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The energy dependence of the reflection coefficient of slow electrons is obtained in the threshold 
approximation. It is shown that the rate at which the macroscopic potential approaches the vacuum value 
affects most strongly the energy dependence of the reflection coefficient. 

PACS numbers: 79.20.K~ 

1. INTRODUCTION 

The reflection and t ransmiss ion  coefficients of e lec-  
t rons  through the potential b a r r i e r  a t  the interface of 
a solid with vacuum (or s o m e  o ther  medium) a t  energies  
51 eV in vacuum has repeatedly at t racted the  atten- 
tion of the  theoret ic ians.  One reason is that  these  
coefficients a r e  capable of descr ibing many p r o c e s s e s  
that take place on the interface,  such  a s  photoemission, 
thermionic emission,  reflection of slow e lec t rons  f rom 
s u r f a c e s ,  and o thers .  Another reason is that  the ex- 
perimental  methods of r e s e a r c h  into this  field a r e  s t i l l  
f a r  f rom perfect .  The exact solution of problems of this 
kind is exceedingly complicated because they requi re  
knowledge of the detai ls  of the  potential n e a r  the  sur face ,  
and these  da ta  a r e  lacking in most  c a s e s .  It  is there-  
f o r e  not surpr i s ing  that under these  c i rcumstances  
cer tain importance is attached to at tempts  a t  de te r -  
mining the so-called threshold s ingular i t ies  of the 
energy dependence s o  the the t ransmission coefficient 
(see Ref .  1 and the citations therein, even if it is 
necessary  to  r e s o r t  f o r  this  purpose t o  substant ial  
simplifying assumption.  

The purpose of the p resen t  paper  is fur ther  develop- 
ment of the indicated ideas under  assumptions that 
a r e  l e s s  s t r ingent  than usual.  In par t i cu la r ,  a n  at tempt 
will  b e  made t o  separa te  the influences of the  long- and 
short-range forces  on the coefficient of the t ransmis -  
s ion  of a n  electron through the  potential b a r r i e r  a t  
the interface with vacuum. 

The z ax i s  is directed into the  in te r io r  of the c rys ta l .  
The wave function cp in the region z < 0, however, is 
influenced not only by  th i s  macroscopic potential and 
even not only by the micropotential in  t h e  region I z l 
-a,, where i t  va r ies  mos t  s t rongly,  but a l so  by the  
micropotential in  the  in te r io r  of the The 
influence of the  l a s t  two fac tors  i s  taken into account, 
f o r  example,  in the theory of LEED (low-energy elec- 
t ron diffraction). We, however, a r e  interested in the 
low-energyregion (51  eV) ,  when t h e r e  a r e  s t i l l  no 
diffraction p r o c e s s e s .  

In i t s  formulation, o u r  problem i s  c losest  t o  that 
of finding the threshold s ingular i t ies  in  the c r o s s  s e c -  
tion f o r  par t i c le  sca t te r ing  n e a r  the threshold of 
s o m e  p r o c e s s ,  and m o r e  specifically t o  the resonant 
scat ter ing of charged part ic les  , 4  which is described 
by  using a Schrzdinger  equation with a long-range po- 
tential,  while the shor t - range  potential is accounted 
f o r  v i a  the boundary condition. I t  is precisely these 
proper t i es  which de te rmine  the constant x ,  to  which 
the logari thmic derivat ive of the solution a t  z e r o  is 
equated. The reason why this der ivat ive i s  constant 
i s  that a low energy r e a l  o r  vir tual  level  is presen t  in 
the  spec t rum of the micropotential,  and this  is why the  
scat ter ing is called resonant .  Thus ,  the  separat ion 
of the threshold s ingular ies  imposes in this c a s e  
r a t h e r  s t r ingent  requirements  on the micropotential.  

We shal l  attempt to  divide the  problem into two s tages  
2. EFFECT OF THE IMAGE-FORCE POTENTIAL ON and consider  separa te ly  the  effect of the long-range 
THE COEFFICIENT OF TRANSMISSION OF AN fo rces ,  as is done in the  theory of sca t te r ing  of charged 
ELECTRON THROUGH A POTENTIAL BARRIER ON par t ic les ,  descr ibing in this  c a s e  the  micropotential 
A CRYSTAL-VACUUM INTERFACE by  a ce r ta in  reflection coefficient that mus t  b e  found 

We consider  f i r s t ,  by  way of example, the normal  
incidence of slow electrons f r o m  a vacuum (or a 
medium with dielectr ic  constant c )  on a metal  boundary. 
The  t ransmission coefficient obtained in this  manner  
coincides, as is well known, with the  coefficient of 
t ransimisslon f r o m  a solid t o  a vacuum i n  the  th resh-  
old approximation. 

