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The influence of effects due to the finite character of a system on the character of surface vibrations of a 
normal Fermi liquid is investigated. In a free Fermi-liquid film, the spontaneous violation of translational 
symmetry leads to restoration of the classical capillary spectrum of the long-wave surface oscillations, which 
in this case play the role of gapless Goldstone excitations that restore the broken symmetry. The weak 
damping of these waves, however, is by far not of classical origin and is determined only by the finite 
thickness of the film. In the case of a Fermi liquid of finite depth, the classical capillary spectrum is not 
restored and the surface oscillations remain a purely damped mode, just as in a semi-infinite system. 

PACS numbers: 68.10. - m, 68.15. + e 

1. INTRODUCTION ~ [ A ( ~ , x ' , ~ ; o ) - A ( x , x ~ ,  d u  o;O)I-&dzl  dU 
dz' 

  om in* and the author2 have proposed a theory of sur- 
face Fermi-liquid oscillations, based on the kinetic 

4 + $ Z [ F ( x ,  =', k )  - F ( x , z ' ,  0 )  ] z d z ~ f  

equation with a self- consistent field. On the other hand, dLi 
to describe low-lying vibrational states of atomic nu- = J g [ ~  (x,  x,,  k; ") -A (=, =,, k; 0 )  I 7 d ~ d ~ ' ,  

dx 
clei, a self-consistent variant of the theory of finite 
Fermi systems was developed in Ref. 3, and the very 
same surface oscillations in nuclei a r e  treated in fact 
within the framework of this variant. It is of interest 
to examine the relation between these two approaches. 
It turns out that the kinetic theoryiv2 i s  a quasiclassical 
asymptotic form of the self-consistent theory of finite 
Fermi systems,' and on the other hand, the self-con- 
sistent approach of the theory of finite Fermi systems 
i s  an adiabatic approximation, whereas the kinetic 
theory makes i t  possible to consider also high-frequen- 
cy oscillations. 

As found earlier,2 surface waves in a semi-infinite 
Fermi liquid in the collisionless regime a r e  a purely 
damped mode [we have in mind the low-lying branch of 
the surface oscillations (55) of Ref. 21. These excita- 
tions disintegrate a s  a result of the Landau damping 
mechanism, i.e., by decay into individual particle-pole 
excitations. It is known at the same time that the vibra- 
tional states of atomic nuclei a r e  well defined weakly 
damped collective excitations of the system. It i s  there- 
fore of interest to examine the influence of the finite 
nature of a Fermi system on the character of surface 
oscillations and to investigate the mechanism of s u p  
pressing the Landau damping. 

In this paper we consider surface oscillations in two 
systems: a f ree  film of liquid $He, and liquid $He of 
finite depth. Our analysis provides an answer to the 
questions raised above, and permits a study of the pos- 
sibility of propagation of undamped surface waves in 
these systems. 

2. OSCILLATION OF A FREE FERMI-LIQUID FILM 

We consider an infinite plane layer of a normal Fermi 
liquid of thickness L at zero temperature. The disper- 
sion equation for the quantum capillary waves in this 
system i s  obtained in exactly the same manner a s  for a 
spherical drop of Fermi liquid (atomic n u c l e u ~ ) , ~  and i s  
of the form 

where p(x) i s  the density of the quasiparticles, U(x)  is 
the self-consistent potential, the x axis i s  directed 
across the considered layer, k i s  the two-dimensional 
wave vector of the wave directed along the layer; the k- 
harmonics of the particle-hole propagator and of the ef- 
fective interaction of the quasiparticles a r e  defined re- 
spectively a s  

A (x ,  x', k; o )  = d (r, I,') exp(-ik(r,-I,')  ) I - 

where Gq i s  the quasiparticle Green's function and r, 
i s  the component of the vector-coordinate r along the 
surface of the system, Expression (1) was obtained 
under the assumption that the effective interaction does 
not contain velocity forces. 

