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A theory is constucted of high-frequency phenomena in a metal with a smooth boundary, with account taken 
of the conduction-electron spectrum that leads to multichannel specular reflection of the carriers from the 
sample boundary. It is shown that in a magnetic field parallel to the sample surface, umklapp processes 
(transitions of an electron colliding with the sample boundary to another cavity of the equal-energy surface) 
produce in the interior of the metal narrow bursts of high-frequency current, with intensities much higher 
than the field amplitude in a burst produced by electrons with extremal orbit diameters. The presence of 
umklapp processes leads to resonant absorption of the energy of the electromagnetic wave, with the resonant 
frequencies determined by the time of electron travel from the skin layer to the field burst. In conductors 
much thinner than the carria mean free path, umklapp processes lead to the appearance of new frequencies of 
the cyclotron size-effect resonance and to anomalous transparency of the thin films. An investigation of these 
effects yields the umklapp probabilities, the character of electron reflection by the sample boundary, and 
detailed characteristics of the carrier spectrum. 

PACS numbers: 72.30. + q 

INTRODUCTION 

Under the conditions of the anomalous skin effect 
there is produced in a metal, besides a high-frequency 
(HF) electromagnetic field that decreases over a 
distance of the order of the skin depth 6, also an HF 
field component that attenuates over distances of the 
order of the conduction-electron mean free path I >> 6 
and i s  due to the transport of electromagnetic-field en- 
ergy by the carr iers  into the interior of the sample. 
The intensity of the weakly-damped field component, 
however, a s  shown by Reuter and Sondheimer,' who de- 
veloped a theory for the anomalous skin effect, turns 
out to be quite small compared with the field in the skin 
layer, and allowance for i t  introduces only small cor- 
rections in the surface impedance. 

The character of the penetration of the electromag- 
netic waves into a metal is substantially altered in a 
magnetic field H.' In strong magnetic fields ( r  << 1 ,  
where r i s  the electron-trajectory curvature radius), a 
variety of weakly damped waves i s  produced, and their 
spectrum is determined by the dynamic properties of 
the carr iers  in the metal. Narrow field bursts a re  also 
produced in the interior of the metal. In a magnetic 
field parallel to the surface of a bulky metallic sample 
the role played in the electromagnetic properties of the 
metal by electrons interacting with the conductor sur-  
face is different from the role of electrons that do not 
touch the surface (the "volume" electrons). The elec- 
trons that do not leave the narrow skin layer during the 
entire effective flight time T*, i.e., the glancing elec- 
trons incident on the metal surface a t  small angles cp, 
make the decisive contribution to the formation of the 
skin layer if their reflection is close to specular. The 
volume electrons, being effectively accelerated by the 
HF field in the skin layer, carry information concern- 
ing the latter into the interior of the sample and produce 
narrow HF field bursts a t  a distance that i s  a multiple 
of the extremal diameter of the electron orbit. This i s  
the mechanism predicted by Azbel" for the formation 

of HF-field bursts, and observed several years later 
by Gantmakher at radio frequencies. Here T* = I w*I", 
w* = w + i / ~ ;  T = ~ / v ,  w is the electromagnetic wave 
frequency, and v i s  the electron velocity on the Fermi 
surface. 

The presence of field bursts leads to a large number 
of H F effects, particularly to anomalous transparency 
of thin metallic plates whose thickness is of the order 
of the electron-orbit diameter. In the microwave band, 
the volume electrons ensure resonant absorption of the 
electromagnetic -wave frequency a t  frequencies w that 
a re  multiples of the frequency C2 of the revolution of the 
electron on i ts  orbit in the magnetic field.' The ampli- 
tude of the field in the burst has likewise a resonant 
character. Under the conditions WT > r/6 of sharp 
resonance, this amplitude is of the same order a s  that 
of the field in the skin layer.' 

