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The attenuation of longitudinal, finiteamplitude short-wave sound in a pure superconductor is considered. 
Due to some peculiar properties of the interaction between the longitudinal electric fields induced by the 
sound and the superconductor excitations, localized resonant excitation states arise in the superconductor. 
The states are formed through Andreev reflection from the inhomogeneities of the spatial relief of the sound 
wave. The conditions for localized and the decay mechanism of the localized states, i.e., tunneling of the 
excitation through the energy gap, are studied. The boundary conditions for the kinetic equation are derived 
with account taken of the tunneling pnxxsws. The attenuation coefficient is calculated. It has a complex 
amplitude and temperature dependence, and differs from the BCS dependence for any amplitude, however 
small, near T = 0 and T = T,, because the nonlinearity threshold tends to zero. 

PACS numbers: 74.30.Gn, 74.20.Fg 

The interaction of longitudinal electric fields with 
superconductors represents one of the central problems 
of superconductors that is widely discussed at the pres- 
ent time. One of the methods of excitation of an electric 
field in a superconductor is connected with the trans- 
mission through it of a longitudinal sound wave. The 
acoustic properties of superconductors have been stud- 
ied in a large number of researches, beginning with the 
fundamental work of Bardeen, Cooper and Schrieffer;' 
However, they were concerned principally with linear 
phenomena.' At the same time, not all aspects, by far, 
of the effect of a longitudinal field on a superconductor 
can be accounted for in a weakly nonequilibrium situa- 
tion. From this point of view, nonlinear acoustic effects 
associated with a strong disequilibrium of the electron 
distribution a re  of interest. Such a nonlinearity can be 
divided into two categories, depending on the value of 
the parameter ql (q is the wave vector of the sound, and 
1 is the impurity free path length). At not too large val- 
ues of this parameter, the main source of the nonlinear- 
ity is the electron heating and effects of s t im~la t ion .~  
As one moves into the short-wave region, q1>1, due to 
the release of a resonant group of electrons that interact 
intensely with the sound wave, the dominant role is as-  
sumed by effects of the type of momentum nonlinearity: 
connected with the strong. diseauilibrium of the resonant 

space it is small in step with the smallness of the ratio 
s/v,. Therefore, the sound field has practically no ef- 
fect on the value of the parameter of superconducting 
ordering A, right up to very large amplitudes. Due to 
this feature, the dynamic effect of formation of a gap- 
less spectrum in the resonance region becomes predom- 
inant in strong fields, together with associated tunnel 
exchange, that leads to a decay in the localized states, 
of interactions between the electron and hole branches 
of the spectrum. 

The Andreev localization of the excitations and its non- 
equilibrium nature brought about by the distribution of 
the excitations lead, with increase in the amplitude, to a 
nonlinear decrease in the value of the acoustic attentua- 
tion. The threshold of this nonlinearity depends on the 
temperature, tending to zero at T=O. Near T,, the 
magnitude of the effect turns out to be comparable with 
the total attenuation, and not with the small supercon- 
ducting correction to the damping of the normal metal. 
Such a strong effect is explained by the radical rear- 
rangement of the trajectories of the excitations, which 
is preserved up to the moment of onset of the tunnel 
mechanism of decay of the localized states. The damp- 
ing reaches the level of the normal metal with disap- 
pearance of the localized states. - 

electrons. This disequilibrium manifests itself primari- The present paper is devoted to the study of the effect 
ly in the nonlinearity of the acoustic attenuation. of the Andreev localization of the excitations on the non- 

The momentum nonlinearity studied in Ref. 4 is not a 
specifically superconducting effect. It exists also in the 
normal metal: while the mechanism of its generation- 
localization of the electrons by the sound wave-is insen- 
sitive to the singularities of the electron motion in the 
superconducting state. These singularities, however, 
a r e  important. The fact is that a traveling electric field 
produced by a sound wave acts on the excitations in the 
superconductor a s  some effective transverse perturba- 
tion.' Such a perturbation, a s  is wellknown, is capable 
of localizine the excitations in the trouehs of its s ~ a t i a l  

linear properties of the acoustic attenuation in a super- 
conductor. Our consideration completely ignores the 
existence of momentum nonlinearity, a procedure cor- 
rect in those cases in which the considered amplitudes 
a r e  less than the level of the momentum nonlinearity o r  
if the Andreev and the ordinary electron localizations 
a r e  centered in different phase regions. In the latter 
case, both effects a r e  additive. A detailed analysis of 
the phenomenon of Andreev Localization under conditions 
of momentum nonlinearity lies beyond the framework of 
this research. - " 

relief, due to the mechanism of Andreev reflection: The plan of the paper i s  the following. In the first sec- 
similar to the way in which magnetic surface states a r e  tion we give the solution of the kinetic equation and clas- 
formed in  superconductor^.^ A characteristic feature of sify the trajectories of the excitations. In the second 
this effective perturbation is that it is large only in the section, the tunneling of the excitations through the gap 
resonance region, while in the remaining part of phase is analyzed and the corresponding transparency coeffi- 
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cient is calculated. In the third section, the boundary 
conditions a r e  derived for the distribution functions with 
account of tunneling processes. The fourth section is 
devoted to the calculation of the nonlinear attenuation 
coefficient. 