by solving a n  analogous problem, but now without the  
macroscopic potential.  We choose a dis tance l z,l 
-ao a t  which the three-dimensional c h a r a c t e r  of the 
potential and of the wave function can b e  neglected. 
Since the  micropotential becomes  one-dimensional 
p rec i se ly  a t  lengths -a,, this  c a n  always b e  done. 
We now divide the macropotential into two smooth 
p a r t s ,  V, + V,, such  that  one of them differs  negligibly 

At dis tances a, f r o m  the boundary on the  o r d e r  of the  l i t t le  a t  lz l  z, l z,l f r o m  t h e  image-force potential, 
interatomic dis tances a t  which the micropotential be- and a t  l z l < l z ,  l i t  becomes constant a t  dis tances much 
comes  constant and beyond, the behavior of the elec- s m a l l e r  than a, f r o m  z,; we then solve the  problem 
t r o n  is described by  the one-dimensional schrzd inger  with the new macropotential V,,  and re lega te  V, t o  the 
equation with a long-range image-force potential: micropotential.  Since the  potential energy of t h e  

362 Sov. Phys. JETP 54(2), Aug. 1981 0038-5646181 1080362-04$02.40 O 1982 American Institute of Physics 362 



electron i s  perfectly finite a t  z = z , ,  namely - a/a,, 
this  subdivision can always b e  s o  effected that  the 
wave functions of the  threshold e lec t rons  a r e  hardly 
changed. 

The described ar t i f ice allows u s ,  f i r s t ,  to  match the 
wave functions in the  one-dimensionality region and,  
second, descr ibe  th i s  matching with the aid of one 
parameter .  In fac t ,  s ince  the wave function i s  one- 
dimensional a t  z -z, , i t  should take the  f o r m  

where u, and u, a r e  the incident and reflected waves,  
normalized to unity flux, f o r  the problem with Vl = O ,  
and H i s  the  reflection coefficient. By v i r tue  of the 
formulation of the  problem, t h e r e  is no second l inearly 
independent solution, s ince  i t  corresponds t o  a wave 
indident on the sur face  f r o m  the inside.  The proposed 
breakdown i s  convenient because in the  notation (2) the 
logarithmic derivat ive,  which i s  needed f o r  the matching 
of the wave functions a t  z = z, ,  i s  s imple  in f o r m  and i s  
descr ibed by a single  p a r a m e t e r  R,  that depends now only 
on the new micropotential and i s ,  generally speaking a 
function of the energy (and not a constant).  

The boundary condition can thus b e  represented in 
the fo rm 

where  k is the wave vector  of the electron in vacuum. 

The problem has now been reduced to a solution of 
Eq. (1) with the boundary condition (3). The procedure 
here i s  fully analogous to  that descr ibed in the book by 
Landau and L i f ~ h i t z , ~  We there fore  note h e r e  only 
that s ince  the matching of (3) i s  ca r r ied  out h e r e  a t  
z f 0 ,  and the behavior a t  z e r o  i s  of no importance a t  
a l l ,  we need a genera l  solution of (11, which includes 
a l so  the one with the singularity a t  z e r o .  F u r t h e r ,  
the solution in Ref .  4 was  obtained f o r  the c a s e  

kao<l ,  (4) 
a,/a,< 1, a,=fi'/ma (4') 

f o r  a repulsion-force potential. In analogy with Ref. 
4 ,  we can obtain f o r  the c a s e  of a t t ract ion forces  the 
following equation f o r  the reflection coefficient lri2 (r  
is the amplitude of the reflection coefficient) 

R-I 2ln(21z,Ila,)+4y 
x=-ik, - + 

R+I a. 

p = 0.577.  . . is the E u l e r  constant.  

The t ransi t ion t o  the c a s e  a = 0 ,  when t h e r e  i s  no 
image-force potential, leads naturally to  a solution 
r = R ( k )  that does not contain the charac te r i s t i cs  of 
t h e  macropotential.  A s i m i l a r  expression f o r  r is ob- 
tained a l so  in the c a s e  of l a r g e  k: 

I t  should a l s o  b e  noted that ,  in  con t ras t  to  the  theory 
of par t i c le  scat ter ing,  r in (5) depends significantly on 
t h e  difference 1 - I RI . In par t i cu la r ,  if x is r e a l ,  
a s  in  Ref. 4 ,  then I rl = 1 and t h e r e  is no energy  de-  
pendence. I t  is e a s y  t o  show that  f o r  n to  b e  complex 
it  is necessary  and sufficient to  sat isfy the inequality 
IKI # 1. The t ransmiss ion  coefficient is then -1 - IRI 
and can be s m a l l  if IR I i s  c lose  to  1. We note that 
th i s  is a perfectly rea l i s t i c  case5  and can b e  observed 
in semiconductors ,  where  the electron effective m a s s  
differs  s t rongly f r o m  the  m a s s  of the  f r e e  electron.  