In conductors with almost specular faces, electro- 
magnetic-field bursts of high intensity can be produced 
in a much wider frequency range, including the R F  
band,' in the case of multichannel reflection of the 
canduction electrons from the sample boundary, i.e., 
if there a re  several nonequivalent states for the specu- 
larly reflected electrons. The only electrons that in- 
teract most effectively with the HF field a re  those in 
phase with the wave. At 6 << v/w, the "effective" car-  
r i e r s  a r e  those moving parallel to the sample bound- 
ary,  and the energy they acquire near the stationary- 
phase points, where the velocity projection v, on the 
normal to the metal surface vanishes, determines in 
fact the HF conductivity under conditions of the anoma- 
lous skin effect. In a magnetic field parallel to the 
surface of a plate with specular faces, the electron 
trajectory conaists in the case of multichannel reflec- 
tion of a r c s  belonging to different cavities of the Fermi 
surface, and the stationary-phase points a re  located a t  
different depths x .  The distance Do between them de- 
termines the position of the narrow HF-field burst in 
the interior of the metal on account of the umklapp 
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processes-the transition of a specularly reflected 
electron to another cavity of the equal-energy surface. 

Umklapp processes permit the glancing electrons to 
leave their orbit and to take part in the formation of 
the HF-field burst. The HF-field burst produced by 
glancing electron has an appreciable intensity i f  the 
umklapp is fully probable during the time of the effec- 
tive range, i.e., if the following condition is satisfied 

where 51, is the frequency of the electron motion on an 
orbit broken up by specular reflections from the sample 
surface; Q is the umklapp probability. For a glancing 
electron that does not leave the skin layer the fre- 
quency 4 is (7/6)'12 times larger than the characteris- 
tic electron revolution frequency on the orbit in a mag- 
netic field, s o  that condition (1) takes the form 

Since the probability of the electron remaining on an 
open periodic orbit is larger the smaller the carr ier  
incidence angle, we shall regard the probability Q, 
just as the diffuseness parameter (1 - 9 )  (see Ref. 71, 
to be at small cp a linear function of cp: 

Since the characteristic incidence angles of an electron 
that does not leave the skin layer is cp, - (6/r)'I2, the 
condition (2) is satisfies a t  low frequencies (wr  < 1) a s  
soon a s  b > (517)" r/ l  . 

If Do depends on the projection P, of the electron mo- 
mentum on the magnetic-field direction, then the elec- 
trons form, a s  a result of umklapp processes, an HF 
field burst a t  a distance Doxz' from the sample surface. 
In this case a part is played in the formation of the 
burst by only a small fraction - (6/r)'I2 of the elec- 
trons, having a spread of D,(p,) comparable with 6. 
The intensity of this burst turns out to be the same a s  
the field amplitude in the burst produced by electrons 
with extremal orbit diameters. At certain orientations 
of the magnetic field in the plane of the plate, however, 
Do may be independent of p, , and the electromagnetic- 
field burst is produced by all the electrons fo r  which 
umklapp is possible, so  that the field amplitude in the 
burst is larger. This case occurs if the magnetic 
field coincides with the symmetry axis of the crystal. 
The section of the Fermi surface consists then of equal 
electron orbits in different momentum-space cells, 
and the distance between the stationary-phase points is 
determined by the crystallographic orientation of the 
plate surface. As follows from Fig. 1, which shows 
the cross section of a convex Fermi surface that is 
singly-connected within the unit cell, this distance is 
equal to or  is a multiple of B sin a!, where B is the 
period in the direction of the symmetry axis p,, and a! 
is the angle between the axes p, and p,. At rational 
values of tan u =Nl/N2, the number of nonequivalent 
states for a specularly reflected electron is finite. The 
trajectory of an electron that collides with the surface 

FIG. 1. Intersection of equal-energy surface and the plane p, 
= const. In the presence of unklapp processes, the momentum 
space (p,, t )  breaks up into regions r,, where such processes 
are possible (b, shaded regions), and regions r2, where the 
umklapp probability is zero. The latter include electrons 
whose orbit diameter in a magnetic field is less that Do (c), 
e. g., electrons from the vicinity of the limiting points of 
the Fermi surface. 

of the metal consists of the a r c s  shown in Fig. l a ,  with 
a similarity coefficient c/eH, and the cusp spacing 

turns out to be the same for all p,. Here e i s  the elec- 
tron charge, c is the speed of light, and the integer 
N c  N, +N, - 1. 