1. SOLUTION OF THE KINETIC EQUATION 

We consider the propagation of longitudinal short-wave 
sound 41>>1 (4 Ilx), in a pure superconductor, under the 
conditions 

In simple models of the "jellium" type with impurities9 
the effect of the sound on the electron system is con- 
nected with the longitudinal electric field created by it, 
9. Within the limits of applicability of the inequalities 
in Eq. (I), the excitation distribution is described by the 
classical kinetic equation" *92' 

aj. ae at. ae ai. --+a -- - o -- =I*mE+Iph,  
at ap. as ax ap. 

For simplification of the analysis of the phenomenonof 
Andreev localization of the excitations that is specific 
for the superconductor, it is desirable to eliminate the 
electron-trajectory bending of which leads to the momen- 
tum nonlinearity.* For this purpose, we use the well 
known expansion for the electron momentum: 

which is valid under the condition 

In connection with the inequality (4), it should be noted 
that although it is satisfied with a large safety margin 
for the bulk of the electrons, it requires some care in 
the resonance region because of the small values of p, 
(for example -ms near T,). 

Along with the expansion (3) in Eqs. (2), it is appro- 
priate also to go over to the variable ,$+* - 5, which de- 
termines the consemat ion laws in the collision inte- 
g r a l ~ , ~  after which Eq. (2) takes the form 

The physical premises for constructing the nonlinear- 
ized solutions of Eq. (5) a r e  the following. Equation (5) 
describes the process of transfer of the energy of the 
wave of the longitudinal electric field to the phonon sys- 
tem. This process takes place 'in two steps. The elec- 
tric field interacts directly with the electrons of the 
superconductor, while a t  qL>>1 this interaction is con- 
fined to a narrow resonance range. Due to the presence 
of impurities, isotropization of the resonance disequili- 
brium takes place. Here, because of the narrowness of 
the resonance region, the resultant isotropic disequili- 
brium can turn out to be small, even if the perturbation 
in the resonance group is comparable with unity. In the 
second stage, the energy corresponding to the isotropic 
disequilibrium is slowly (rp,,>>r) transferred to the pho- 
nons. 

The acoustic attenuation length in the superconductor 
is large, as  is well known, in comparison with the 

length of the sound wave, just a s  i s  the characteristic 
length of generation of the harmonics. Therefore, the 
field * in not too long samples can be assumed to be 
harmonic : 

Q, (2, t )  =@o cos x, x=qx-ot. (6 1 
Under these conditions, a stationary state is established 
which, in correspondence with what has been said above, 
is conveniently represented in the form 

where (. . . ) denotes averaging over the angles and the 
bar denotes averaging over the wave coordinate X. 

Relative to the degree of nonequilibrium condition, we 
shall assume that 

here fi i s  not necessarily small everywhere: 

max j 2 ~ f . 0 .  (9) 

The inequalities (8) allow us to linearize the phonon col- 
lision integral, and also to neglect the arrival terms in 
the collision integrals. As a result, the equation for f: 
takes the form 

$=a/qur. 

Carrying out the averaging of Eq. (5) with account of 
the condition (8), we obtain the following equation for 
the determination of the isotropic increment 6f:: 

An estimate of the smallness of the heating effects de- 
scribed by (11) can be obtained by substituting there the 
function f A calculated in linear approximation:') 

From a comparison of (12) with the nonlinearity levels 
(54) and (59) (see below), it is seen that under satlsfac- 
tion of the condition 

Q ~ W T ~ J T  (13) 

the heating effects a r e  negligible. Starting out from 
this, the function f we shall assume to be in equili- 
brium in what follows. 

Proceeding to the solution of Eq. (lo), we note the 
symmetries possessed by its solution 

f C i ( - $ )  - - f - : ($ ) ,  (14a) 
f-.'(-E, x )  =-i.'(E, x+n). (14b) 

The symmetry (14a) allows us to limit ourselves to posi- 
tive B in what follows. 