In the same manner a s  in a spherical drop of a Fermi 
liquid,$ it can be shown that the rigidity of the con- 
sidered system, which coincides with the left-hand side 
of Eq. (I), has the classical hydrodynamic form, and 
the dispersion equation (1) reduces to the form 

2ok2=Q(k, w ) ,  (4) 

where o i s  the s.urface- tension coefficient, and Q(k, w )  
denotes the right-hand side of Eq. (1). The doubling of 
the rigidity in (4) compared with the case of a semi- 
infinite system is due to the fact that it now receives 
contributions from both the lower and the upper sur- 
faces of the layer. 

To  find the spectrum of the waves in the film, it i s  
necessary to calculate the right-hand side of Eq. (I), 
i.e., the quantity Q&, o). We use for this purpose the 
X representation of the particle-hole propagator4: 
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where X =  (p,, n), E~ =p2/2, + E ,  i s  the quasiparticle 
energy, cp,(x) i s  the wave function of the transverse mo- 
tion of the quasiparticle and satisfies the equation 

The integral in (13) can be easily calculated: 

--- ', {s (rzw- f ) + (G)' [ 3sw-5s (raw- )]  
+ - - - (w+1)-30swf35s  s'w-- (: )'X 

0 

( : 1).  (I4) 
s s+1 q= (qz'+k2) 5, s= - w= -In- - 1. 

q v a '  2 s-1 (15) 

Using the representation (5), we obtain 

As will be seen f rom the final result, the dispersion 
equation (4) has only a low-frequency solution, i.e., 
I w / ~ v ,  I << 1 [the really investigated dispersion equation 
(1) i s  an adiabatic expansion, therefore a search for 
solutions of this equation i s  meaningful only in the low- 
frequency limit]. We therefore expand the expression 
in the right-hand side of (14) in the small parameter s, 
using the expansion of the w-function (15) at 1s / << 1, 
Ims > 0: 

The coefficient 2 in the right-hand side of ('7) i s  the re- 
sult of summation over the spin variables. The wave 
equation (6) allows us to express the matrix element of 
the derivative of the self-consistent field, which enters 
in ('7), in terms of the matrix element of the coordinate: 

Assuming that the layer width i s  much larger than the 
diffuseness of the surface of the system, L >> 1/p, we 
can use the. quasiclassical approximation to solve the 
wave equation (6). In this case 

Next, summing in (13) over x ,  we obtain with the aid 
of the relation5 

the dispersion equation in the following form: 
kL :lrm: kL 

o k ~ =  {= [ 1 + ( k ~ ) ~  th - -"I th- 
2 where Uo is the depth of the self - consistent potential 

U(x) in the central region of the layer. 

As a result of the double energy denominator in (7), 
the main contribution to Q(k, w )  i s  made by the region of 
summation over h and A t  near the Fermi surface. The 
contribution to Q from the summation over the remote 
regions, a s  shown by estimates, i s  of the order of 
w2p,po/~,, and this, a s  will be shown ultimately, i s  an 
inessential correction. To  carry out the summation 
near the Fermi surface we therefore make the following 
substitution: 

In the short-wave limit kL >> 1 the term in the curly 
brackets in the right-hand side of (18) becomes expo- 
nentially small: - e-*= . The sum over n in the second 
term can be calculated in this case by replacing the 
summation with integration. We thus find that at kL 
>> 1 

This expression coincides exactly with the dispersion 
law of quantum capillary waves in a semi-infinite Fermi 
liquid [ ~ q .  (55) of Ref. 21. The term -w2 in (55) of Ref. 
2 i s  inessential. 

We note that for  the reason indicated above we shall 
also neglect the second term - (n +nt)-2 in the matrix 
element (x),,, (10). 

In the case of long waves kL << 1, which is of practical 
interest, the term in the curly brackets of (18) tends .to 
unity and we obtain the dispersion equation 

Taking all the foregoing into account, the expression 
for Q(k,w) is transformed into 

The real part of the spectrum, determined by Eq. 
(20), coincides with the spectrum of classical hydro- 
dynamic capillary waves in a film: 

where the following notation was introduced 

P,='/, (p,+p,') , P.=n (n+nf+ l )  /2L, 

x=n-n', q,=nx/L, q= {q., k ) .  

On going from (7) to (13) the summation over (n + nt) 
was replaced by integration with respect to dP,. 

