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For matter with equation of state p = (y - l)e, gravitational fields with plane symmetry that admit the 
conformal group with a dependence of the metric on z = x '/xo (self-similar solutions in space-time with plane 
symmetry) are considered in the general theory of relatively. The investigation of the Einstein equations, 
which reduce to a system of ordinary differential equations, requires a qualitative investigation on a two- 
dimensional phase plane. Some exact solutions are given. The t region (z coordinate timelike) and the s region 
(z coordinate spacelike) are introduced. A special case of metric structure containing the flat Friedmann 
model is considered in detail. The construction of analytic solutions and solutions with weak and strong 
discontinuities (shock waves and contact discontinuities) is discussed. Solutions which can be joined to the flat 
Friedmann model through a weak discontinuity and through a shock wave are studied. The possibility of 
joining the flat Friedmann model to Minkowski space-time through a shock wave of limiting intensity is 
discussed. 

PACS numbers: 04.20.Jb, 04.20.Me, 04.50. + h 

8 1. INTRODUCTION 

In the general theory of relativity, i t  i s  of interest  
to study gravitational fields with spherical ,  pseudo- 
spherical, and plane symmetry with metr ics ,  respec- 
tively, of the form1 
ds'=T2(t, x')  ( c d t ) ' - X z ( t ,  x')  ( d x ' j 2 - y 2 ( t ,  x')  [ ( d ~ ~ ) ~ + f Z ( x ' )  ( d ~ ~ ) ~ ] ,  

j ( x Z )  =sin xZ,  sh xZ, I .  (1.1) 

The gravitational fields (1.1) admit of an exact analy- 
tic solution fo r  dust [ ~ o l m a n ' s  solution for  f = s in  2 
(Ref. 2) and s imi lar  solutions for  f =sinh 2 (Ref. I)]; 
the worldlines of the matter  a r e  geodesics of the space- 
time. 

sonicJ' and leads to impossibility of ex- 
tending a continuous solution to al l  values of the coor- 
dinates, s o  that i t  i s  necessary to consider solutions 
with discontinuity surfaces (shock waves)., 

Below, we consider gravitational fields of the type 
(1.1) with f = 1 f o r  (1.3) which admit the group of con- 
formal transformations (homothety group). The con- 

( dition of conformal invariance6" requires the presence 
of the generator  X, = (f4)axi with conformal Killing 
vector tf,) satisfying the equation 

The conformal group is generated by X, and the gen- 
e ra tors  Xu = [f,,a/axi, a = 1, 2, 3, where [fa, a r e  

When the source of the gravitational field in Einstein's the Killing vectors of the group of motions~ which are 
equations (in the notation of Ref. 2) the generators of the subgroup G, of the conformal 

R?-'126,XR= (8nk/c4)  T: (1.2) group G,.  For  (1.1) with f = 1, w e  h a ~ e " ~ " ~  

, i i s  the hydrodynamic energy-momentum tensor of 5,1 ,=z36, ' -~63' ,  E:2)=62ir f : ~ ) = 6 ~  , 
matter  with the equation of s ta te  ( p  i s  the pressure ,  
and e the density of the internal energy) E ; ~ , = x ~ ~ ~ ' - x ' ~ , ' +  ( 1 - 6 )  (x26a'+x363'), 

b=const, T = T ( z ) ,  x=x(z ) ,  ~ ~ = ( x ' ) ~ Y ( z ) ,  Z=X'/XO, (1.4) 
T1k=(e+p)u,u,-pgt, ,  uXu i= l ;  p = ( r - l ) e ,  i<y<2, (1.3) 

for  p P 0 (1 < y c 2), the 4-acceleration a, = t8ui:, is whereas fo r  f =s in  2 and sinh 2 (Ref. 7) 
in general nonvanishing in accordance with the"hydro- 
dynamic equations3 

and gas-dynamic effects a r e  important; these effects 
a r e  manifested in problems associated withthe dynamics 
of gravitational collapse, as well a s  in cosmological 
models. In particular, study of the homogeneous ani- 
sotropic cosmological model of Bianchi type V with 
axial ~ y m r n e t r y , ~  which i s  contained in (1.1) f o r  
f ( 2 )  = 1 (Ref. 1) and for  which the 4-normal ni to the 
transitivity hypersurface Vs of the group of motions 
G ,  doesnot coincide with the matter  4-velocity ul, 
shows that in the region where n' is spacelike the 
acoustic characterist ics  for  1 < 7 < 2 have an  envelope 
(a limiting line). This makes the solution two-valued 
in the region of i t s  existence ("subsonic" and "super- 