The solution of the kinetic equation (10) i s  constructed 
by the method of characteristics. The characteristic 
system of Eq. (10) has the form 
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where t is the time of motion along the characteristic. 
Equations (15) posses the integral 

which has the meaning of the total energy of motion 
along the characteristics and consists of the sum of the 
kinetic K(5) and potential PB energies. The kinetic en- 
ergy K(5) consists of two branches which a r e  separated 
a t  @ < I  by the anisotropic energy gap (Fig. la): 

At B >1 the energy gap is absent (Fig. lb). The appear- 
ance of an anisotropy in the dispersion law has a kine- 
matic origin, associated with the fact that in writing 
down the conservation law (16), a transition was made 
to a moving set of coordinates. In what follows, we shall 
need the inverse function 5(K): 

The potential energy @b in (16) stems exclusively from 
the traveling character of the electric field accompany- 
ing the sound wave and represents an effective pertur- 
bation of the transverse type. 

We now considered the classification of the phase tra- 
jectories of the dynamical system (15). 

1. B<1 (Fig. 2). 

a) IEl>A(l - B2) ' / '+~,  a r e  infinite trajectories; 

b) 1 ~ ( l -  F ~ Y / ' -  MO1<IEl<A(l -  are finite 
trajectories, and the equation for the determination of 
the turning points is: 

C) /El< A(1- B ~ Y " -  Mo, B%,< ~ ( 1 -  B2Y/' is a forbid- 
den region (Fig. 2a): 

d) IEl< M, - A(1- fi2Y", MO>A(l - B'Y' a r e  tunnel 
trajectories (Fig. 2b); in this region, the motion has a 
complicated character, connected with the possibility 
of tunnel coupling between states belonging to different 
branches of K([) and separated by a spatial energy bar- 
rier. In this case, the quantum spectrum of the system 
is gapless. 

2. B>1 (Fig. 3)-infinite trajectories; the motion takes 
place from right to left. At M0 >> A(B' - 1 Yl2, a s  will be 
shown in the following point, tunnel coupling also arises 

FIG. 2. 

between branches of the spectrum Fig. lb-splitting of 
the characteristics. The splitting points a re  determined 
from the equation E= lwP (x,,,). 

In those cases in which tunnel processes can be neg- 
lected, the characteristic curves a r e  continuous and the 
solution of the kinetic equation has the form 

For construction of the solution in the region of tunnel 
trajectories it is necessary to formulate the boundary 
condition a t  the turning points. As A decreases, the 
fraction of tunnel trajectories increases, reflecting the 
process of decay of the localized states and the transi- 
tion to a normal metal, where the phenomenon of An- 
dreev localization is obviously lacking. From the view- 
point of this transition, the analysis of tunnel processes 
is of fundamental interest. 

2. TUNNELING THROUGH THE GAP 

In the general quantum case, the quasiparticle states 
in a superconductor in a longitudinal electric field + are  
described by the wave equation 

i+=&, i== (20) 

In a system of coordinates accompanying the sound 
wave, the Hamiltonian (20) has stationary states which, 
with account of the transformation corresponding to the 
transition 5+%- 5, is conveniently written in the form 

FIG. 1. 
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The solutions of this equation have a close formal anal- At @ < I ,  the quasiparticle trajectories, a s  noted above, 
ogy with the states of a Dirac particle located in a static have turning points near which the quasiclassical ap- 
magnetic field. proximation becomes unsuitable. Interest attaches to 

At A=O, the system (2l)splits into two independent 
equations of first  order, from which the field can be 
eliminated by a phase transformation. Thus, in a nor- 
mal metal, in the approximation (3), the effect of the 
longitudinal field on the electron spectrum is absent. 

We now consider the quasiclassical solutions of Eq. 
(21). We shall seek them in the form 

then u(x) is  determined from equation 

The basis of the quasiclassical expansion is the assump- 
tion that the change of U(X) is slow in comparison with 
the scale of osci!lations of the exponential (22). Fa r  
from the turning points, the corresponding inequality 
has the form 

1 d u < E .  -- 
u dx o 

(24 

At T" A, for resonance excitations with @ -min(l, UT) ,  

this condition is equivalent to the basic inequalities (1). 

Taking what has beensaid above into account, for the 
construction of the solution (23) in zeroth approximation, 
the right-hand part of the equation must be set  equal to 
zero. At A=0, the condition for solvability of the trun- 
cated equation has the form 

whence it is seen that the excitations in a normal metal 
move along the asymptotes of the graphs of Fig. 1, while 
the point of intersection of the asymptotes for them is 
not singular (the Andreev reflection is absent). 