What i s  interesting, however, is  that the damping of the 
obtained waves, in contrast to hydrodynamics, is in no 
way connected with the viscosity of the liquid, but i s  
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determined only by the finite thickness L of the film. 
The absorption coefficient of these waves, which i s  de- 
fined a s  the imaginary part of the wave vector k, i s  
equal to 

Thus, a s  seen from the analysis of the dispersion 
equation (11, the fact that the system i s  finite (in our 
case, in one dimension) leads to an abrupt decrease of 
the damping of the surface mode. The reason i s  that the 
finite thickness of the film brings about discrete quan- 
tum states of the transverse motion of the quasi-par- 
ticles [see (9)], which in turn hinders the action of the 
Landau damping mechanism. The Landau damping, as 
i s  well known, i s  connected with the breakup of the col- 
lective mode into indivudual particle-hole excitations. 
The discreteness of the single-particle states narrows 
down the phase volume of the finite particle-hole states 
and by the same token hinders the decay of the collec- 
tive mode. 

From the general point of view, a Fermi-liquid film 
i s  a system with spontaneous breaking of the transla- 
tional symmetry, and this leads in fact to a restoration 
of the classical capillary spectrum of the long-wave os- 
cillations. In the present case these oscillations as- 
sume the role of gapless Goldstone excitations which 
restore the broken symmetry. 

It can be concluded on the basis of the foregoing that 
well-defined low-lying vibrational states exist in atomic 
nuclei only because the nucleus i s  finite so  that the sin- 
gle-particle states a re  discrete. The same factor ex- 
plains the relative success of the hydrodynamic a p  
proach to the description of surface vibrations in nuclei, 
The deviations of these vibrations from classical hydro- 
dynamic behavior a r e  connected primarily only with 
shell effects that ar ise  a s  a result of the nonequilibrium 
behavior of the single-particle levels. 

Waves of the considered type (20) can be realized in a 
f ree  film of liquid ' ~ e .  Even though we used in the fore- 
going calculations an effective interaction that contains 
only the zeroth harmonic in the momenta, the result ex- 
pressed in the form (18) remains valid in the case of a 
nonzero f i rs t  harmonic of the interaction. This can be 
demonstrated on the basis of a solution of the kinetic 
equation in a plane-parallel layer of a Fermi liquid. In 
addition, the kinetic equation makes it possible to in- 
vestigate the presence of solutions not only in the low- 
frequency limit, a s  was done above, but also to con- 
sider the high-frequency case. For this reason, we de- 
scribe briefly in the next section the solution of the ki- 
netic equation. 

3. KINETIC EQUATION IN  A PLANE-PARALLEL 
FERMI-LIQUID LAYER 

An analysis perfectly similar to that developed in the 
preceding paper leads to the following for mulation of 
the problem of finding the natural oscillations of a layer 
of a Fermi liquid. We consider the linearized kinetic 
equation 

in the region -L/2 < x  < ~ / 2 ,  where the perturbation of 
the density p' and the flux of the number of particles j 
a r e  defined by the relations 

and v is the frequency of the collisions. We seek for 
(22) a solution that satisfies the following boundary con- 
ditions: the conditions of specular reflection of the 
quasiparticles on the surfaces x,=- L/2, L/2: 

and the condition that the forces exerted by the liquid on 
the surfaces of the system and by the surfaces on the 
liquid be equal: 

where %, i s  the amplitude of the surface oscillation 
velocity, 

is the xx- component of the momentum flux tensor, and 
m* =[1 + ( 1 / 3 ) ~ ~ ]  m is the effective mass of the quasi- 
particles. The minus sign in the right-hand side of (26) 
is evidence that we a r e  considering flexural oscilla- 
tions of the layer, when both surfaces oscillate in phase. 

To solve Eq. (22), we continue the distribution func- 
tion f (p,x, k) into the intervals (- L:-L/2) and ( ~ 1 2 ,  L )  
in the following manner: 

at L/2 < x  < L and 

at -L < x  < - ~ / 2 .  Using the definitions (23) and (24) we 
easily find that such a continuation of the distribution 
function leads to the following continuation equations for 
the macroscopic fluxes: 

pr(z ,  k) = p l ( - L -  X ,  k), j, (2 ,  k) =j,(-L-x, k), 

jS(z ,  k) =-j%(-L-x,  k) 

at -L <x<-L/Z,  and to a similar relation with L re- 
placed by - L at L/2 < x  < L. 