By analogy with classical  gas  dynamics, solutions 
of this type a r e  said to be  s e l f - ~ i m i l a r . " * ' ~  Self- 
s imi lar  solutions in general relativity, fo r  the case  of 
spherical  symmetry ( f=s in  2) with (1.5) ( ~ e f s .  13  
and 14),  a r e  described by a system of ordinary dif- 
ferential equations which requires (as in the case  of 
the Newtonian gas dynamics of a self-gravitating gas") 
qualitative analysis of the integral curves in a three- 
dimensional space.14 In the present  paper, we con- 
s ider  the general case  of plane symmetry with f = 1 in 
(1.1) and (1.4); then the qualitative analysis i s  on a 
two-dimensional plane. The case  6 = 0 was discussed 
ea r l i e r  in Ref. 15 and considered in detail by the pres-  
ent author in Ref. 8. Below, we give the general 
equations for  a rb i t ra ry  value of the constant 6 and 
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find some exact solutions (Sec. 2). We discuss in 
detail (Sec . 3) the case  6 = 2/3y, which includes the 
flat Friedmann model among the solutions. ' ' In Sec. 4 ,  
we consider solutions that can be  joined to the Fried- 
mann solution through a weak discontinuity and through 
a shock wave. 

Gravitational fields with conformal group on V ,  were 
considered in connection with cosmological models in 
Ref. 16. 

82. GRAVITATIONAL EQUATIONS 

F o r  the gravitational fields considered below with 
plane symmetry with metric in the form 

ds2-T" ( z )  (dz0) ' - X 2  ( 2 )  (dx l ) ' -  ( 2 ' )  " Y Z  ( 2 )  [ (dxZ) '+ ( d x S )  '1, z=xl / zO 

(2.1) 
i t  follows17 from the Einstein equations (1.2) that the 
components uO(z) and ul(z) of the 4-velocity a r e  non- 
zero,  and the energy density in (1.3) has the s t ruc ture  

e=E ( z )  1 (x0) ' .  (2.2) 

By a coordinate transformations the system (2.1) can 
be  transformed to a comoving system with metric 
again of the type (2.1). We shall  assume that the ori-  
ginal system with (2.1) i s  comoving with u '  = 6:/~.  

The variable z can have different orientations in 
space-time. Denoting 

y  = ( zXIT)  ' (2.3) 

and calculating the 4-normal N i  to the hypersurface 
z = const, f = x1 - zxO = 0 ,  we find that N ,  = af/axi is 
timelike (t region) for  y > 1 ,  spacelike (s region)' ' 
f o r  b < 1, and isotropic for  y = 1. The condition y = 1 
determines the light cone a t  each ~ a i n t .  In the t region 
(CL > I ) ,  the coordinate transformation . 

xn=y'F,(y",  X ' = ~ ' F , ( ~ O ) ,  z2. 3- -Y 2 ,  * , 

d l n ~ , = - L d l n z ,  F,=zF, 
P-1 

reduces (2.1) to a t system in the form ( y  1)  

as2-(y') 'R,Z(yo) (dyO) ' -R,I (yO)  (dy ' )2- (y ' )ZaR, ' (ya)  [ ( d y 2 ) z + ( d y S ) x l ,  

p  d l n z  
R : = ( T F ~ ) Z - ( ~ )  P-1  Y , 

In (2.4a), we have fo r  the 4-velocity and the 3-velocity 
v of the matter  the expressions 

In the s region (0 < p < I ) ,  the coordinate transfor- 
mation 

reduces (2.1) to the s system in the form ( p  6 1) 

In the s system, the mat ter  3-velocity v i s  

( ~ I c ) ~ = p .  ( 2 . 5 ~ )  

Equations (2.4b) and (2.512) elucidate the physical 
meaning of the variable p .  

