sign a t  the point z, so 
that the potential Ui s in fact local in this case. 

') It i s  seen from Eqs. (17) and 4 does not depend on the sign 
of the potential (it enters in i t  quadratically). This means 
that particles with unlike charge have in a strong magnetic 
field bound states in the atom, and furthermore with different 
binding energies a t  equal masses (at M >> 1). 

5, Only the matrix element that connects the ground state with 
an odd state of the continuous spectrum was written out for 
p >> v p .  The characteristic value of the analogous element 
for an  even state i s  smaller by a factor p /voa (at  q, - 1 /v,a). 

') Equation (29) cannot be used here  to find Au, inasmuch a s  a t  
k c  lh it  becomes important to taw into account the finite 
character of the localization of th6 wave function of the trans- 
verse motion of the incident electron [this width is 4, see  
Eq. (5)l. For k >> l/v@, however, scattering is  primarily 
by the field of the nucleus (the interaction of the electrons is 
weak), for which the quantity Af [see Eq.(28)] can be easily 
calculated also with account taken of the indicated circum- 
stance. The calculation leads to the following expression 
for Af: 

Af- (l/ka)Ml '4 (M+l, i; Zk'L'), 

where * is  a confluent hypergeometric function of the second 
kind. For  l/v,a << k<<l/A this expression goes over to Eq. 
(29), and for k > > l h  (more accurately, k >> M / h )  i t  yields 

It i s  this which leads to the result  given in the text. 
It is  seen from Eqs. (31) and (33) that the values that deter- 
mine the c ross  sections U: a r e  p - l/(k: k,) 2 voa. 
For k<< 1 h (ln(l/lA)>l) the logarithm in (47) should be re- 
placed by 1/2 v,. 

9, The interaction with the atomic electron can in this case be 
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disregarded, since q v  a >> 1. In the initial state, on the other 
hand, the interaction with atom can be neglected a s  before. 

lo) For h <<p << a we have 
nk,a i - exp(-2nlk ,e)  

IF'(') I" 7 2x'+6Z(kv, p) ' 

E(k., p) = ( i -exp(-2n/kva))  [In(k,p) +2C+Re -+ ( i l k 4  I. 

~ e ; e  C i s  the Euler constant, $ is  the logarithmic derivative 
of the r function; Re $(iz)--C a t x  <<1 and - l n x > >  1. 
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