It i s  easily seen that Eq. (22) i s  invariant to continua- 
tion of the distribution function (28), (29). To  satisfy 
the boundary conditions (25) it is necessary to add to 
(22), a t  the junctions of the intervals (-L,-L/2), 
(-L/2, L/2), and (L/2, L), the 6-function terms 
z p , v , ~ , a ( - ~ / 2 -  x) and - 2P,~,%,6(-~/2 -XI.  

We thus consider now the continued kinetic equation 
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in the interval -L < x  <L. Integrating (30) in a narrow 
vicinity of the point x = L/2 with respect to dx, we find 
that the condition of specular reflection on the surface 
x , = ~ / 2  (25) i s  automatically satisfied. The same holds 
true for the surface x,=-L/U. We have thus found that 
the solution of the continued equation (30) coincides with 
the solution of the initial kinetic equation (22) in the in- 
terval ( - ~ / 2 ,  L/2), a solution that satisfies the correct 
boundary conditions of specular reflection (25) at x, 
=* L/2. 

We now continue the distribution function f (p,x, k) 
from the interval (-L e x  cL)  in periodic fashion, over 
all of space. Obviously, to find a solution of ('30) that 
is periodic over all of space i t  i s  convenient to use the 
discrete Fourier transformation 

where q,,, = rn/L and q = {q,,,, k). Similar expansions 
hold also for the continued pl(x, k) and j(x, k). 

The Fourier transform of (30) i s  of the form 

This equation i s  solved in standard fashion, i.e., by 
reducing it to a system of linear algebraic equations 
with respect to pl(q) and j(q). 

We note that the method of solving the kinetic equation 
(22) in a half-space, which was used e a r ~ i e r , ~  is fully 
equivalent to the method developed here, the only ex- 
ception being that one period of the continued distribu- 
tion function spans the entire x axis in the case of the 
half-space problem. The last circumstance has made 
it necessary to use an integral rather than a discrete 
Fourier transformation. Therefore, disregarding the 
discrete character of q,,,, the solution obtained in Ref. 
2 for the kinetic equation in the half-space x < 0 in the 
q representation, i s  a solution of Eq. (33), the only 
difference being that the quantities q, and Q , in the 
semi-infinite solution [ ~ q s .  (42)- (47) of Ref. 21 must 
replaced by 

nn  n n  
q.,, = 7 and-2iU0 sin - . 

2 

To find the spectrum of the oscillations of the film it 
i s  necessary to use the remaining boundary condition 
(26), i.e., to calculate the quantity 

Since 9, enters a s  a common factor preceding lT,(q) 
[see Eqs. (42)- (47) of Ref. 21, the additional factor in 

front of Q,, equal to -2is in(r /2) ,  i s  simply multiplied 
by a weighting factor in the sum (34), a s  a result of 
which we have 4 sin2(lm/2). 

We see  thus that ultimately the summation in (34) i s  
only over odd n, and the dispersion equation takes the 
form 

~ % & k ~ = i m  2 (qz=n(2n+l)/L, k ) .  
L 

where lTxx(q) i s  already replaced by the solution of the 
infinite problem without any redefinition of Q,, and this 
solution takes in the collisionless limit (v=O) the form2 

The equations ho(co/v,) = O  and AI(cI/VP) = O  determine 
the propagation velocities of the longitudinal (c,) and 
transverse (ci) zero s o ~ n d s . ~  

We shall consider below only the collisionless regime 
(v=O), inasmuch a s  in the hydrodynamic limit (v/w 
>> 1) the investigated equations yield nothing new com- 
pared with hydrodynamics~ a s  expected. In the low- 
frequency limit Iw/k~, , l<<l  we can expand (36) in the 
small parameter s, using Eq. (16). Calculation by 
means of Eq. (35), using (17), leads to the dispersion 
equation (18) of the capillary waves, a s  noted above. 