We consider the gravitational equations (1.2) and 
(1.3) in the comoving system (2.1) with (2.2), using 
the variable (2.3) and a l so  the variable 

q =  ( d  In Y I ~  In z )  -', (2.6) 

which characterizes the shift along the 2 and 3 
axes.  From the conservation laws T h ,  = 0 with i = 0 
and 1 there follow the relationss 

F rom the expressions (2.8) and (2.31, we obtain 

F rom the Einstein equations (1.2), (1.3) the compo- 
nents Tk = O  and (? - 1)T: + Ti = O  lead17 af te r  long cal- 
culations, in which (2.8) is used,  to the sys tem 

q ( 6 q + 7 )  ( ~ ( 2 - 7 )  ( 2 q + 3 y )  -11%6[2(7-1) ( 2 - 7 )  f 67 ( 3 y - 2 ) l  

-271 [ ( 7 - 1 )  (2-"1+6y(5"14)1-7 ( 7 7 - 6 )  ) d p = 2 ~ { ~ [ 2 ( 2 - ~ ) 6 q ~  

+2y ( 4 - 3 1 ) 6 q - y P  (37-2)  1 - q 2 ( 2 - y ) 6 [ 2 ( ~ - 1 ) " 6 ~  ( 3 7 - 2 )  1 
-26y(2y2-7y+4)q+y2(3y-2))dq, (2.10) 

The component of (1.2) with i = k = 0 leads to an ex- 
pression in (2.2) in the form 

Equations (2.8) and (2.10)-(2.12) (for e*O, *2) 
constitutes the entire system of gravitational equations. 
F o r  y = 2, we must use instead of (2.9) the equation 
Ro,=O, which can be  written in the  form1' 

d l n X  d l n q  
z -  ( 6 q + 7 ) q y + z -  q 7 + 2 ( ~ - 1 )  ( q + r )  - ~ ( 6 q + 1 ) = 0 .  

d r  d z  

Equation (2.10) can be  investigated qualitatively on 
the plane (71, y);  Eq. (2.11) determines the variation 
of z along the integral curves on the plane (.I,, P). 

F o r  all values of 6 in (2.11, Eq. (2.10) has the solu- 
tion 

for  which in accordance with (2.12) we have e =p=O. 
Calculation of the Riemann tensor for  (2.13) with al- 
lowance fo r  (2.8) and (2.9) shows that this tensor 
vanishes; the solution (2.13) corresponds to Minkow- 
sk i  space-time. One must  here  consider tes t  mat te r  
with the equation of s ta te  (1.3) moving against the 
background of the Minkowski space with metric in the 
comoving sys tem in the fo rm (2.1). The formulas of 
the transformation from the comoving coordinates to 
Galilean coordinates gives the law of motion of the 
tes t  mat te r  in Lagrangian coordinates. The co r r e s -  
ponding formulas fo r  6 = 0 a r e  given in Ref. 8 .  

F o r  6 = 2/3 in (2.1) we have e = 0 in accordance with 
(2.12) fo r  al l  the solutions of (2.10) except in the case  

428 Sov. Phys. JETP 54(3), Sept. 1981 I. S. Shikin 428 



2rr +3y = O .  All these solutions, except for  (2.131, 
correspond to vacuum solutions with nonzero Riemann 
tensor; the presence of tes t  matter  with (1.3) moving 
on the background of the corresponding Einstein space 
i s  implied. Fo r  b = 2/3 and 2rr + 3y = 0 ,  we have in 
accordance with the gravitational equations an exact 
solution in the form 

where the function ~ ( z )  is determined by the equation 
obtained from R: - R/2 =R: - &/2 in the form 

F o r  dust and fo r  matter  with maximally hard equation 
of s ta te  (velocity of sound equal to the velocity of 
light) e = p  there exist exact solutions of the equations 
of general relativity f o r  a rb i t ra ry  6 in (2.1). Fo r  dust 
(y = l ) ,  we obtain in accordance with Ref. 1 two types 
of solution in parametric form with parameter  C in the 
form 

F o r  e = p  (y = 2), we have in accordance with (2. l o ) ,  
(2,11), and (2.9) 

and fo r  the functions p(q) and z(q) we obtain expressions 
of two types3': 

From (2.9a), we obtain the dependences ~ ( g )  in the 
form 

$3. ANALYSIS OF THE GRAVITATIONAL 
EQUATIONS FOR S = 213-y 

We consider in detail the solutions of (2.10) for  6 
= 2/3y. In this case ,  (2.10) has a solution corres-  

FIG. 1 .  Field of the integral curves of Eq. (3 .2 )  for y =  1 

ponding to the flat Friedmann model: 

(3.1) 
Equations (2.10)-(2.12) fo r  6 = 2/3y take the form 

18y2 [p- (7-I)]  zdq/dz=(2q+3y) [97(2-y)p+2(3yZ-12yf 8)q 

- 3 ~ ( 7 7 - - f i ) l ,  (3 .3)  

8n k - pT?E (z) = 
2(7-1) 

C' 3yzq (2q+3y2) [ (2q+3y)'-gy%I. 