In the opposite limiting c a s e ,  ka, << 1 ,  t h e r e  is no 
explicit  dependence on k in  (5), and if R(k) is constant 
in the threshold region, then r is independent of energy,  
although i t  can b e  quite s m a l l .  Final ly,  in the  inter-  
mediate c a s e ,  if real ized a t  a l l ,  

i t  can b e  shown that  1 - I rl -k/k, if 1 - IR I is not 
too s m a l l .  

Next, in con t ras t  t o  Ref. 4 ,  t h e  inequality (4'1, 
which great ly s implif ies  the calculations and i s  valid 
a t  E >> 1 ,  may not hold a t  e = 1 ,  i .  e .  , f o r  emission into 
vacuum. In this  c a s e  the calculations become much 
m o r e  complicated and (5) a s s u m e s  in the  threshold 
approximation ( i .  e .  , a t  ka, << 1 ,  I z, l -ac) the  f o r m  

l-R Q' -- ik,ac - - a ~ =  2~poJi(2(2pa)'") , 1-r 
1- 

l+R cD ' (2130) '" l+ r  

where  J ,  and Y, a r e  Besse l  functions of the f i r s t  and 
second kind.6 The dependence of r on p, thus becomes 
m o r e  substant ial .  

3. CASE OF ZERO MACROPOTENTIAL 

The f o r m a l  a r t i f i ce  employed above, of breaking up 
the macropotential into two p a r t s ,  cannot b e  used if the  
macroscopic p a r t  of the potential does  not exis t  a t  a l l .  
This  can occur  when the c rys ta l  is in contact with a 
sufficiently well conducting medium, s a y  an electro-  
lyte .  In th i s  situation the wave functions will  b e  
matched in the region2 "a,, where  the three-dimensional 
c h a r a c t e r  of the potential cannot be  neglected, and th i s  
makes  the calculations much m o r e  difficult. F o r  a 
qualitative description of the energy dependence of the  
t ransi t ion coefficient we  can nevertheless  u s e  the 
general  assumption that  the  reflection-coefficient am-  
plitude is analytic in the energy,  in  analogy with the 
assumption usually made in the theory of scat ter ing 
n e a r  the threshold of a r e a ~ t i o n . ~  I t  is then convenient 
t o  consider  the incidence of a n  electron on a sur face  
f r o m  the in te r io r  of the c rys ta l .  We consider  the s t r u c -  
t u r e  of the wave function that descr ibes  reflection of 
a n  electron f r o m  the sur face  a t  near- threshold energies .  
Near  the threshold,  where  the  potential is s t i l l  l a r g e  
enough t o  b e  able  to  neglect in the Schriidinger equation 
(in the  threshold approximation) the dependence of the  
funct iononthe energy (reckonedfrom thevacuum level), 
the  sought wave function can be  represented in the 
f o r m  
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where cp, and cp, a r e  two a r i b t r a r y  l inearly independent 
solutions (in accord with the  formulation of the problem) 
that have no s ingular i t ies  whatever  at k = O .  On the 
o ther  hand the coefficients a, and a, have a s t rong  
dependence on k near  the  threshold. At l a r g e  dis tances 
f r o m  the sur face  the  wave function should have the f o r m  
of an incident (u,) and reflected (ru,) wave n e a r  the 
c rys ta l  and of a transmit ted (or damped) wave (u,). 
At dis tances l z l -ao f r o m  the sur face  these  functions 
should match the function (9) on certain, generally 
speaking nonplanar sur faces  (since the potential i s  
three-dimensional).  

The values of the function (9) o r  of i t s  der ivat ives 
a r e  thus the boundary conditions f o r  the  corresponding 
Dirichlet boundary-value problems of the  Helmholtz 
equation, to  which the Schrzdinger equation in vacuum 
is equivalent7. the envelopes of the wave functions in- 
s ide  the c rys ta l  can be  s imi la r ly  t rea ted .  The asymp- 
totic expressions f o r  the solutions of the indicated 
boundary-value problems,  a s  i s  well known, depend 
linearly on a ,  and a,. I t  is this c ircumstance which 
makes it  possible t o  e x p r e s s  a ,  , a ,  , and r in t e r m s  
of the logarithmic derivat ive of the asymptot ics ,  in  
analogy with the procedure in part ic le-scat ter ing 
theory4: 

where  u, and u, a r e  the envelopes of the wave functions 
corresponding to the  incident and reflected wave: a,, 
a;, b,, b;, . . . a r e  quantities calculated f r o m  the func- 
tions cp, and cp, (functionals of cp, and cp, ), while z, 
and z, should be  located in the one-dimensionality 
regions. The choice of z, depends on the change, of 
no importance h e r e ,  of the phase of r. 