In the high-frequency limit icr)/k~,I2 1, it i s  con- 
venient to investigate the wave spectrum by changing 
from summation in (35) to integration with respect to 
dq,, using the summation formula (17): 

where C, is  a closed contour that circles around the 
real  q, axis in the positive direction. When the contour 
integration (39) i s  used in place of summation, the cal- 
culation of the spectrum in the high-frequency limit 
hardly differs from the corresponding calculation in 
the semi- infinite problem a s  carried out by Fomin.' 

The result if particluarly simple when the velocities 
of the longitudinal and transverse zero sounds greatly 
exceed the Fermi velocity (c,, c, >> V,): 

where 5, = w/kco and t i= w/kci. We have left out from 
(40) the inessential terms 
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which define the weak damping of the mode on account 
of the disintegration into particle-hole pairs. 

In the short-wave limit kL >> 1, when the opposite sur- 
faces hardly influence each other in practice, the dis- 
persion equation (40) coincides with the dispersion 
equation for Rayleigh waves in a solidT: 

(2-b?)2=4(1-go')"(l-g,y)". (41) 

The result (41) was obtained for a semi-infinite Fermi 
liquid by F'omin.' In the long-wave limit: 

max [ (P#L)- '" ,  V, /c l ]  a k L K 1  

Eq. (40) has the solution 

o=3-lb ( 1 - ~ ~ ~ / ~ ~ ~ ) ' ~ c , L k ~ ,  

which coincides with the spectrum of the transverse 
waves in a thin elastic plate: 

We see  thus that in the collisionless regime in the 
limit of high zero-sound velocities (c,, ci>> VF) a thin 
Fermi-liquid film (kL << 1) exhibits simultaneously fea- 
tures of a classical liquid film and of an elastic plate. 
The role of the relaxation time of this liquid i s  played 
here by the parameter r0 = (k~,)-': at w << 1/r0 the 
system behaves like a classical liquid film and has a 
classical capillary oscillation spectrum. At w >> 1/ 7 ,  

the system acts a s  an elastic plate that has acharac-  
teristic spectrum of transverse flexural waves. The 
small damping of the considered collective motions 
(both of the elastic and the capillary waves), however, 
is determined by the utterly nonclassical Landau mecha- 
nism. 

Application of the developed theory to liquid ' ~ e  shows 
that no high-frequency oscillations propagate in a Liquid 
' ~ e  film because no transverse sound develops, a s  i s  
manifest by the proximity of the velocity of the trans- 
verse sound to V, The failure of transverse zero sound 
to develop manifests itself in the fact that the s t resses  
produced by it in the liquid cannot compensate for the 
corresponding s t resses  due to the propagation of the 
longitudinal zero sound (co =3.5VF), a fact that destroys 
the mechanism of production of elastic waves. 

4. SURFACE OSCILLATIONS OF A FERMI LIQUID 
OF FINITE DEPTH 

With the aid of the method used in the preceding sec- 
tion we can analyze surface oscillations of a liquid 
having a finite depth L. To  this end we need consider, 
a s  before, the linearized kinetic equation (22) in the 
region -L/2 < x  <L/2. In the boundary conditions for 
this equation it must be taken into account that the bot- 
tom of the vessel (x,=- L/2), in which the liquid i s  
located, remains immobile. Thus, in the considered 
case we have the following boundary conditions: 

a t x = - L / 2 ,  and 

0910k2=ioIl,(L/2, k). (45) 

The kinetic equation with these boundary conditions is 
solved by the same method a s  in the preceding section, 
i.e., by continuing the distribution function into the in- 
terval -L < x  < L [ ~ q s .  (28), (29)] and using the Fourier 
transformations (31) and (32). The only difference i s  
that because the boundary condition (44) at x =- L/2 
differs from (25), it i s  necessary to retain in the con- 
tinued kinetic equation (30) only one 6 function a t  x 
=L/2. Proceeding in this manner, we usually find that 
the continued kinetic equation now takes the following 
form in the Fourier representation: 

We a r e  considering here directly the case of the colli- 
sionless regime (v = 0). 