If the metal surface coincides with a crystallographic 
face having small Miller indices N, and N,, so  that 
Nm,<< r/6, i.e., the number of nonequivalent states for 
the reflected electrons is much less  than r/6, then the 
electromagnetic field a t  a distance on the order of 27 
from the metal surface comprises a se t  of equidistant 
bursts of width of the order of the skin layer depth 6. 
The penetration of the electromagnetic field into the 
metal to a distance exceeding the maximum orbit dia- 
meter 27,- is effected by electrons with extremal 
orbit diameters, and the intensity of the field burst a t  
a depth x > 2r,, is a s  a rule greatly decreased. 

For a Fermi surface that is multiply connected with- 
in the limits of the unit cell or  is not convex, several 
nonequivalent states a re  possible for the specularly r e -  
flected electrons even a t  (Y = 0. In this case Do is dif- 
ferent for different P,, except for some special cases 
when separate cavities of the Fermi surface a r e  con- 
gruent. Although the field intensity in a burst whose 
position is determined by the extremal Do(p,) i s  
small, the determination of the magnetic -field values 
a t  which a thin metallic plate becomes anomalously 
transparent because of these bursts is quite important, 
for in addition to the magnetoacoustic oscillations in 
thin plates8 they contain important information on the 
relative placement of the different cavities of a multiply 
connected Fermi surface. 

In addition to formation of RF field bursts, umklapp 
processes lead to a new mechanism of resonant absorp- 
tion of the electromagnetic-wave energy in the rnicro- 
wave band. A glancing electron that 'splits* into two 
states (or several states a t  N > 2) acquires a resonant 
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FIG. 2. Electron trajectory i n  specular reflection from the 
sample boundary, with allowance for umklapp processes. The 
main skin layer forms electrons that approach the metal sur- 
face at an angle cp Sp1. Umklapp processes lead to formation 
of field bursts whose widths 61 and h2 are for the same order, 
but larger than 6,. 

period T, equal to the time of motion of the electron 
from the layer into the field burst, i.e., the resonance 
takes place a t  the frequencies 

o~ln'+ - nn. (5 

In the considered frequency region C ~ T *  - 1 and the 
inequality (2) is satisfied a t  b - 1. Satisfaction of this 
condition, however, is generally speaking insufficient 
to obtain maximum resonance intensity. For resonant 
absorption of the energy of the electromagnetic wave i t  
is necessary that during the effective electron travel 
time it  pass both through the skin layer and in the field 
burst, as well that i ts  motion be strictly periodic. The 
time of motion of the electron along the small a r c  that 
fits inside the skin layer, To, i s  smaller by a factor 
(r/6)'I2 than the time of motion along a r c  2 o r  3 (Fig. 
2). If the ratio Ro/T, is negligibly small compared with 
the broadening of the resonance line, i.e., 

(q, is the specularity parameter for the angles q,), 
then the electron motion is practically periodic. In 
this case, moving along small a rcs  in the skin layer, 
the electron acquires energy from the HF field, where- 
as the large a r c  determines the resonance period; a t  
b -1 the resonance a t  the frequencies (3) will be just a s  
intense a s  the 'ordinary* cyclotron resonance. 

An investigation of the resonant change of the im- 
pedance with changing magnetic field a t  new resonant 
frequencies permits a more detailed study of the inter- 
action of the electrons with the sample boundary, deter- 
mines the umklapp probability, and yields additional 
information on the carr ier  spectra in metals. 

§ 1. SOLUTION OF KINETIC EQUATION FOR 
MULTICHANNEL SURFACE REFLECTION OF 
ELECTRONS 

To determine the surface impedance and the distribu- 
tion of the electromagnetic field in the metal, we must 
solve  axw well's equations supplemented by the ma- 
terial equation that relates the electric current density 
J with alternating magnetic field intensity ~ ( r ) .  The 
last relation can be easily found with the aid of the 
kinetic equation for the nonequilibrium distribution 
function of the conduction electrons 

where f,(& ) is the Fermi distribution function. The 
equation for \k, linearized in terms of the weak electric 
field, 

must be supplemented by a condition that takes into 
account the character of the reflection of the electrons 
by the sample boundary. 

