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The strongly forbidden two-photon transition 15,,,—2P,,, between hyperfine components with total angular
momentum F = 0 is considered. Estimates are obtained of the parity-nonconservation effects produced in this
transition by the interaction between the electrons and the nucleus. The results are generalized to include

multielectron atoms.

PACS numbers: 32.80.Kf, 31.90. + s

1. INTRODUCTION

Allowed two-photon transitions in atoms are being
intensively investigated at present.! It can be hoped
that progress in laser techniques will permit investiga-
tion also of forbidden two-photon transitions, such as
1S,,,~2P;,, in hydrogen. The nonrelativistic ampli-
tude of the 1S, ,, -~ 2P, ,, two-photon transition in the
hydrogen atom was obtained in Refs. 2 and 3. In this
approximation, the amplitude of the two-photon tran-
sition between the hyperfine components of the 1S ,,
and 2P, /, levels with total angular momentum F =0
(the amplitude of the transition 0* - 07) vanishes. A
nonzero result is obtained when account is taken of the
relativistic corrections to this amplitude.

The amplitude of the transition 1S,, (F =0) = 2P, ,o(F
=0) contributes to the absorption of two photons of
equal frequency; the contribution is investigated ex-
perimentally by the method of Dopplerless spectro-
scopy. The amplitude is also of interest for the study
of parity-nonconservation effects that are connected
with weak interactions of the electrons with the atomic
nucleus.3

InSecs. 2 and 3 of this paper we calculate the ampli-
tude of the two-photon transition 1S /o(F =0) ~ 2P /o(F
=0) in the first nonvanishing approximation, using a
relativistic calculation. The solution for the hydrogen
atom is obtained in analytic form.

The two-photon transition amplitude is generalized
in Sec. 4 to include multielectron atoms with one nS
electron in the outer shell. InSec. 5 we obtain a quan-
titative estimate of the parity-nonconservation effect
upon absorption of two photons of like helicity and
equal frequency from colliding beams.

2. AMPLITUDE OF THE TRANSITION 1S,/ (F=0)
—’2P1/2 (F=0)

We denote by A,, the amplitude of the two-photon
transition between the states |¢1) and Iwz). The proba-
bility dw, of the Raman scattering and the probability
W, of absorption of two photons are connected with the
amplitude A, by the relations

d%k:

dw,=J,14,,|* WZHG (E;—Ete.—o,),

Wi=I1J. IA 12 l 22'{" [(E:—E"‘_‘ﬁ)r‘ﬁ)z)z'*"fﬂz] -t

(1)

Here J; and J, are the photon flux densities in the
beams, y, is the arithmetic mean of the widths of the
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initial and final states, and w; and w, are the photon
energies (H=c=1).

We calculate the matrix element (ME) M connected

with the amplitude A, by the relation
Ap=4na(bo,w.) "M, a="/u,
M=, | LGA, | $>+<$: | A,GA, |0, (2)
A=aA, A=ee™, ek=0.

Here A is the vector potential of the photon, a are
Dirac matrices, and G is the Green’s function of the
electron in the atomic field. The ME (2) is written for
absorption of two photons. The scattering case is ob-
tained from (2) by replacing ffz by A¥, which is equiva-
lent to making in the final result the substitutions
ez,kz,uh"ez*,—kz, -Ws3.

We consider first the two-photon transition 1S, ,o(F
=0)—~2P,,(F =0) in a hydrogenlike atom (F is the total
angular momentum of the atom). In this case

1
lQlpo=— 2<2P./,, m,|QI18y, my>, (3)

where ISi,z,m,) and |2P,,2,m1) are the wave functions
with the hyperfine structure nglected, m is the projec-
tion of the electron angular momentum j, and @ stands
for A,GA, or A,GA,.