At A*O the condition of solvability is identical with 
formula (16): 

The solution of Eq. (21) in zeroth approximation has the 
form 

The spatial dependence of the scalar  normalization con- 
stant A(y) is  found from the condition of solvability of 
the equation of the next approximation for ul: 

whence 

The resultant solution satisfies the current 
conservation law which follows from (21): 

Substituting Eqs. (22), (27) and (28) in (29), we have 

the situation of Fig. 2b, when at  one and the same en- 
ergy E there a r e  turning points corresponding to both 
branches of the kinetic energy and a possibility of tun- 
neling arises. For the calculation of the tunneling CO- 

efficient in the region of finite transparency, we need 
to consider the case of two closely situated turning 
points, since in the opposite case the quasiclassical 
probability of tunneling is exponentially small. We ex- 
pand the potential a t  the point x,: @k,)=E (for definite- 
ness, let 0 < X, < u); we then have from the condition of 
turning of Fig. l b  

Completing the analogous expansion in Eq. (21), we 
represent its solution in the form 

then u(z)  satisfies the equation 

The solutions of Eq. (33) a r e  expressed in terms of the 
parabolic cylinder function D,.', Using the fundamental 
system of solutions of Eq. (33), we construct a pair of 
linearly independent functions 

Linear combinations of the functions (34) complete the 
entire set of solutions of Eq. (21), including those cor- 
responding to the scattering states. The latter a r e  de- 
fined such that a t  +- (- w) there is only a departing 
wave. For the construction of such states, we express 
the asymptotes of the solutions (34) in the regionof over- 
lap 1 << z<< l /x in terms of the quasiclassical waves 
functions (22). At z> 0 (<O) the departing wave, by vir- 
tue of (30) and (18), corresponds to the solution cp, =cp+. 
Selecting suitable linear combinations, we obtain the 
following expressions for the scattering states: 

Constructing an expression for the current (29) with 
the help of (35) and (36), we obtain the coefficients of 
transmission and reflection: 

D - itran- e-.,a R -  irefl  - I-~-Z/L , D+R=l. 
i ine 

(37 
linc 

The form of the coefficients D and R (37) is preserved 
a t  the point x,. 

At 8' 1, there a r e  no turning points on the phase tra- 
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jectories; however, a s  analysis shows, in the vicinity 
of the point x,, 

trajectories that correspond to different a pass close 
to one another and a tunneling coupling ar ises  between 
them. Calculation of the transmission coefficient in this 
case is completely analogous to that considered above. 
The solitary difference is that in the splitting state both 
departing waves a r e  located to  the left of x,. The final 
expressions for the splitting states a r e  the following: 

The coefficients D and R coincide with the expressions 
(37). 

The tunneling process considered above is a nonlinear 
effect, the probability of which i s  close to unity at 

As is seen from this expression, high transparency 
can be achieved a t  the expense of a reduction of A o r  by 
increasing the pumping level. The latter means that by 
in principle increasing the pumping we can, a t  any 
T < T,, cause the resonance states to move just a s  in a 
normal metal, as a result of which the acoustic atten- 
uation reaches that of the normal metal. Actually, this 
phenomenon can be observed only near T,. 

In the calculation of the transparency coefficient D 
above, we used the inequality u << 1 (31). We now show 
that in the tunneling region (40) it is certainly satisfied. 
AS follows from the estimates of Sec. 4, in the tunneling 
region we have the combination 

Substituting in (31) this estimate and 0,-0,, we obtain 

x-max ( i h A ,  (o/rAa) ") < I .  

The condition (31) allows us to assume the phase tra- 
jectories in Fig. 2b and Fig. 3 to be intersecting. More- 
over, a comparison of (31) with formulas (16)-(18) 
shows that in the region of high transmission, the gap 
in the kinetic energy spectrum cannot be taken into ac- 
count. 

3. BOUNDARY CONDITIONS FOR THE DISTRIBUTION 
FUNCTIONS 

The results obtained in the preceding section allow us 
to establish the form of the boundary conditions for the 
distribution functions. For this purpose, we need to ex- 
tend the coupling formulas obtained for the wave func- 
tions to include mixed states described by a density matrix. 
We consider initially the formulas (35) and (36) (B< 1, 
0 < xo< n). Starting out from the complete se t  of scatter- 
ing states IE, v), we can define the scattering matrix? 

by the expression 

where F,,(E) is the excitation distribution functionover 
the scattering states. 