In the case of specular reflection of the carr iers ,  this 
condition is 

where w,, is the probability of the transfer of the elec- 
tron from the k-th to the i-th cavity of the Fermi sur-  
face, t is the time of motion of the electron in the mag- 
netic field, i.e., the phase on the orbit & (p)= const, 
p, = const, the momenta p and 5 are  connected by the 
specular-reflection condition, and 

We assume that the electromagnetic wave is mono- 
chromatic, s o  that the differentiation of \k with respect 
to time i s  equivalent to multiplication of by -iw. We 
confine ourselves to the T approximation, which i s  per-  
fectly sufficient for the description of HF phenomena 
under conditions of the anomalous skin effect. 

For a weakly rough metal surface, i t  i s  easy to obtain 
a boundary condition similar to that of ~al 'kovski~ '  or  
of Okulov and ustinov," with account taken of the multi- 
channel reflection of the carr ier  by the sample bound- 
ary: 

and then solve the kinetic equation (7) for an arbitrary 
scattering indicatrix. " In a highly inhomogeneous 
field, however, the nonequilibrium increment to the 
electron distribution function is a rapidly varying func- 
tion of i ts  arguments, and allowance for the integral 
term that contains \k,(p) is of little importance. In this 
case we return to a boundary condition of type (81, in 
which w,, depends on the momentum of the incident 
electron, and z,,w,, < 1; this is equivalent to the ap- 
proximation with a specularity parameter that depends 
on the angle of incidence of the charge on the sample 
boundary. In a magnetic field parallel to the metal 
surface, Eq. (7) can be easily solved by recognizing 
that in the case of specular reflection without umklapp 
the electrons move on open-periodic orbits with period 
T i  on the i-th cavity of the Fermi surface. Condition 
(8) then takes the form 

Y (hr, p.; r.) =ws e x p ( t o ' T ~ )  {&+y (L ps; re)), (10) 

where A, is the instant of reflection of the electron by 
the sample boundary a t  the point r,, i.e ., the root of 
the equation 
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Conditions (10) constitute N algebraic equations for 
the functions \ k ( ~ ~ , p , ; r , ) a * ~ ,  where N is the number of 
specular -reflection channels, 

Y 1- UuY ,cAJJu, (13) 

and the solution of these equations is of the form 

where I is a unit matrix, 6 is a matrix with compo- 
nents U,,, and 

For greater clarity of the calculations that follow, we 
confine ourselves to two-channel reflection. General- 
ization to the case of an arbitrary number of channels 
entails no difficulty. At N = 2 we have 

* 
Y ( t ,  p,; z) =I exp (-io't,) e v ( t f ) E  ( z + x ( t l )  -z ( t )  ) dt' 

where 

a=exp(-io'T,), $=exp(-io'T,), T,=T-W,, 

T,=T-%,(Al), T==2n/Q, A-A*, B-A,, tl--t'-t, 
(18) 

and A, and A, a re  the roots of the equations 

~ ( t )  -z(ht)  -2, Z ( ~ I ) - X  (Rr) =D,. (19) 

The umklapp probability in specular reflection i s  Q 
= w, = w,,, while the probabilities of specular reflection 
without umklapp a re  P, = w,, and P, = w,,. All probabil- 
ities depend on the angle cp of incidence of the carr iers  
on the sample boundary, and a t  small cp the probability 
Q and the specularity parameters q ,  = Q + Pi are  linear 
functions of cp: 

[see also (3)]. 

$2. ASYMPTOTIC EXPRESSIONS FOR THE HF 
CURRENT DENSITY IN A BULKY CONDUCTOR 

 axw well's equations 

a re  integral equations for the Fourier components of 
the HF electric field 

In the calculation of the HF electric conductivity 
tensor which is the kernel of the integral operator that 
connects the HF field with the current: 

we recognize that i f  the ca r r i e r  reflection by the sample 
boundary is close to specular a substantial contribution 
to the HF electric current is made both by electrons 
that collide with the conductor surface and by electrons 
that do not interact with the surface. The contribution 
of the latter to the HF electric conductivity is well 
known (see, e.g., Refs. 2 and 51, and for electrons 
repeatedly interacting with the surface the kernel 
K,,(k, k') can be represented, using Eqs. (16) and (17) 
for the nonequilibrium increment \k, in the form 

Here 

4e3H ' I a  
K,A (k, k') = - j dp. dl, v=(a)  1~ (h)  

nch3 
0 

(25) 
TI: 213 

X j dt @,(o', t ) c o s [ k ( z ( t ) - z ( h ) )  IS dt' @,(-a', t ' ) cos [k ' ( z ( t f ) - z (h) )  I, 
h % 

the integration i s  carried out over the entire Fermi 
surface, and the index corresponding to the summation 
over i t s  different cavities has been left out1': 

@,(oq,  t )  =v,(t) exp (io't) +up(-t) exp [ io*(T- t )  1, (26) 

q ,  and q, a re  the specularity parameters of the electron 
on orbits coupled by umklapp. 