We consider a region of photon energies of the order
of the ground-state ionization energy. In this case
k- r~wr~aZ < 1, and the exponentials in (2) can be
expanded in powers of k- r. It was shown in Ref. 3 that
the amplitude of this transition has a smallness ~(aZ )3
compared with the amplitude of the allowed transition,
so that the expansion of each exponential in (2) should
extend to terms ~(k - r)®. For transitions between states
with opposite negative parity, the ME containing even
powers of (k- r) vanish. As a result we get
M=M,+M,+M,,
My=i| &:k,rGE +8,Ge k| PO+ (1+2),
My=— -‘Eap,la, (ko) *Gé kx4, (k,r) G&, (kr) 2l >+ (1 - 2),
. (4)
M,=——%(np,léz(k,r)’Gé'ﬁé',G‘é,(k,r)’l\p,>+(1<—>2),

where (1 —2) denotes the interchange (e;,k,w;) = €y,
kZ 1“-’2)-

The main difficulty lies in the calculation of the ME
linear in k- r (M,). The main contributions from these
ME (~aZ) are cancelled out by an analogous contribu-
tion from the cross terms, marked by the symbol (1
—2). M; must therefore be calculated with account
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taken of the relativistic corrections, so as to preserve
the terms ~(@Z)®. The ME M, and M, already have the
required order («Z)® and can be calculated in the non-
relativistic approximation.

a. Calculation of ME linear ink, r (M,)

To calculate the ME contained in M; we need the rel-
ativistic Coulomb Green’s function. We can use for
this purpose the expression obtained in Refs. 4 and 5.
As will be shown below, however, it is possible to
transform M, in such a way that the required accuracy

will be reached using a nonrelativistic Green’s function.

We use for this purpose the following expression ob-
tained in the Appendix for the ME M,:

u,=m.m,{ palo+L—V[ar] 10,

E+E,

+___ — >
FAE OtV larllg }+(1 2),

si=[em],

(5)

vi=ki/o; (i=1, 2).

Here E, E,, andE are the energies of the electron in
the initial, final, and intermediate states,

E,;=Eto,tw0;,, E=Eto,=E;—a,, (6)

V is the potential energy of the electron. We have in-
troduced in (5) the auxiliary state vectors

|0>=Gex| 9>, (D:|=<}:|exG. (7

The state vectors (7) can be written in the coordinate
representation in the form of sums over spherical
spinors

1 mmy Q}lm

(rlO,)=—r—-’§m:a“ (SR (o) (8)
1 ",

(0;!r>=r—2: b™ (Qiim, 0) (PuHiLF), (9)

ilm
fi=an, n=r/r,

where the radial functions are solutions of the equa-

tions
o ()= () ()= () o
b — %Jrlr’ V—E—m u={ ! if j=l—"
V—E+m, _%+_,:_ ’ —l—1 i j=l4Yy
(11)

Here gs(&/2) and fs(f,,3) are the large and small com-
ponents of the radial state function 1S ;, (2P ):

Q-/,...,) ,

1 .
<r|1>.>=—r'(8r—lfuﬁ) ( 0

1 ., (12)
Ol = — (i, 0) (o).

The coefficients a and b in (8) and (9) are given by the
formulas

aﬂ-" == jan,,:.e,nQ-,,m,
(13)
b = jdnn-/.:..e,nﬂum

W1th the a,"""l different ffom zero only at I =1,j=3% and
while bj3™ differ from zero at 1=0,j=3 and1=2,j

Il e~

§_
2-
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The solutions of Eqs. (10) can be written in the form
of the series

(2 -Zem(l) (-

where

E-E...( ,‘? ) a9

Ju= [ A (gugstfunds),
' (15)
In-=j drr (g'/.gm'l'f' i fan) s

where g,, and f,, are the large and small components
of the radial state function with quantum numbers #, j,
and l.

Using the expansions (8), (9), and (14) and the ortho-
gonality of the radial wave functions, we transform the
ME (5) into

2 es: [ Ty, 1 7

M= +=
STy YN ETE LT E—Ev 2 E-E,

+ j' dr{AgS-s+fuRit RtV ey (R—R-,)

€,8, 3 Iy
¥, S")]]+ E+E, [ 2 E-E, .
+ [arl (LL) GetrVe) + PPy VE] |} + 12, (16)
where
Ag=gutgs, J= [dr(ggatifs) (="1"1), (7

g3/2 and f,,, are the components of the wave function of
the 2P; ,, state, and E 3, is the energy of this state.