Substituting formulas (35) and (36) in (41 ), we have, 
with quasiclassical accuracy, 

where 

On the other hand, the expression for the density matrix 
? in terms of the distribution functions f,, which enter 
into the kinetic expression (lo), has the following form 
in the mixed Wigner representation:" 

Transforming to the coordinate representation in (43) 

and making the change of variables 5 ,  o - E ,  a, we get 
after comparison of the resultant expression with (42), 
the following boundary condition for the distribution 
function f,(E, X) a t  the point X, (Fig. 2b): 

At the turning point n < X, < 2 r the boundary condition has 
the form 

Repeating the analogous discussions a s  applied to formu- 
las  (38) and (39), we obtain the following boundary con- 
dition at the splitting points (Fig. 3): 

4. NONLINEAR ATTENUATION 

The nonlinear acoustic-attenuation coefficient i s  de- 
termined by the average value of the energy transferred 
to the electron system per unit time, 

- 
w = - s ~  H;, 

referred to the energy of the sound wave. Turning to 
the explicit forms of the Hamiltonian (20) and of the den- 
sity matrix (43), we obtain from this definition the fol- 
lowing expression for the attenuation coefficient: 

e -  J ? - - % j d ~   DO' z o T @ i < f / > .  (46) 

It i s  convenient to transform this expression, going 
over to the variables E and u and interchanging the or-  
de r  of integration over the energy and of the averaging 
over the wave coordinate. Using the equations of the 
characteristics (15) and the symmetry property (14a), 
we rewrite (46) in the form 
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r=- - :. [ F J ~ E Q + ~ : ( ~ ) .  
a ' o  ur 

A (1 -py  ( ~ 2 - - ~ z ( l - p z j ) ' ; a  
(47) 

e = f  u=a K=E-$@, 
( I - ( V + ~ ) ~ ) ~ ' ~ '  K+aP(R-A2(I -p ' )  ) "  ' 

where the line integral along the characteristics accom- 
plishes averaging over the entire allowed interval of 
motion within the limits of a single period. 

For continuous solutions, the formula (47), after sub- 
stituting expression (19) in it, allows a further trans- 
formation: a change in the order of integration along 
the characteristics, which makes use of the property 
of invariance of the averaging operation relative to dis- 
placements. Formula (47) in this case takes the form 

We make use of formula (48) for calculation of the lin- 
ear  damping coefficient. In the linear region, the vel- 
ocity of motion i s  not perturbed: v=const, and after 
substitution of the variable 

the integrals along the characteristics a r e  easily cal- 
culated: 

Subsequent calculation i s  connected with a transition 
to integration over E ,  after which the integrals in for- 
mulas (49) a r e  separated and reduced to standard ones. 
As a result, the well known BCS formula is obtained' 

Formula (50) describes the attenuation in two physically 
different frequency regions: in the collisionless region 
(large w7) and in the region with the resonance strongly 
smeared out by the collisions (small wr). This charac- 
teristic property of linear acoustic attenuation disap- 
pears in the nonlinear region. The reason for this is 
that, depending on the structure of the resonance region, 
the nonlinearity mechansims turn out to be completely 
different. For explanation of these mechansims, we 
analyze formulas (48) and (49). 

The structure of the resonance region i s  determined 
by the denominator in the expression (49), which is ob- 
tained a s  a result of double integration of the kinetic ex- 
ponential in (48) over 801). The resonance values of B 
and v a r e  so chosen a s  to guarantee a rate of change of 
this exponential equal to the period of the sound wave. 

a )  At large w7, the resonance velocities a r e  small: 

v<$,  v-p'lo?. (51) 

With account of (51), the formulas for E and v (47) a t  
T S A take the form 

The resonance P, a s  follows from (49), a r e  concentrated 
in the regions 
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p-(T/A)'", T a A ;  1-p-Az/T2, AKT.  
- -- 

It is then seen that, by strengthening the inequality (51) 
near T,, 

vC1-B, A C T ,  (53) 
the approximations (52) can be extended into the region 
A<< T. 

As i s  seen from (52), the perturbation does not affect 
the energy &, but only the velocity v, which, after tran- 
sition in (48) to integration over X, appears only in the 
argument of the kinetic exponential. Therefore acous- 
tic pumping affects only this argument, causing a non- 
linear broadening of the resonance region. The thresh- 
old of the nonlinearity obviously corresponds with such 
a value of the perturbation I% which spans the collision 
width of the resonance, I KI - A(1- b2)'/2"~a 
max(1, T/A)/A(wT)~: 

The relations (51) and (53) compatible with the estimates 
for the resonant P restrict  the high-frequency region by 
the condition 

wrBmax(  (TIA)" ,  T'/A').  (55) 