The expression for the kernel ~ : , ( k ,  k') can be writ- 
ten in similar form by replacing A in the integral with 
respect to t' by the root h,(A) of Eq. (191, and replacing 
f* by f,, where 

Under the conditions of the anomalous skin effect i t  
suffices to know the asymptotic expressions for the HF 
electric conductivity tensor K,,(k, k') a t  kr>> 1 and k'r 
>> 1. The main contribution to the integrals (25) is 
made by the limits of the integration with respect to A,  
i.e., A = 0 and h. = T/2, which coincide with the sta- 
tionary -phase points, where U,(A) =O.  We assume that 
functions of the resonant-denominator type vary slowly 
compared with cosines, i.e., that the following condi- 
tion i s  satisfied: 
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1 exp (-io'T;) -q, 1 W (6/r)", (29) 

which i s  equivalent to the inequality (6) near resonance. 
This inequality, besides having the physical meaning 
mentioned in the Introduction, indicates also that a 
small angle change 6cp, - ( 6 / ~ ) " ~  (see Fig. 2) results in 
a negligibly small frequency change 652, (where 52, = n/ 
T,) compared with the collision frequency 1 / ~ .  

In +he vicinity of the point h = T/2 the relations (3) and 
(20) a re  valid for the umklapp probability and the dif- 
fuseness parameter, which turn out to be proportional 
to the period T,, which vanishes a t  X = 0. The function 
f, has therefore a pole at this point. Separating i ts  
regular partT,, we represent the function f ,  in the 
form 

f.4-2 ( Q T I ~ ) - ' + ~ A ,  (30) 

f ~-(b/q)'[exp(-~o'T1)-4~1-~, h-+Tn, (31) 

For *touchingm electrons with moment of reflection 
close to zero, the quantities Q and (1 -9) also vanish, 
whereas the period T, i s  equal to 2n/52. Therefore 
umklapp changesvery little the current of theUtouching" 
electrons (to the extent that 6/r  is small), and we may 
retain in f,, with sufficient degree of accuracy, only 
the term (321, and neglect the contribution made to the 
current by the corresponding term with f,: 

Here 7 = a  + b - 2iw*/t2, 2T, = T,, and the nonresonant 
terms of 7, have been left out. 

The first  term in Eq. (30) for the function f, corre- 
sponds to the contribution of the glancing electrons to 
the monotonic part of the HF electric field. Substituting 
i t  in (23) and integrating, we obtain the following ex- 
pression for the kernel: 

which also depends on k and k', just as in the case of 
pure specular reflection of the carr iers ,  and the sensi- 
tivity to the surface state of the sample is determined 
by the tensor d,,: 

where m* is the effective mass of the electron. We as- 
sume here and below that the electric vector of the 
linearly polarized external wave is directed along one 
of the axes in terms of which the tensor d,, is diagonal, 
and we omit hereafter for simplicity the tensor indices 
in most equations. 

The contribution made to the part of the HF current 
of the glancing electrons subjected to urnklapp is de- 
scribed by the functions 7, and f,. In the course of the 
calculations that follow i t  will be convenient to add the 
electric conductivity of the volume electrons to that 

j,, and break up in turn the resultant expression into 
two terms. The first ,  for which we retain the notation 
K,(k, k'), is of the form 

1 
K A  (k ,  k') -6kl1-;;; 6 (k-k') 

sin[ (k-k') Az(h)  1 
0 ) (36) 

i t  describes the resonant behavior of the surface im- 
pedance. The second term, designated K,(k, k') 

ensures a field burst whose distimce from the surface 
is a multiple of 2 r  "". A similar expression for the 
kernel K,(k, k') connected with the function f, and re-  
sponsible for the formation of an HF field burst a t  a 
depth Do, is given by 

tit am[ (k-k')Az(b)-k'D01 
k ,  = ( P ( )  j dhf i  (A)  { 

k-k' 
TI¶-*, 

+ sin[ (k-k') A s @ )  +kD.] )) -aaakzs 
sin kD,-sin k'Do 

6-k' k'-k" , (38) 

where 

vw(t)  v.(t) , p ( o . + ) = .  v,(O) v.(T/2) +vp(T/2)  v.(O) 
p"(t) = I v,' ( t )  l 