The analysis of the solutions reduces to study of the 
fields of the integral curves and singular  points of 
Eq.  (3.2), which a r e  represented4' fo r  different in- 
tervals  of y in F igs .  1-4. The ar rows indicate in 
accordance with (3.3) the direction of increasing l z l 
along the integral curves.  

Fo r  dust (y = I ) ,  the solutionwithnonzero energy den- 
s i ty  e is represented in the (q, @) plane by the straight 
l ine 2q + 3y = 0 (Fig. 1)  and is expressed by Eqs. 
(2.14). After one integration, Eq. (2.14a) reduces to 
the form 

FIG. 2. Ultrarelativistic equation of state y = 4/3. The 
straight line AC (4.3) i s  shown. 
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F o r  X =  Y, the considered solution reduces to the 
flat Friedmann model. All the remaining integral 
curves in Fig. 1 correspond to solutions that have the 
form (2.151, fo r  which e=O. 

The "vacuum" parabola (2.13) corresponds to the 
solution 

zo-Z 2z+z 
9p=(2q+3)', z=zo(i+q), Y =-, x=-A, T=i.  

zez 3 2 , ~  

(3.6) 
F o r  this solution, the coordinate transformation 

1 
qo-q'=xo(zl)'h+ - (xl)'/*+ (xl)*'*Y [ (z2)2+ (z ' )~] ,  

220 
+ ( x )  213 y ,,=. J= (zo'/a yza. 3 

reduces (2.1) to the Galilean form of Minkowski space. 

Fo r  y > 1 ,  the energy density i s  in accordance with 
(3.4) nonzero for  a l l  solutions except the vacuum para- 
bola (2.13), 

which corresponds to the solution (1 < y < 2) 

There a r e  also the solutions 

The coordinates of the points G and H a r e  determined 
by the equation (q, > 9") 

2(2-r)qz+y(3yz-i8y+20)q+3yz(6-5.0=0, p=(2q+3y)'/9y2. 

(3.8) 
F o r  (3.7a) in the limit 9 -- g, we have z -- 0; fo r  q-- q, 
we have z - m; and fo r  g -- 7jC we have z -- 0. A con- 
tinuous vacuum solution f o r  al l  values of z i s  realized 
f o r  (3.7b) and fo r  the piece (3.7) between the singular 
points D and H. 

The region e > 0, which i s  determined by (3.41, i s  
hatched in Figs. 2-4. In the s region, the direction 

FIG. 3 .  y =  2. At p = -  and q = q o  we have z = -  for  qo<O and 
z= 0  for  q o > O .  

FIG. 4 .  Fie lds  of the  in tegra l  curves  of Eq. ( 3 . 2 )  for  different  
y  in the  interval  1 < y  < 2 .  The subscr ip t  1 r e f e r s  to  the inter-  
va l  1 c y  < 6 / 5 ,  the subscr ip t  2  to  the  in te rva l  6/5 < y  c  4 / 3 ,  and 
the subscr ip t  3  to  the interval  4 / 3  < y  <2. We have q B =  q ~ =  - 3 ~  
/ 2 ,  qc= qE= - 3 y 2 / 2 ,  and ql= 3*/(7y-6)/2(3y2 - 12yc 8 ) .  At the  
points q = m  and p = u o  we havedp/dq=O and z = z , .  

of increasing2 i s  reversed on going through the straight 
line CI = y  - 1 (except f o r  the singular  points B and F )  . 
In accordance with the definition3 of the velocity of 
soundw,  we have (u /c) '=dp/de=y-1 .  In the  s s y s -  
tem (2.5b) for  0 < 1 < y  - 1 we have in accordance with 
( 2 . 5 ~ )  the relation v < w (subsonic regime); for  y - 1 
c p  < 1 we have w < v < c (supersonic regime), and fo r  
CI = y  - 1 (z=zo) we have Becuase of this 
nature of the variation of z ,  a continuous solution in 
the sys tem (2.1) in the s region i s  two-valued (either 
subsonic o r  supersonic in the s system) and defined 
ei ther  fo r  z > zo o r  for  z C z,; the construction of a 
solution fo r  a l l  values of z requires the introduction of 
discontinuous solutions. ' 