Now, a s  in the preceding section, we can use directly 
the solution of the semi-infinite problem in the Fourier 
r e p r e s e n t a t i ~ n , ~  which, by using the obvious redefinition 
%oe-ir"/L for qO, will be the solution of Eq. (46). To  
determine the spectrum of the oscillations i t  i s  neces- 
sary  to calculate the momentum flux tensor IJx,(L/2, k) 
[see Eq. (4511. Using again the fact that a factor e-""IL 
that ar ises  in the redefinition of i s  contained simply 
as a common factor in the solution of Eq. (46) [this i s  
the consequence of the linearity of Eq. (46)], we can 
write down a dispersion equation, which i s  none other 
than the last  boundary conditions (45), in the form 

where llxx(q) is taken to be the soluti6n of the semi-in- 
finite problem (36) without a redefinition of %,. 

To investigate the spectrum of the oscillations in the 
low-frequency limit l w / k ~ ,  I<< 1, we must use the ex- 
pansion of the momentum flux tensor lJJ:-i"f'(q) in the 
small parameter s, We thus obtain the dispersion equa- 
tion 

The addition - w to the right-hand side of (48) turns out 
to be negligibly small at arbitrary kL, in contrast to 
(18), and has therefore been left out of (48). 

In the short-wave limit kL >> 1, the spectrum (48) co- 
incides with the corresponding spectrum of a semi- in- 
finite system (19). In the long-wave limit kL << 1 how- 
ever, this spectrum also remains purely damped: 

in contrast to Eq. (20) for the f ree  film. The reason i s  
that the reflection of the quasiparticles from the bottom 
of the vessel leads to a dephasing of the surface wave. 
In other words, the presence of the vessel bottom, 
which bounds the liquid, leads already to a real  rather 
than spontaneous violation of the translational symmetry, 
which does not lead to the appearance of an undamped 
Goldstone mode. 

The use of the condition of self-consistency in an ex- 
ternal field8 makes i t  possible to consider capillary- 
gravitational waves in the system, i.e., surface oscilla- 
tions of a Fermi liquid in the presence of a external 
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gravitational field. It turns out that a weak gravitational 
field alters in standard hydrodynamic fashion the rigid- 
ity of the system [uk2 in the left-hand side of (48) i s  re- 
placed by uk2 +mpog, where g i s  the acceleration due 
to gravity] and has no effect whatever on the dynamics 
of the oscillations, i.e., on the right-hand side of (48). 

To investigate the high-frequency spectrum 1 w/kv, ( 
21 it i s  convenient to change from summation over n 
in (47) to integration with respect to dq,, in analogy 
with the procedure used in the preceding section [see 
(3911. Using the summation formula5 

we easily find that 

where C, i s  the same contour a s  in (39). 

A particularly lucid result is obtained in the limit of 
high zero-sound velocities (c,, C, >> V,): 

(2-g,2)'eth [ - k ~ ( 1 - f ~ ~ ) ' ~ ]  
=4(1-Eo')'"(l-E,')'" cth [-kL(1-E,')"'], (52) 

where to and ti a r e  defined as in (40). In the short- 
wave limit kL >> 1, Eq. (52) coincides with the dispersion 
law for  the Rayleigh waves (411, and in the long-wave 
limit it has the solution 

which can be easily seen to coincide with the dispersion 
law of longitudinal waves in an elastic plate: 

In liquid 'He, no such high-frequency waves propagate 
for the reason indicated in the preceding section. 

The oscillations of the considered type (just a s  in a 
Fermi liquid of finite depth) can be realized in a f ree  
Fermi-liquid film. In the case of such oscillations, the 
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opposite surface of the film move in antiphase, and for 
their analysis it suffices to reverse the sign of n,,(-L/ 
2, k) in the boundary condition (26). These oscillations 
can be called a surface "compression" mode, although 
no real compression of the Fermi liquid takes place 
here, only flow from the troughs to the crests. The sur- 
face compression mode was purposely analyzed with a 
Fermi-liquid of finite depth a s  the example, inasmuch 
as observation of this mode in liquid 'He i s  easiest to  
realize precisely in this case. 

In conclusion, the author i s  grateful to the late V. M. 
Galitski{ and to V. A. Khodel' for helpful discussion of 
questions touched upon in the present paper. 
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