-. 
2[v.'(O) lv.'(T/2) 11" 

(39) 
The quantities k, and k, characterize the spatial scale 
of the variation of the HF in the bursts: 

k,"=a,-'r2 /2 < ( p  ( 0 )  +p(T/2)  ) cth (-io'Tl2) ), (40) 

kl'=ao-1nz/2<p(0) cth ( - iogT/2)  +p(T/2)  ( 2 f A ( z I )  +1) >, (41) 

the parameter cto i s  determined by the anisotropy of 
the Fermi surface 

and the parameter ct is given by 

akzs-2nao-1(p ( T / 2 )  f. ( T / 2 )  ), (43) 

and also by the state of the sample boundary: 

The angle brackets denote integration over the Fermi 
surface along the belt where v, vanishes with a factor 
4e3~/8ch3, and the values outside these brackets, 
which depend onp,, a re  taken on that section of the 
Fermi surface where r(p.) has an extremum. Sum- 
mation is implied i f  there a re  several such sections. 
The prime denotes differentiation with respect to t, 
and ?,=&(T/2). 

resonant-kernel part  that is connected with the functions It follows from the foregoing equations that the reso- 
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nant kernels a re  small in accord with the anomaly pa- 
rameter (6/r)'12 compared with the kernel Ko(k, kt). It 
is therefore advantageous to use perturbation theory 
and seek a solution of  axw well's equation in the form 

a ( k )  40(k)+A%(k)+8Ple (k )  cca kDo+8, . (k)  sin kDo 
+%z,(k)+a,%;,(k), (44) 

where $,(k) describes the main skin layer made up by 
the glancing electrons, and A g(k) i s  a small, but 
resonantly dependent on the magnetic field, change of 
the HF field near the surface. The next two terms a re  
responsible for the field in the burst a t  a depth Do and 
a r e  also resonant. Finally, the last  two terms of (44) 
describe an HF burst whose distance from the surface 
is equal to the extremal diameter of the electron orbit, 
and the drawingn of the HF field into the interior of 
the sample to distances larger than 2r,,. 

The Fourier transform of E ,(k) satisfies Eq. (21) 
with a kernel K(k, kt) equal to Ko(k, k'). Using i t s  
known solution (see the Appendix), we obtain that part  
of the impedance which varies smoothly with the mag- 
netic field 

As a result we have 

where k',' is the thickness of the main skin layer, and 
yo= (w 7)-'. We note that, depending on the relation 
between the parameters (a + b )  and 1 o*/n I the im- 
pedance is proportional to H 'IS a t  (a + b )  << 1 w */a 1 o r  to 
H 'Is in the opposite case. 

To find the remaining terms in (44), we estimate 
f i rs t  asymptotically, a t  large k and kt, the character- 
istic integrals that appear in the right-hand side of 
(21). For the integral operator with kernel ~ ~ ( k ,  kt) 
we have 

where 6(k) is a smooth function of k and B(x) i s  the unit 
step function. 

A 

The operator KA thus transforms smooth functions 
into smooth functions and oscillating into oscillating. 
The operator k,, on the contrary, acting on a smooth 
function transforms i t  into an oscillating one: 

2 " %(kx)  
G ( k )  --68 ( k )  = - I&-*  " 0 

and conversely, when applied to an oscillating function 
yields a smooth one. The latter need not be cited here, 
since the corresponding Al (k )  term that describes the 
reaction of the HF field burst on the skin layer is small 
in terms of the anomaly parameter and can be left out. 