We consider first the terms of (16) outside the inte-
gral and designate them by M{. In our order in aZ,
the energies of the states 2P;3,, and 2P, ,, are equal to
E 4, =E,, ad their wave functions differ in sign, g3/,
=—g, 3, SO that J3,, =—J,,;. Therefore the principal
terms ~aZ in M{ cancel out the like cross terms, and
only terms of order (@Z)’ are left as a result:

2 €8, Jy, 1 Ju
TR { - F— ]
' 9 CONETEN T E-Ey 2 E-E;

e.s. Ju 102
+(1—2 -—J{
2 E+E, E-E, } 2= €12

X :z+i2__i_";_z(£+’¥)]-e,st (_ i)}+(1«-z>. (18)

Here I;=m -E,; I, =m -E, are the ionization energies
of the initial and final states; AE =Ej,, —E; is the
fine splitting of the levels 2P, and 2P;;5; AJ=J
+dJ3 123 J is the nonrelativistic limit of the integral
Jy,2; &p is the nonrelativistic limit of g2,

1= arrgege. (19)

The integral terms in (16) are already of the required
order of smallness. It suffices to express in them the
small components of the functions in terms of the large
ones and take the latter to equal their nonrelativistic
values
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" fax 1 d " (’g,.u)
. R —(—+—= | (20)
(& patee) (5

The functions S, and P, in (20) satisfy the inhomogene -
ous Schrddinger equation
@& x(x+H), , Sey 8s
(G rw=2mv ) () =2 (5) -

pz=E2_mz

(21)
==2m(l,—0,)=-2m(l,+o,).

It is seen from (21) that in the relativistic limit §;=S_,,
and P,=P_,,. With the aid of (18) and (20) we rewrite
the ME (16) in the form

1
D102 {ezs, ( —_— —L) Jte,s, [— +—
2 o

2m(AE

3 o0 éj—)]l———-e,s, jdr[—P,fs

v
Pogs— ( v+ +1') Pugs ]
dr

[OF]

+ (4V+r%, +1,)
—%clsg.jdr[ZmAg-f-SVgp] S.}+(1<—>2). (22)

Formula (22) is suitable for 0* - 0" transitions in any
central field. In the case of a Coulomb field V=-aZ/r
formula (22) can be simplified to

1 I
M= m‘mf {egs, (L—iL)H_e'sz[—z—-’-mL
2

6m* 2 3 o
2 +2
_TE(A_E+—)]J+esljdr( po+ B2,
3o\ o nr
Z 2
tes:far (g = mag) s} + 12, (23)

v

n=moZ.

In the derivation of (23) we took into account the equal-
ity [§drPgs=J/w;.

An important factor in (22) and (23) is that they con-
tain only the nonrelativistic functions S, and P,. which
are expressed in terms of the nonrelativistic Green’s
function in an external field. The relativistic values
are needed only for the wave functions of the states
1S,,,, 2P, and 2P, , in the calculation of AJ and

Ag.

b. Calculation of the ME cubic in k - r (V2 and M3)

The expressions (4) from which the ME M, and M;
are calculated already contain the required smallness
~(aZ)3, so that the transition to the nonrelativistic ap-
proximation is effected in M, and M; directly. The
Green’s function G in M, and M, contains a sum over
both the positive and the negative frequencies.

In the nonrelativistic approximation the sum over the
negative frequencies is calculated by replacing G by
(1 =B)/4m. It can be shown that for the 0* -0~ transi-
tion the negative ME parts M~ and M;™ are equal to
zero independently of the character of the transition.

In the calculation of that part of the ME which cor-
responds to the sum over positive frequencies, the
transition to the nonrelativistic approximation is via
the substitution
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1
<¢n|ﬁl¢u>->—m—<(p,.|Ap+—;crotA|(p.), (24)
where p=-iV; ¢, and ¢, are the nonrelativistic values
of the functions y, and ,.