In the nonlinear region, the inequalities (51) and (53) 
impose a definite restriction also on i ts  amplitude. Sub- 
stituting in their estimate of v determined by the nonlin- 
ea r  resonance width IH- A(l- B ~ ~ / ~ " H ,  we obtain the 
condition 

a',<@,, 0 2 = T  m i n ( ( A M 5 ,  A' /TZ)BQ, .  (56) 

b) At small wr the characteristics P a r e  small: 

paw, p-or.  (57) 

In this case, the velocity v ,  after transition in (48) to 
integration over X, drops out completely of the argu- 
ment of the kinetic exponential. Therefore, the mech- 
anism of nonlinear broadening of the resonance ceases 
to be effective. The onset of the nonlinearity i s  now 
connected simply with the appreciable perturbation of 
the kinetic energy of the resonance excitations: "K 
- A. Taking it into account that, as a consequence of 
(57), 

~ - K = * A / ( ~ - u ~ ) ' ~ ~ ,  (58) 

while the resonant velocities lie in the region v 
"min(1, (T/A)'/'), we obtain the following estimate for 
the level of the low-frequency nonlinearity: 

u ~ ~ > a ' ~ ,  a',=T/wr. (59) 

The frequency limitation for this nonlinearity has the 
form 

wr<min( l ,  ( T / A )  "). , (60) 

c) The inequalities (54) and (60) span the entire fre- 
quency range, with the exception of the region of inter- 
mediate frequencies near T,: 

Analysis of this region is more complicated, since 
here we must construct an expansion in terms of two 
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independent small parameters: A/T and l / w ~ .  We lim- 
i t  ourselves to the zeroth approximation in the parame- 
te r  A/T, since, a s  will be seen from what follows, the 
nonlinear effect i s  contained even in this approximation. 
The corresponding approximations and estimates have 
the form 

K 
v-a  sign K-B, e = -i-aS signK 

(62) 
V-i -p - i ior ,  vaB.  

As is seen from (62), the velocity in this case remains 
constant almost everywhere; therefore the mechanism 
of nonlinearity here i s  analogous to the low-frequency 
mechansim described in the previous section. The level 
of the nonlinearity that follows from the estimate (62) 
with account of the resonance condgon a sign K>O is 
identical with (59). 

We now compare the obtained level of the nonlinear- 
ity with the level of tunneling (40). In the high-frequen- 
cy region, not only i s  the inequality satisfied, 
but also @,<<@, [a consequence of (I)]. Therefore, in 
the entire high-frequency range, the tunneling process- 
e s  can be neglected. A similar situation exists also a t  
very low frequencies, far from Tc : @,<<$, A%>> T. 
Near Tc: A'?<< T the amplitude decay of the localized 
states sets in earlier then the low-frequency nonlinear- 
ity @,>>+. 

Basing ourselves on the approximations that have been 
made, we proceed directly to a calculation of the coeffi- 
cient of nonlinear attenuation. 

a) High frequencies 

In this region fi i s  always less than unity; therefore, 
one needs to take into account only two types of trajec- 
tories: the infinite l a  and the finite lb. Substituting 
(51)-(53) in the expression (48), we reduce it to the 
form 

dm ( t )  - do lt') x $ ~ ~ 5 T i -  exp (- $ (tl - t ) )  . (63) 

In writing down the formulas (63), we have taken into 
account the symmetry (14b), a s  a consequence of which 
the energies lying above and below the gap make the 
same contribution to the attenuation. 

The next step consists in the transformation of the in- 
ner integral over the characteristic, which takes into 
account the periodic character of the motion 

where T i s  the period corresponding to motion along the 
infinite trajectory from x = O  to x = 2 n  and also the finite 
from X ,  to X,  and back. A change in the integral (64) to 
the variable X' gives the following formulas after sever- 
a l  transformations: 

infinite trajectories: 

finite trajectories: 

In the strong nonlinearity limit, the arguments of the 
exponentials in formulas (65) and (66) a r e  small: 
P2/vwt- 1. Substituting (65) and (66) in (63) and ex- 
panding the exponentials, and after taking all possible 
parameters outside the integral signs, we obtain the re- 
sult 

r=r, ( A / Q , ( o r )  ') "cf ( A / T ) ,  (67) 

where the temperature functionf (A/T) is defined by the 
integral 

and the numerical coefficient C consists of the sum of 
the contributions of the infinite and finite motions: 

