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It is shown that the equilibrium shape of crystals cannot involve angles. The possibility, in principle, of 
equilibrium twinning is noted. Certain electrocapillary effects at the surface of a liquid, similar to striction 
effects at the surface of a crystal, are discussed. 

PACS numbers: 61.50.Jr, 68.10.Cr 

1. In the literature one may encounter the statement 
that under conditions of thermodynamic equilibrium, 
the shape of crystals  can involve edges. ~ n d r e e v , '  in 
an investigation of facet phase transitions, showed that 
onset of edges by a transition of the second o rde r  i s  
impossible because of striction effects. On the other 
hand, phase transitions of the second order  a r e  impos- 
sible on the surface of crystals.' In such a situation, 
the question of the very  existence of edges naturally 
a r i ses .  

Let the stability condition 
a+-">O 

where (Y is the surface energy, be violated within a 
certain interval (cp, < cp < cp,) of variation of one of the 
angles that determine the orientation of a facet of the 
crystal  surface.  It i s  customary to suppose that this 
leads to the appearance of edges, a t  which stable facets 
cp, and cp, intersect. But a s  we shall  s ee ,  a certain r e -  
organization is possible at  the surface,  such that a l l  
facets within the interval (cp,, cp,) become stable. In 
fact, an arbitrary facet cp, < cp < cp, can be built up out 
of stable facets cp, and cp, in the form of a periodic 
structure (see Fig. 1, case  a) .  The sum of the ener-  
gies of the facets cp, and cp, i s  independent of the peri-  
od L and i s ,  per unit length, 

ao(q) =(a,L,+a,L,)L-'= [a, sin q+a2 sin (qo-q)]  sin-' cp, 

(we measure all angles from the facet cp,). This part 
of the energy, on variation of cp from 0 to cp,, sat isf ies 
the relation 

ao+a&=O. 

Therefore the stability of the structure i s  determined 
by the sum of the strictional energy and the energy of 
the edges (A and B in Fig. 1 ,  c a se  a) .  

Striction originates because of the presence of su r -  
face tensions. In crystals ,  the surface tensions a r e  
determined by the surface-tension tensor p,, ( p ,  v 
= 1 ,  2).3 The total s t ra in  energy is 

where uih i s  the s t ra in  tensor ,  oih is the s t r e s s  tensor,  
and i, k = 1 ,2 ,3 .  The s t ra ins  that occur correspond to a 
minimum of the energy (1); therefore in equilibrium, 
the energy (1) must be negative. By use of the equa- 
tions of the theory of elasticity and of the boundary con- 
d i t i o n ~ , ~  the expression (1) can be reduced to the form 

-'la J ai,uik d V,  (2) 

a s  i s  natural, s ince the volume energy i s  quadratic 
and the surface energy l inear in the s t ra in  tensor. The 
action of the surface tensions in our case  reduces to 
forces F concentrated on the edges (see  Fig. 1, case  a). 
The energy (2) can be transformed to a surface integral 

where u, i s  the displacement vector. And since a,,= 0 
everywhere except on the edges, this integral reduces 
to the sum 

in  index n enumerates the edges. 

We res t r ic t  ourselves to consideration of the iso- 
tropic ca se ,  in which the surface-tension tensor r e -  
duces to the coefficients of surface tension 0 ,  on facet 
cp, and p2 on facet cp,. Furthermore,  we shall  suppose 
that the angle cp, i s  small ;  then the solution of the prob- 
lem of elasticity theory simplifies considerably, since 
we may neglect the difference of the shape of the su r -  
face from a plane and may find the s t ra ins  in the crys-  
ta l ,  under the action of surface forces F (see  Fig. 1 ,  
c a se  b) ,  by use of the results  of 88 of the book of 
Landau and ~ i f s h i t z . ~  We shall show, for example, 
how to find the displacement u, at  the point B under 
the action of the z component of the force distribution 
F .  

We f i r s t  calculate the derivative au,/ax on the su r -  
face in the interval between the points A and B [see 
Ref. 4 ,  88, formulas (8.19)]; 

b 

FIG. 1. a) Proposed corrugated structure of a crystal sur- 
face: Ll=L sin cp/sin cpo, L 2 = L  sin (qo-  rp)/sin qo, F ~ =  w 2  
- P  cos qd2+ 8 sin2 qo;  b) Distribution of forces of surface 
tension when q o c  1 (surface almost plane). 
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E is Young's modulus, o is Poisson's ratio. The inte- 
g ra l  of this expression from x = 0 to x = L is 

where the cutoff parameter a is a quantity of the order  
of the atomic distance. As  a result of such calculations, 
we get the following expression for  the total energy (3) 
per period: 

( - , a 2  LC -- nE ln-. 
a 

Adding to this the energy & of the edges A and B, we 
get for the energy density 

I - a F  cL -- ln-, 
nEL a' 

where we have introduced the notation 

a'=a exp (nEel(1-oz)F2).  