In the calculation of M, and M; we shall need also the
nonrelativistic values of the functions &, and ¢, [Egs.
(8) and {9)]

<@,y = —:e,nS.xm.(lm) -, (25)

1¢1
(@1 = (dm) gt —{ -0, (P—Ps) + (om) (e)P:}, (26)
where Xm, are Pauli spinors andn=r/7r.

Using the transformations (A.3)—(A.5)and changing to
the nonrelativistic limit in accord with (24) we obtain,
taking (25) and (26) into account, the following expres-
sions for M, and M;:

2
©; @, 0,
M,=—e,5,——J+

12m? 60m "{ [2(essy) (vv,)

+e,s, ]Jdrr’gpS,+[2(e,sz) (vyv,)

+es.] jndrr*Pzgs}-i-(i ~2), (27
M,_T"’Z‘—“”{ ; (e8) 0sF Idnz( P %P,) gs
+ '5_1(3152) o,* oj.-d"'zgpsl} +(1+2). (28)

In the calculation of M, there appear in place of the
functions ¢ and ¢, the functions

[0./5=G"kr|g), (@] =(q:|k,rG™. (29)

Their values are obtained from (25) and (26) by the
substitution e; = k;, as can be readily verified by com-
paring (29) with (7).

Combining the formulas (22), (27), and (28) we obtain
the sought matrix element M (4). It contains radial
integrals of the nonrelativistic wave functions and of the
functions S and P that satisfy the Schrddinger equa-
tion (21). For an arbitrary field, these integrals can be
calculated by numerical methods. In the case of the
hydrogen atom the problem can be solved exactly and
can be carried through to conclusion analytically.

3. HYDROGENLIKE ATOMS

All the calculations in this section are made for the
Coulomb field V=-aZ/r. With the aid of (23), (27),
and (28) we express the matrix element M in the form

M=e.8,T (w4, ) +(e:8,) (V2vy) @ (@, 02) + (1++2),

(30)
Vi=ki/(t)(. 5i=[eivi]-
The functions T(wy, w;) and Q(w(,w,) are given by
[OFT0 7Y 12 1, (07 Al AE
T 1y @W2)= 1-——- - \7T "
(@1, @;) = Gm‘{[ 120, 20, 3(0,(1 o )]J
+ Z(J+ L L) — 2y
. 1 7 F) —671 Tde )-_m [
mm, 9
[J, It —(J,+J,)]} (31)
(01 0) = 2207 (), (32)
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where

1, =(P,|r'|ge), J:=(P:|gs>, J:=(gs|F*|S),
1.=(P,|r*|gs>, Js=(Py|P|gs>, J.=(Ag|S), (33)
Jy=(P,|r | gs>, l.-(g,,|r"|S,>, J=(gs|r|gs>,
AJ=(Ag|r|gs>+<Af|r]|fe>,
IL,=ma’Z}2, AE=ma‘'Z'/32, n=maZ.

In formulas (33) we have used the notation
<¢|r-|0>-=jdrr-¢(r)0(r). (34)

The integrals J} are obtained from J; by making the
change w; —- w;,.

The simplest matrix elements J and AJ are calcula-
ted by direct substitution of the corresponding wave
functions

s

AJ—%a=z=(1n—2——1—3) ], J-—%z-(sz-) ) (35)
To calculate the remaining matrix elements J,-Jy, we
need the explicit forms of the functions S; and P,,
which are the solutions of the inhomogeneous Schr-
dinger equation (21). We use the nonrelativistic
Green’s function G ,(r,7’'), which satisfies the equa-
tion

(—d—' -—-l(l—ﬂl——rz—']+p‘) G.(r,r')=6(r—r"), p*=E*—m? (36)

and is of the form***
Gi(r,r')=—(rr')" (th%) - exp{—q(r+r')chz}

X341 (2q (') " sh z) dz,

) ) (37)
gq=—ip, v=iaZE[p=n/q,

n=maZ,
I,,,, is a modified Bessel function of the first kind.