1 - " d cos x d cos x' T(x',x)' -- C4g' =- 2 1 / ~ 2  J d h J  , ( h - ~ X ) ~ l ~ i Y  ( h - w s X i ) ~ ~  ( 1 ( 2 n , 0 )  7 ( X I ,  X I )  * 

b) Low frequencies 

1. @,<<@,, D=0. We substitute the relations (57) and 
(58) in the formula (48) and, using the symmetry (14b), 
we reduce it to the form 

dcp - - sign u. 
dx 

As follows from (57), the basic contribution to the 
damping i s  made by small PC< 1; therefore, in the cal- 
culation of (68), we must take into account only trajec- 
tories of two types: l a  and lb. In the region of infinite 
motion, the integrals over cp' and E a r e  calculated in 
elementary fashion: 

In the region of finite trajectories, the integral over 
cp' i s  transformed analogously to the high-frequency 
case: 

and i s  also easily calculated. Substitution of the result 
in (68) leads to the expression 
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(71) 
The first  term in (69) gives the damping of the normal 

metal; the second is cancelled by the first  term upon 
addition to (71). As a result, the nonlinear amplitude 
dependence of the attenuation coefficient i s  contained 
only in the second term of the expression (71). Adding 
(69) and (71) we obtain after a number of transforma- 
tions the final result: 

r 2 ' - d p p  sin'x A+poTQo (cos x'-cos X )  = ( ; )  j - 2 j d x - j d ~ ' c h $ ~ f t h  . 
i + b ,  s h b x ,  2T 

(72) 
The asymptotes of the expression (72) have the following 
form a t  small and large amplitudes: 

2. @,>>eT,R << 1. In the region of high transparency, 
the contribution of the infinite trajectories to the damping 
remains a s  before- formula (69), but in correspondence 
with what was said a t  the end of Sec. 2, A should be 
omitted from it. The finite trajectories a r e  now absent 
while the energy interval I El< @, is filled with tunnel 
trajectories of type Id. 

T o  obtain for the kinetic equation (10) a solution that 
takes into account the tunneling processes, we proceed 
a s  follows. Within the limits of the continuity interval, 
the solution of Eq. (10) satisfies the relation 

Here i t  is convenient to introduce the band index a ex- 
plicitly, since, a s  a consequence of the tunneling acts 
the distribution functions of the different bands turn out 
to be coupled. We make use of the relation (74) and ex- 
press the distribution function a t  a certain point in 
terms of i ts  value c,, =If,',(cp,,) at the nearest turning 
point q,,<rp. At different values of o and a, these 
points correspond to the followingwave coordinates (Fig. 
2b): 

The four quantities c, ,  a r e  connected by four equations 
which a r e  a combination of the boundary conditions (44) 
and the relations (74) with account of the periodicity: 

The symmetry condition 

ca,.=c.. -o=c. 

follows from this system of equations; this i s  a natural 

consequence, in view of the symmetry of the spectrum 
branches a=*. 

Substitution of the functions fJu(cp), which a re  ex- 
pressed in terms of the quantity c,,, in formula (47), 
after integration over the wave coordinate andanumber 
of transformations, with account of the infinite contri- 
bution, reduces i t  to the form 

At D=0, the formula (76) duplicates the result (72) of 
the previous section, in which A=O. In the opposite lim- 
i t  R-0 the damping in the superconductor i s  identical 
with the damping in the normal metal. We emphasize 
that this result i s  valid a t  any temperature. 

To  obtain the first  correction in R u: 1, it  suffices to 
solve the equation (75), setting R=O in it. Substitution 
of the solution in formula (76) gives 

8bZ - dgp sh $ (n-x) -- - l - - j 7 j d X s i n X -  
r. I+? sh fin 

In the limit of small and large amplitudes, the asymp- 
totes of (77) have the form 

The resultant expressions indicate the presence of a 
singularity in the behavior of the acoustic attenuation 
on going through T,. This singularity i s  of greatest in- 
terest  in the region of small amplitudes. According to 
the BCS formula (50), the transition to the normal metal 
i s  brought about by the parameter A/T, while I' tends to 
r, in proportion to (To- T)"". This result, however, 
is valid, strictly speaking, only a t  b,=0. At any small, 
but finite amplitude (within the limits of the assumed 
approximations), the transition to the normal metal is 
due, a s  i s  seen from (73) and (78), not to the parameter 
A/T but to the tunneling parameter A2/&,. The tem- 
perature dependence r (T)  then acquires near T, we have 
a section that i s  linear in T,- T. 

c) Intermediate frequencies 

1. *,<< @, , D=0. In this frequency range, the reso- 
nances B lie near @=I (62); therefore, along with trajec- 
tories of type l a  and l b  (@<I),  we must also take into 
account the infinite trajectories of type 2 @>I). This 
circumstance, and also the absence of symmetry in a, 
complicates the calculation of the damping, although in 
principle it repeats the scheme of the previous section. 
Substituting the relations (62) in formula (48), we have 

1  
Q'= a sign K-p 

Simple calculation of the contribution of the infinite tra- 
jectories with energies E > Pb, leads to a formula identi- 
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cal with (69). Here, just a s  in the linear region, only 
t e rms  with a sign K>O, corresponding to resonance ve- 
locities, a r e  important. 