Similar relations hold also for the integral operator 
with kernel K,(k, kt): 

When the local part  of the operator kc acts on a func- 
tion of the type $(k)cos(kD+ g ~ ) ,  two oscillating functions 
a re  produced, containing in the argument both the sum 
2 r  + D and the difference 2 r  - D. The role of the non- 
local part  of the operator in question reduces to can- 
cellation of the latter functions s o  that we have a s  a 
result 

$3. SURFACE IMPEDANCE AND FIELD DISTRIBUTION 
UNDER RESONANCE CONDITIONS 

The relations presented above allow us  to find all the 
terms in formula (44) for the Fourier transform g(k) 
and investigate the resonant increment to the impedance 
and the distribution of the HF in the metal. An integral 
equation is obtained for A%'(k) by retaining in the right- 
hand side of Maxwell's equ?tion (21) the terms due to 
the action of thepperator KO on the function A %'(k) and 
of the operator KA on the Fourier component $,(k). Al- 
though this equation can be solved by the method pro- 
posed by Hartmann and Luttinger,12 knowledge of the 
explicit form of the solution is not essential for the 
determination of the resonant increment AZrc"o the 
impedance. The reason is that, since the kernel 
Ko(k, k') is symmetrical, the value of AZK"an be ob- 
tained by direct integration (see, e.g., Ref. 13). As a 
result we obtain for AZX%e expression 

Here 

Cz1.99. lo-' exp (4ni /5) ,  k~-1=(16n'oc-sh-apop(T/2)e'~)-'~ 

is of the order of the skin layer thickness in the absence 
of a magnetic field, and near resonance, a t  frequencies 
given by Eq. (5), where T, has an extremum a s  a func- 
tion of p,, the function cp(A) takes the form 
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where 

= (A' + ;,*)"s po* aST& , s= signx, 

and p, i s  the Fermi momentum. 

It follows from the presented formulas that the main 
characteristics of the resonance depend substantially 
on the surface properties of the conductor. The width 
of the resonance line is determined not only by the 
mean free path of the carr iers ,  but also by the specu- 
larity parameter q,, and i ts  amplitude increases a t  
small b in proportion to b2. At b = 1 and q ,  a 1, the 
considered resonant effect is just a s  intense as the 
a ordinary" cyclotron resonance. 5*'4*'5 

Formula (53) for A L  is valid if the inequality (29) 
is satisfied. At y,(r/6)'12<< 1 , the main characteris- 
tics of the resonance, just a s  in the case of cyclotron 
resonance on electrons with extremal orbit diameter,16 
and as in size -effect resonances in a plate,'3*'7~'8 a re  
determined by the HF-field damping depth, i.e., by the 
parameter 6/r. In the considered case, however, the 
resonant peak fine structure connected with the parame- 
ter y, is much less pronounced and comes into play 
only in the higher derivatives of the impedance with 
respect to the magnetic field. 

We proceed now to find the HF field in a burst of 
depth Do. Using relations (48) and (49) i t  is easy to 
obtain an equation for the amplitudes $,,(k) and $,,(k) 
and express them in terms of the function 

As seen from these formulas, the characteristic 
values of the wave number k, corresponding to the poles 
of the function g(k), a re  of the order of k, and not of k,. 
Therefore the glancing electrons, which form the main 
skin layer of thickness -k',', produce after the urnklapp, 
a t  a depth Do, an HF field burst whose width is of the 
order k;'. 

The distribution of the HF in the metal is determined 
by the inverse Fourier transform 

and it i s  easy to show, using (55) and (561, that the 
form of the field in the burst is described by the inte- 
gral 

SaE(0) las  i a  
E (z) -- d J ( k  k;), 

ko 

where ~,(k/k,)  is the dimensionless Fourier component 
of the field (see the Appendix), Go(k/ko) = 8 ~ , ,  6% =Do 
-X. 

Near the center of the burst I k,6x I<< 1 we obtain for 
E(X) 

E (z) = E ~  - f: exp ( ~ ) ( ~ + ~ u p ( - ~ ) ( k ~ * ) ) ,  

and since Eo -a - b, the field amplitude in the burst, in 
contrast tb the resonant impedance increment, is pro- 
portional to the first  degree of the parameter b rather 
than to b2.  