The solutions of (21) are expressed in terms G, in
accord with the formula

(il. ((:)) ) -2m_.[ ar'G,(r,r)r ( ::((r’)) ) ) (38)

After substituting (37) and (38) in (33), the matrix
elements J, -J; are transformed into triple integrals.
The double integration with respect to » and »’ is car-
ried out by means of the usual formulas (e.g., Egs.
6.631.1 and 7.621.5 of Ref. 6). The remaining single
integrals, after making the change of variable tanh (x/2)
=¢Y/2 and after straightforward but cumbersome trans-
formations can be expressed in terms of three simple in-
tegrals F, F, and F,:

P (1) [

1 t‘"
Fem @' [ & (i=1,2),

—bt)*(a,+bit)

wherea =1+v, a,=1+v/2,a=aga,, by=1-v, b,=1
-v/2, b=bb,, and v=0/g=(1 —w,/I,)™’*. The final
expressions for T and @ are:

roer=22) " -t

3 80, 12 4
11 3
20 HF, +F it — (— +5Q,) F ———F}
w2 2 4\6 2 (39)
Q(_O)nmz)=—4;—(?) Qu(2-2Q,—F—4F"), Qi=o/l, QU+Q="u
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T

FIG. 1. Dependence of the amplitudes of T'= m(aZ)™® T and
@' = m(aZ)™3 Q on the photon frequency wy.

The photon energies in (39) are in units of the ground-
state ionization potential I;. The integrals F’ and F|
are obtained from F and F; by the substitution w; -~ w,.
The dependences of the amplitudes of T and @ on Q;
are shown in Fig. 1.

If the energy of one of the photons is low, e.g., @,
& §y, but still @, > AE /I, =a?Z%/16, then the matrix
element M (2) takes the form

uz%z;n)-(-;) l{e,sz(%l+4 1n37-—1ﬁi) —Z%est-O(Qz)}. (40)
This formula can be obtained both from (39) and di-
rectly from (2) by summing over the intermediate
states. When €, -0, a nonzero contribution to the
transition amplitude is made only by the intermediate
states 1S,,,, 2S,,,, 2P, 5, and 2P;;,. The term ~§;'
in (40) stems from the expansion of the energy denom-
inator in the intermediate state 2P;,,.

4. MULTIELECTRON ATOMS

The results obtained in Sec. 2 can be applied to mul-
tielectron atoms (atoms of alkali metals Cu, Ag, and
Au, and ions of certain elements) which have, one nS
electron on top of the closed shell. Only a few of these
atoms have terms with total atom angular momentum
F =0. Examples of such atoms are the stable silver
isotopes !""Ag and !®*Ag, and certain ions.” For these,
the formulas of Sec. 2 describe the two-photon transi-
tion nS, ;5(F =0) =n’'P,o(F =0) at arbitrary frequencies
and momenta of the photons. However, if we are inter-
ested only in absorption of two photons of equal fre-
quency from colliding beams, the results can be applied
to transitions between the levels nS,,, and n' P ,, with
arbitrary but equal angular momenta F. Let us explain
the foregoing.

In the most general case (without expansion in k- r)
the amplitude of the two-photon transition nS;,, =n'P ,
contains eight scalar functions T; and can be written
in the form

4 Z
AP =i 5 {(e0) (V)T
+ (e:vy) (0e,) T, +ies,Ts+ (e:v,) (e,v,) (av,) T+ (1++2)}, (41)

vi=ki/a;, 8= [e,XW] , T=T, (@4, @2, Vi¥,),
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where 0/2 is the electron angular momentum of the
transition. The amplitudes of the transitions between
the hyperfine components of the levels are obtained by
projecting (41) on the corresponding hyperfine states.
For transitions between levels S, ,, and P ,, with F =0,
all the terms of (41) that contain the electron angular
momentum of the transition drop out, and only the term
with T3, which was calculated in Sec. 2, is left. As
seen from (41), the same takes place when photons of
equal frequency (w; =w,) from colliding beams (v,
=-v,) are absorbed, independently of the total angular
momentum F of the initial and final states. Interest
attaches here only to transitions without change of F,
for otherwise the entire transition amplitude vanishes.
The photons in the beams should be circularly polari-
zed and have an identical helicity, so as to exclude
absorption of two photons from one beam.