It mus t  b e  noted, however, that the matching sur face  
and hence the values of the wave functions and of the i r  
wave derivatives on it  may generally speaking depend 
on the wave vec tor .  To  s e p a r a t e  the threshold s in-  
gular i t ies  we must  therefore make one m o r e  assump- 
tion, that this  dependence is not c r i t i ca l  in  the  threshold 
approximation a t  l eas t  f o r  a certain range of sufficiently 
s m a l l  but f ini te  k ,  and it  i s  f o r  these that  the  sought 
formula will b e  obtained. 

We have thus two equations f o r  the  two unknowns a, 
/CY, and r, and among the coefficients in (10) only one 
quantity depends in pract ice on k, namely the logarith- 
m i c  derivat ive of the  t ransmit ted wave u,, which is 
designated x in (10). Since we should have l r1 = 1 be- 
low the threshold, i t  is c l e a r  that the f o r m  of y ( ~ )  should 
b e  h = - l kl is r e a l  below the threshold) 

where 11 is a r e a l  constant and p a complex one. We 
easily find f r o m  (11) tha t  above the  threshold, when 
x = ik ,  the t ransmiss ion  coefficient is 

D=const. k. (12) 

The expression (12) is a r r ived  a t  f o r  a r a t h e r  l a r g e  

c l a s s  of one-dimensional potentials that  tend rapidly 
enough (faster  than 1 zl-,) t o  the vacuum value, including 
potentials with abrupt  b r e a k s ,  such  as s t e p s  . 4  Equation 
(12) should a l s o  b e  real ized in numer ica l  calculations 
within the framework of the  jellium model o r  in the 
egg-shaped -potential approximation, usually employed 
in LEED studies ,  when it  i s  usually specified that  the 
potential is one-dimensional o r  a near ly  one-dimen- 
sional n e a r  the  boundary and tends rapidly enough t o  
a maximum value. T h e  description of the numerical-  
calculation methods is the  subject  of a n  extensive 
l i t e ra ture  (see,  e .  g .  , Refs.  2 and 3) and we shal l  
not dwell h e r e  on this  question. We note only that ex-  
p ress ions  of type (12) [but not (5)] will appear  a l so  in 
those c a s e s  when a macropotential is presen t  but tends 
to a constant value rapidly enough (faster  than I z 1 
f o r  example a s  a resul t  of screening effects.  This  can 
be  demonstrated by reasoning and derivations s i m i l a r  
to  those used in the derivation of Eq. (5). 

Investigation of oblique incidence of the e lec t rons  
on a c rys ta l  sur face  in the threshold approximation 
reduces to  the following. It  mus t  only be borne in 
mind that  k now means the normal  component of the 
momentum and not the total momentum, and that K 
depends not only on k but a l so  on the paral le l  com- 
ponent. 

4. CONCLUSION 

Thus,  the energy dependence of the t ransmiss ion  coef- 
ficient D of a n  electron through a potential b a r r i e r  on 
the c r y s t a l  boundary near  the threshold i s  very  strongly 
influenced by  the r a t e  a t  which the macroscopic p a r t  of 
t h e  potential in  the vacuum (or  in  s o m e  medium) tends 
to  a constant value. If this  potential var ies  rapidly 
enough, D tends to z e r o  [ see  Eq. (12)) n e a r  the thresh-  
old, and in the  c a s e  of the image-force potential, 
which d e c r e a s e s  slowly, the coefficient tends to  a 
constant.  Intermediate c a s e s  a r e  of course  a l so  
possible .  

The foregoing analysis  holds f o r  a t t ract ing and uni- 
f o r m  potentials.  If these conditions a r e  not sat isf ied 
(particularly the  la t ter) ,  the investigation becomes much 
m o r e  complicated (see Ref. 8).  

I t  is known that a change of D ( k )  br ings  about a change 
of the corresponding equations that d e s c r i b e  processes  
connected with emiss ion  of electrons f r o m  a crystal ,  
f o r  example fo rmulas ,  f o r  the thermionic o r  photo- 
emission. '  In par t i cu la r ,  a change f r o m  (5) to  (12) 
corresponds to  violation of the known Fowler's law f o r  
the dependence of the photocurrent on the  emission f r e -  
quency near  the  threshold.  

In conclusion, the author  thanks Sh.M. Kogan f o r  
helpful discussions.  
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