In accordance with (3.3) and (3.21, we have exact 
solutions corresponding to the singular  points B and 
F on p = y  -1 ;  using (2.9) and (2.31, we can write 
them in the form (y  < 2) 

q=qB=--3712, p=y-I, T=za*, X=zal, Y=za*, (3.9) 

F o r  the solutions (3.9) and (3.10) the matter  velocity 
of eachvalue of z in t h e s  system (2.5b) is in accordance 
with ( 2 . 5 ~ )  equal to the velocity of sound w, and the . 
lines z = const a r e  characterist ics  (as in the case  of a 
centered simple wave in Newtonian gas  dynamics with- 
out gravitation3). 

When the evolution in t ime is studied a s  2 varies 
f rom 0 to w a t  a fixed point x1 the variable z changes 
from m to 0. When the behavior with respect to x1 
is studied with x1 varied from -m to +a at  a fixed 
t ime the variable z changes f rom -4, t o  +m. At the 
point 2' = 0 ,  x1 = 0 (x' = zxO - 0) the solution becomes 
multivalued in general; a t  the s a m e  t ime,  e = in 
accordance with (2.2). 
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In general, the solutions (3.3) a r e  nonsymmetric 
functions of z ;  a t  the s a m e  t ime,  in  accordance with 
(2. l l ) ,  to each solution q =q,(z) there corresponds 
the solution 71 =1j2 =rll(-z). In accordance with Fig. 4, 
the analytic solutions p(11) in the range of z from 0 
to m correspond to the Friedmann solution (3.1) and 
to the curves from D(z = 0) to I(I z I - a )  which lie 
entirely in the region e < 0. Fo r  1 < 7 < 6/5, the analy- 
t i c  solutions also correspond to curves drawn from 
G(z = 0) to the singular point q = 0,  1 / p  = 0 (singular 
s tate)  with asymptotic behavior ( y  < 2) 

the 4-velocity, the internal energy e ,  and the com- 
ponents of the Ricci tensor pass without breaks.  

Fo r  1 < y < 6/5, one can construct a solution (Fig. 4) 
which has one of i t s  pieces formed by (3.7) from G 
to p- m and corresponds to Minkowski space (for 
example, for  z s 0). The other piece (for z > 0) is 
formed by the integral curves which begin a t  G and 
f i r s t p a s s  i n t h e r e g i o n e > O t o q - - 0 ,  P - - 0 0  (3.11) 
(singular s tate a t  z = 2 , )  and then in the region e < 0 to 
the point 11- m, I-- m (3.12) (121--a). This  solution 
can be  interpreted a s  flow from the region z > 0 into 
vacuum (Minkowski space),  the velocity of the flow 
f o r  z = 0 (e = 0) in the s sys tem being determined in 
accordance with (2.512) by the relation 

and then in the region e < 0 to the singular point 1/71 

= 0 ,  l / p = O  with the asymptotic behavior (y < 2 )  

Y-rYo, X-zl/:-+m, T-zl"-LVT-tm E - z - ( Z 7 - 1 ) ! ( 7 - 1 ) + o ;  

(3.12) 
2 (37%-12y+8) 

IL" q q - z " 2 - 7 ' / 7  
g ~ ( 2 - 1 )  

F o r  6/5 < y < 2 ,  the analytic solutions correspond to 
curves from the singular point A (q =0 ,  p = 1; z = zO) 
with asymptotic behavior 

in the region e > 0 to q -- 0 ,  /.I -- m (singular s ta te ,  z 
= z,) with (3.11) and then in the region e < 0 again re-  
turning to the point A(z =z,) with subsequent repeti- 
t i ~ n . ~ '  In accordance with (2.111, these last  solutions 
a r e  periodic in In z .  