In the case of atoms with large nuclear charge Z,
the expression obtained in Sec. 2 for the matrix ele-
ment M (4) can be greatly simplified. For an optical
electron going from the ground to an excited state, the
nuclear charge is strongly screened and the important
role in the matrix elements of the transition is played
by k:r~a. Therefore the integral terms in (23), (27),
and (28) are of the order of a®, just as in the hydrogen
atom. At the same time the fine splitting AE =E(Pj,,)
—E(Py,,) of the P levels increases rapidly with increas-
ing nuclear charge Z (in hydrogen, for example, AE
%0.36 cm™ and in cesium AE =554 cm™!, Ref. 7). The
reason is that the energy of the spin-orbit interaction
responsible for the fine splitting is proportional to
(r"1dV/dry~ (r% and is therefore determined by the
region of short distances, where the nuclear charge is
weakly screened. As a result, for heavy atoms the
terms linear in k- r outside the integral are not cancel-
led out as in the case when the P levels are degenerate,
and make the principal contribution to the matrix ele-
ment M.

Retaining in (16) only the terms outside the integral,
we obtain a simple approximate expression for the
matrix element of the two-photon transition nS ,,(F
=0)=n'Py,o(F =0) in a heavy atom:

. @y [0
M~ —e,s,;;(ll/.+mla/,)+(1 2), (42)
J;=<n'P;|r|nS.>, AE=E(n'Py)—E(n'Py). (43)

When photons of like helicity and frequency are ab-
sorbed from colliding beam, formula (42), as explain-
ed above, is suitable for nS,,, -n'P,,, transitions be-
tween hyperfine levels with arbitrary equal angular
momenta at the start and at the end. Only the absorp-
tion of E{ and M photons is taken into account in (42).

5. EFFECTS OF PARITY NONCONSERVATION IN
TWO-PHOTON TRANSITIONS

The weak interaction of the electrons with the nucleus
deprives the atomic levels of a definite parity. Inter-
ference of amplitudes with different parity lead to a
dependence of the probability of the atomic transition
on such pseudoscalar quantities as the helicity (the
sign of the circular polarization) of the photon. It was
shown in Ref. 3 that large parity-nonconservation ef-
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fects can be expected for the two-photon transition 1S/,
—-2P,,, in the hydrogen atom, if photons of like parity
and helicity are absorbed from colliding laser beams.
The parity nonconservation in such a transition mani-
fests itself in a dependence of the absorption on the
circular polarization of the photons. Order-of-magni-
tude estimates® show that the relative difference be-
tween the probabilities of the absorption of right- and
left-polarized photons in this transition can reach
~10%-107. The results obtained in Sec. 5 make pos-
sible an exact calculation of this value.

According to Ref. 3, for transitions between the
1S,,, and 2P, ,, levels of hydrogen with total angular
momentum F we have

Wa—W, T,
P — =_6 _,
Wt W, " aTs (44)

where 6 is the value of mixing of the 2P ,, and 2S,
states with angular momentum F':

Ar

8o=—1.4-10""(%,—3%2), &6, =—1.2-107" (%, +x.), (45)

% and %, are the weak constants of the electron-pro-
ton interaction. In the Weinberg-Salam theory, at an
experimental value sin?6, ~0.22 we have »; =3(1

- 45sin%6y) =0.06 and %, =-1.25%,2-0.075, therefore

6o~—4-10""%, §,~1.8-107*.