The minimum of the energy (4) is attained a t  L 
=ea*c". The surface energy is then less  than cro(q) 
by the amount 

(1-o2))Pc ncp 
a sin- 

neEa' Cpo 

and satisfies the stability condition. 

The formulas obtained a r e  quantitatively applicable 
only if the period L of the s t ruc ture  i s  large in com- 
parison with the atomic distance. As regards the qual- 
itative result concerning the stability of the facets 
considered, it s eems  unlikely that the limitations a s -  
sumed (isotropy and smal l  angles q,) would be impor- 
tant. 

2. As was established by Osheroff, C ros s ,  and 
 ish her; solid ' ~ e  in the antiferromagnetic s ta te  is a 
tetragonal crystal. But in no case  has  it been possible 
to observe a single-crystal s tate,  and it ha s  been 
proved conclusively that each individual c rys ta l  di- 
vides into three  domains, s o  that the C, axes of these 
domains a r e  mutually perpendicular. The surface of 
~e~ crystals  under these conditions should possess the 
quantum properties predicted by Andreev and parshin6 
and detected in lie4 by Keshishev, Parshin,  and Bab- 
kin.' In particular, He3 crystals  should acquire the 
equilibrium shape rapidly. Therefore the observed5 
splitting of He3 crystals  into domains i s  probably an 
equilibrium phenomenon. Specifically, i f  the energy of 
twinned boundaries i s  l e s s  than the surface energy, 
then for sufficient anisotropy of the surface energy a 
situation i s  in principle possible in which it is advan- 
tageous, by production of severa l  twinned boundaries, 
not to exhibit a t  a l l ,  in the equilibrium shape,  the por- 
tion of the facets with the la rger  energy. 

3 .  As was shown earlier: because of strictional e f -  
fects, two-dimensional phase transitions of the f i r s t  
kind on the surface of crystals  a r e  impossible. It turns 
out that the existence of surface polarization (a  double 
layer8) leads to the s a m e  prohibition on the surface of 
a liquid. In an  isotropic liquid, the surface polariza- 

tion is directed along the polar vector  normal to the 
boundary. We assume that on the surface there  exist 
two phases, differing, for  example, with respect  to the 
density of adsorbed atoms. Then the surface energies 
of the liquid in the two s ta tes  coincide, but there is no 
reason for  equality of the surface polarizations. 
Therefore an electr ic  field i s  produced near the line of 
separation between the phases. 

As an example, we consider a nonconducting liquid, 
and we neglect i t s  polarizability. The electr ic  energy 
density i s  

The polarization density P in our case  i s  npB(z), where 
n i s  the unit vector normal to the surface. In the elec-  
t r i c  field E ,  we separate out the perpendicular part ,  
representing E in the form E =-4nP - e. Then the ex- 
pression (5) splits into two parts:  the f i r s t ,  positive 
part 2np2 simply renormalizes the surface energy; the 
second, negative part -e2/8n is nonzero near the line 
of separation between the phases. To find e ,  we note 
that the surface polarization leads to a discontinuity of 
the electr ic  potential a t  the s u r f a ~ e . ~  In our symmetri-  
cal  case ,  we may choose on the two s ides  of the bound- 
ary  potentials 2rp1 and -27rp1 for  the f irst  phase, 2np2 
and -2rrp2 for  the second. The electric field for such 
boundary conditions i s  known.' All that is important 
for  us  i s  that this field falls off slowly, a s  R-', with 
distance R from the line of separation between the 
phases. The energy 

diverges logarithmically, and therefore unlimited mix- 
ing of the phases i s  advantageous. 

Any point defect (an impurity atom, for  example) on 
the surface of a liquid changes the surface polariza- 
tion. In other words, such a defect possesses an  elec-  
t r ic  moment, whose o rde r  of magnitude i s  obviously 
&a3/e, where e i s  the charge of the electron and where 
& i s  the coupling energy of the impurity with the su r -  
face. Therefore identical defects a t  distances large in 
comparison with atomic distances repel  according to 
an R - ~  law, i.e., the s a m e  a s  for elastic interaction of 
defects on the surface of crystalss; the order  of mag- 
nitude of the energy of interaction of the impurities i s  
the s ame  in both cases :  -&2a4 /e2~3 .  
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