54. SOLUTIONS WITH WEAK DISCONTINUITIES 
AND SHOCK WAVES 

Solutions containing discontinuty surfaces a r e  of 
i n t e r e ~ t . ~ '  Piecewise analytic solutions can be con- 
structed by joining solutions a t  the singular point D(z 
= 0) with the asymptotic behavior 

at  the singular point B(z  = z,) with the asymptotic be- 
havior 

and a t  the singular point G(z =0)  f o r  1 < 7 < 6/5 and 
the point A(z =z,) [which l ie  on (3. 711 with the asym- 
ptotic behavior (3.13) for  6/5 < y < 2. At the point 
of joining, there is a weak discontinuity, through which 
the g,,, their f i r s t  derivatives, the components of 

with the expression (3.8). F o r  6/5 < y < 2, one can 
construct a solution with one of the pieces formed by 
(3.7) f rom G to A(z =z,). The second piece fo r  I zl 
> l z, I is formed by the integral curves which begin a t  
A and pass in the region e > 0 to q -- 0 ,  p -  m and then 
i n t h e r e g i o n e < O e i t h e r t o p - - m ,  q - m o r t o G ( l z l  - a ) ,  o r  to the point A with finite z and with subsequent 
repetition. 

Of part icular  interest  a r e  solutions for  which one 
of the pieces i s  the Friedmann solution (3.1) f o r  l zl 
3 1z,1 (or  for  1 z 1 < l z, 1 ). The second piece f o r  
l z l Q l z,  I (or l z l 2 l z, I ) in the piecewise analytic solu- 
tion can be the solution (3.9) o r ,  f o r  1 < y < 4/3, the 
solution corresponding to the integral curve from B to 
D (Figs. 4 and 2). In this case ,  a weak discontinuity 
propagates through the Friedmann solution with the 
velocity of sound in accordance with the law xl=z,xo. 
Taking (3.1) for  z < z, and z > z, and the solution (3.9) 
fo r  zl  < z < z,, we obtain a nonlinear packet of finite 
width propagating through the Friedmann solution. 

A shock wave on which the hydrodynamic variables 
have a discontinutiy is described by the singular hyper- 
surface z = z *  =const  (with unit normal n'), which in 
the s system (2.5b) is determined by the condition y' ' 

= yl* (with ni =nY6:). The  Rankine-Hugoniot con- 
ditions fo r  the jump of the hydrodynamic quantities 
a c r o s s  the shock front (the s ta tes  in front of and behind 
the shock a r e  identified by the indices 1 and 2)' 

can be  written in the s sys tem (2.5b) in the form 

In the s system, the components of the metr ic  tensor 
and i t s  f i r s t  derivatives a r e  continuous ac ros s  the 
shock front ,  while the components of the Ricci tensor 
have a discontinuity, except f o r  the ones that remain 
continuous by virtue of (4.1).'' 

By means of Eqs.  (2.21, (2.12), and (2 .5~1 ,  (2.5a), 
and (2.5b), the relations (4.1) can be transformed to 
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Equation (4.2a) i s  obtained by dividing the expressions 
(4.1) and is the analog of the Prandtl conditions, and 
(4.2b) i s  the second of the relations (4.1). In the plane 
( p ,  T , ) ,  the discontinuity across  the shock wave cor- 
responds to the jump from the point p1, ril with y - 1 
a p, s 1 (supersonic state)  to the point p,, 71, with 
(y - 1)' c p2 c 7 - 1 (subsonic state,  e, > el). 

If the shock wave propagates through the Friedmann 
solution (3.1) (2q1 + 3y = 0) , then in accordance with 
(4.2) the points of the s ta te  2 must l ie  on the straight 
line 

At the s ame  t ime,  they a r e  situated on the interval 
of (4.3) f rom the point B(pl  = p2 = y - 1) to the point 
C(pl  = 1, p, = (y - 1)'). If the Friedmann solution i s  
realized behind a shock front (for example, behind the 
front of a converging shock wave), we have 217, + 3y 
= 0, and the points of the s ta te  1 lie on the straight 
line (4.3) between the point B (p, = p, = y - 1)  and the 
point A(p, = 1 ,  p, = (y - 1)'). The straight line (4.3) 
i s  shown in Figs .  2 and 4. 

In particular, the solution to  the problem of a shock 
wave on the plane ( p ,  q) propagating in both directions 
through the Friedmann solution (3.1) is described for  
I  z I 3 I z* I  by the section of the straight line 217, + 37 
=Ofrom p = m  to p = p l  and for  l z I  c I z * I  by a n i n -  
tegral  curve which s t a r t s  on the straight line (4.3) (the 
state y, q,) and passes to the point D o r  to the point 
H (a wave of maximum intensity). 