For simplification of the further calculations, it i s  
advantageous to use this circumstance, immediately 
replacing the exponentials of Q- by unity. Taking this 
fact into account, we calculate the contribution of the 
finite trajectories E < B,, @< 1. A transformation sim- 
ilar to formula (70) gives, in the case a= +, 

The last integral in (80) i s  equal to zero: &-(&I- &,(x,) 
=O. In the case a= -, the transformation takes the form 

If this expression is substituted in (79) and the result- 
ant expression averaged over the wave coordinate, the 
expression vanishes: 

2, a. 

j d p = S d f o e - = o .  
I ,  XI 

Substitution of (80) in (79) leads to an expression differ- 
ing from (71) only in the factor +. The same result i s  
obtained a t  b>l.  As a result, the total attenuation i s  
identical with that found in the previous section [formu- 
la (72), A=O]. 

2. *, >>aT, R << 1. Just a s  in the region of low trans- 
parency, the calculation of the attenuation in this case 
is a complicated variant of the calculation in the low- 
frequency range or<< 1. Omitting the very cumbersome 
calculations, which take into account tunnel transitions 
both a t  the turning points (b< 1 )  and a t  the points of split- 
ting of the characteristics (P'l), we formulate the final 
result: the nonlinear correction to r, i s  identical, with 
accuracy to within the factor 4, with the analogous cor- 
rection in formula (77). All that was said above relative 
to the singularity of the attenuation a t  T=T, in the low- 
frequency region holds for the present case without 
change. 

5. CONCLUSION 

In conclusion, we bring together all the results and 
sketch the general picutre of nonlinear attenuation of 

FIG. 4. 

FIG. 5. 

longitudinal sound in a superconductor, due to Andreev 
localization of the excitations of the sound wave. 

We introduce the temperature-dependent characteris- 
tic frequency 

in the vicinity of which the nonlinear attenuation under- 
goes a frequency dispersion due to the change in the non- 
linearity mechanism. Depending on the relation between 
w and w,, the threshold of the nonlinearity i s  determined 
by one of the following formulas: a,= T/wT, w << W, (59); 
a, = (T/or)(o,/w), w >> o, (54). The temperature depen- 
dences of &,(T) and &,(T) a r e  given in Fig. 4. In this 
same drawing, we have the temperature dependences of 
two other characteristic amplitudes: the upper bound- 
ary of the high-frequency nonlinearity *, = T/w,T (56) and 
the tunneling level ,= A2/w (40). These curves divide 
the plane *, - T into a number of regions: 

1. Region of linear BCS damping: r ,=r,(l  - th(A/2T)) 
(50); 

2. Region of high-frequency nonlinearity: r/r, 
(67); 

3. Region of low- and intermediate-frequency nonlin- 
earity 

4. Region of high transparency: 1 - r/I'," &,/a, (78); 
5. Region of low intensities, in which the BCS formu- 

la i s  incorrect; the damping here i s  determined by the 
formula 1 - r/r, - Aar/T,. (78). 

The temperature dependences of the nonlinear damp- 
ing and BCS damping near T, a r e  shown in Fig. 5. The 
change in the course of the nonlinear curve corresponds 
to a transition from the region l(3) of stability of the 
Andreev localization in the region 5(4) of tunnel decay 
a t  low (high) pumping (see Fig. 4). Here (F'ig. 5) 
a r e  shown the amplitude dependences of the damping in 
the region of stability of the localized states (AZr>>T,-- 
curve 1) and in the region of their decay (A' 7 a T,- 
curve 2). The given dependences agree qualitatively 
with the recently published experimental data of Fil' 
and coworkers1' on nonlinear acoustic damping in pure 
superconducting gallium. 
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2 ' ~ h e  applicability of (2) in the general case is also limited by 
the inequality q v p e  A, for resonance excitations, however, 
the corresponding inequality is significantly weaker [see for- 
mula (24)l and in typical cases reduces to (1). 

3 ) ~  similar inequality is obtained in Ref. 4. To neglect heat- 
ing effects in the superconducting corrections near To, we 
require a refinement of (12)~; however, this estimate i s  suf- 
ficient for the effects considered below. 
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