The quantity T, in (44) is connected with the ampli- -
tude of the admixture two-photontransition 15,,, - 2S,,,,
while aT; is connected with the amplitude of the tran-
sition 1S, ,, = 2P, ,,. In the notation of the present pa-
per we have at w;=w,=(3/16)ma?, taking (39) into
account,

[y

T,=273 ( ) "(5F+1),

ol

a2\ 85 125 (46)
aT,=m(T—())——4—(?) {F.+Fz+%F——gg}

where F, F, and F, are defined in (38) atQ=14
F=0.,0966, F,=0.0456, F.=0.0515,

from which we get
T/als=—4.7-10".

As a result,

A=—1.9-10"%, A,=~0.8-10"".

For the analogous transitions in deuterium (F =3,3),
the parity nonconservation effects are enhanced by the
additional weak interaction of the electron with the
neutron of the nucleus. Calculations yield

An~—26-10", Ay~—2,7-10-".

Using the results of Sec. 4 we can obtain analogous
parity-nonconservation effects in heavy atoms. To this
end, however, it is necessary to know (e.g., from ex-
periment) the amplitudes of the allowed two-photon tran-
sitions that become mixed-in with the ground transition
on account of the weak interactions.

In conclusion the authors than R. M. Ryndin for help-
ful discussions of the questions touched upon in the
paper.
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APPENDIX

To transofrm the matrix elements that enter in M,
(4) we use the operator equations

(H-E)G=—1, H=ap+pm+V,

(A.1)
H|po=E|$>, <bo| H=E: |
and the identities
a=i(Hr—rH), .
tkr= %{H(er) (kr) — (er) (kr) H}+ -%-[gxk] [axr], (A.2)

Hiaxt) + [axr] H=—2(o+L)+2V [axr].
With their aid one can prove the following equalities:
Gé |y =i{(E—E,)G—1}er|¥,,

(A.3)
<1Dz| EG=i<1Dlel‘{1— (E—Ez) G),
Ge’lul\p.)=L2 {(E-E,)G—1}
X (er) (kr) 0+ %—[&]G[ar] 9o,
; (A.4)
ChlekeG= -l (er) (kr) {1 (E~E») G}

+ Lokl Gl [a]G,
Glar]lpo>= Z:’f_E‘{ —G(o+L)+GV[¢r1+%-[ar1} l$os

! (A.5)

1
¢l [ax]G= ETzE—‘-(qy.l{—(o+L)G+[ar] VG+—lar) }

Here Ey=E |+ w;twy andE =E |+ w;=E,; - w,.

The purpose of the transformations (A.3)-(A.5) is to
introduce, by changing the power of », the required
smallness directly into the expression from which the
matrix element is calculated. The expression for M,
(4) can be rewritten with the aid of (A.3) in the form

M =—0: ;| eGE, (k,1) | p,> :
— 0] &2 (ks¥) Gegr| PO+ (1++2). (A.6)

The terms that did not contain G were cancelled out
in (A.6) by the cross terms. We apply the transforma-
tion (A.4)to (A.6) and take into account the fact that the
following matrix elements vanish for the 0* - 0 transi-
tion

(] (eF) (&) (kiT) |90 =0, <(s]exGer) (kx)|po>=0, (A.7)
| (ear) (kar) (eir) |90=0, <s] (€ar) (kar) Ger|p,>=0. (A.8)
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Indeed, in the 0* -0~ transition the matrix elements
(A.7) are pseudoscalars made up of vectors e,, e,, and
k,. However, the only nonzero pseudoscalar e, e,

Xk, is antisymmetric in e; and k;, in contrast to the
matrix element (A.7). The vanishing of the matrix ele-
ment (A.8) can be proved similarly. As a result we get
"";"‘ {8:<: | (e:r) Glar] 1y,
+8:{ sl [ar) G (esr) |9+ (1+2)}, (A.9)

s=[ev], v=k/o.

M=-—

Applying now the transformation (A.5) and recogniz-
ing that the following matrix elements vanish after in-
tegration over the angles

(| Lar] (ex) |$>=0 (i=1, 2), (A.10)

we obtain expression (5) for M,
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