It is of particular interest t o  join through a shock 
wave the Friedmann solution and the Minkowski space- 
t ime  (3.7) for  waves of limiting intensity (nin, =0)  with 
the jump from A on the straight line (3.1) (el=O, 
Minkowski space in front of the wave).'') Analysis of 
the possibility of continuing the solution along the 
vacuum parabola (Figs. 2 and 4) shows that one can 
have a solution with a shock wave converging through 
Minkowski space [the section of (3.7) from ti to A ,  
I  z  I  s l  z* I 1, the Friedmann space-time being behind 
the  shock front (the state 2). Fo r  1 < 7 s 6/5, one can 
also have a shock wave diverging through Minkowski 
space [ thesectionof (3 .7) f rom p-a,  t o A ,  I z I  3 l z * ~ ] ,  
with the Friedmann solution realized behind the shock 
front. 

Fo r  dust (y = 1)  i t  follows in accordance with (4.1) that 
i t  is possible t o  have only a contact discontinuity with 
1, = p, = O  and with arb i t ra ry  jump e, - el. Discon- 
tinuous solutions a r e  formed by joining through the con- 
tact  discontinuity a t  the singular point D (Fig. 1) ei ther  
two 217 + 3 = 0 solutions of the type (2.14) (y = 1)  and 
(3.5) with matter  (el,, + 0) o r  a 217 + 3 = 0 solution with 
mat ter  (e t 0) to one of the vacuum solutions (e = 0) 
having a t  the pont D the asymptotic behavior 

~ = k * ( 2 ~ + 3 ) ' ,  k,=const, z=z, exp [-9k,(2~+3) 1 +z,, 

15p=2~+3, z=zO(2q+3)-'/*+co, 

in part icular ,  to the solution (3.6) corresponding to 
Minkowski space. 

F o r  e = p  (? = 2) (Fig. 3) ,  analytic solutions do not 
exist for  e > 0 .  F o r  y = 2, piecewise analytic solutions 
a r e  constructed by joining solutions a t  the singular  points 
i and A .  Inaccordancewith(4.2), we have p1 = p 2  = 1 
ac ros s  a shockwave f o r  y = 2 (Ref. 18); in this  case, the 
4-normal is isotropic. It is possible to join the Fried- 
mann solution (3.1) to other solutions through a shock 
wave with jump f r o m A  to  B and with jump f rom B 
to C (or vice versa)  with fulfillment of the condition 
e2 > el. 

 he only Friedmann solutions with self-similar structurei6 
a r e  the flat Friedmann model2 with the metr ic  (1.1). (1.4) 
with f= 1 ,  6= 2/3y and (1. I ) ,  (1. 5) with f= sin x 2 ,  a s  well as  
the open model in the vacuum case  (Galilean space-time) 
with f = 1 (Refs. 1 and 4) ,  which corresponds to (1.4) with 6 
= 0 (Ref. 8) and i s  an asymptotic s ta te  for the open Fried- 
mann model. 

 he Cauchy hypersurface z = z o  i s  spacelike in the t region 
and timeline in the s region. 

3 ' ~ h e  solution for 6= 0 given ea r l i e r  in Ref. 8 corresponds to 
d2 - 1 t i / C o e  0. 

')we note, a s  in Ref. 4 ,  the distinguished values y =  6/5 and 
y =  4/3. 

"For the analogous situation in the anisotropic cosmological 
Bianchi model type V, however, the introduction of a discon- 
tinuity surface does not make it possible in the framework of 
this model to construct a solution in the X region for all  va- 
lues of the independent variable.' 

"similar periodic solutions a r e  also possible in the axisym- 
metr ic  Bianchi model type V. 

 he solutions for e= 3p and y = 4/3 a r e  analyzed in Ref. 10. 
 h he equation lz I=z*  determines for t <O waves which con- 

verge  to x l=  0 and for t > 0  waves which diverge from x i =  0. 
"In accordance with (2.5b), we have on the shock front (for z 

=z*) Y1=Y2. T t > T 2 ,  XI>Xz  ( p l < l ) .  
'O'For p i=  1 ,  one cannot use the s system (2.5b) to consider 

the conditions across  the discontinuity; instead, one must 
use  a certain 1 system with metr ic  of the type (2. I ) ,  in 
which the matter moves (and v l =  C )  and the components of 
the metr ic  a r e  finite, nonvanishing, and continuous across  
the discontinuity at z =  zi .  
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