The expression for E(x) on wings of the burst is of 
the form 

r(z) i s  the Euler Gamma function 

The oscillating term in this equation i s  due to the fact 
that the system of narrow HF-field burst (Usecondarym 
skin layers) can serve a s  a source of cyclotron-wave 
excitation.'' The wave appears a t  x c O ,  i.e., when the 
period T, has a maximum on the extremal section of the 
Fermi surface, on that resonance wing where the de- 
tuning A > 0, and the damping is smal l  if A>> 7,. Ex- 
pression (54) for V(A) then takes the form 

k, i s  almost imaginary, and the pole of the function 
g(k) presses towards the real axis. In this case it i s  
necessary to take into account the pole contribution in 
the integral (591, and i t  i s  this which leads to the 
second term, which describes the cyclotron-wave field, 
of formula (61). 

The functions 6 , , (k )  and 6 ,,(k) responsible for the 
penetration of the HF field to a distance 2 2 r  into the 
interior of the metal, can be easily found with the aid 
of (49) and (51) and represented in a compact form 
reminiscent of the well known  formula^^^^ that hold in 
the approximation in which a local connection exists 
between the Fourier components of the HF field and of 
the current. The function $,,(k), which describes a 
system of damped HF field bursts a t  distances from the 
surface that a re  multiples of 2rrArr ,  i s  of the form2' 

iaokrs go (k)sin (2kr+s,n/4) -68, (k) ooa (2kr+sln/4) 
) -  k'-ik,'[I+ao(2krj-"' sin(2kr+s1n/4) ] 

(63) 
The expression for the function $,,(k), which de- 

scribes the 'drawing of an HF field burst produced by 
urnklapp processes into the interior of a conductor, is 
of exactly the same form a s  (63), except that in the 
numerator of the latter we must replace 2 r  in the argu- 
ment of the cosine a n t  sine by 2 r  + Do, and the field 
amplitudes $,(k) and G $,(k) of the main skin layer must 
be replaced by the field amplitudes in the burst a t  the 
depth Do, i.e., by I,,(k) and $,,(k) respectively. 
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Equations (57) and (63) yield the distribution of the 
HF field in the interior of the metal. The characteris- 
tic scale of variation of the HF field in the bursts i s  
connected with the quantities k;' and k; ', and their 
form depends essentially on the character of the ex- 
tremum of the electron-orbit diameter as a function of 
p.  Thus, an HF field burst whose distance from the 
surface is close to 2rmax turns out to be almost sym- 
metrical, with a small shift of the maximum of the 
field amplitude, amounting to k',', relative to the point 
x = 2rmax,  and can be described by the following inter - 
polation formula: 

where 

El--  
ko 

exp (ln/6) 9.3"' exp ( - in/3)  Mo(-1) 
(65) 

c0= 
121F 

, el=' 
2n' 

which goes over into the exact expressions a t  lu 1 
<< kJko, kl/ko<<u << 1, and 1 << I U  I<< klr. 

The high-frequency field burst a t  a depth x =2rn"" , on 
the contrary, is antisymmetric; 

where 

3M0(-1) 2ni c,= - - exp ( :) . 
St C 5 = - 3 1 ~  

The oscillating terms in these formulas, which de - 
scribe the field of the cyclotron wave, must be r e -  
tained under the same conditions as in formula (61). 

A comparison of formulas (64)-(66) with the corre- 
sponding expressions for the field in the burst pro- 
duced by glancing electrons subjected to umklapp shows 
that at b =1 the burst intensity at a depth Do i s  larger 
by (k1r)lJ2 times than the field amplitude a t  a distance 
2 exrr from the surface. 

The resonant character of the amplitude and of the 
width of the HF field burst a t  a depth Do is different 
from that a t  a depth x = 2 r  '"Ir . The resonance in a 
burst produced by electrons with extremal orbit diame- 
ter  sets in a t  frequencies w that a re  multiples of the 
frequency of revolution of these electrons in a magnetic 
field: w -nn,. If the extrema of the effective mass m* 
and of the diameter 2 r  coincide, then the quantities k: 
and a, turn out to be proportional to the function cp(A), 
which i s  given by formula (54) in which y, must be re-  
placed by yo. Therefore the width of the burst k;' near 
resonance i s  acompressed" in proportion to (cp(~))" '~  
and i ts  amplitude increases like ( c p ( ~ ) ) ~ / ~ .  If m* has 
no extremum on the Fermi-surface section whose elec- 

trons form. the HF field burst, then k;' i s  practically 
independent of the detuning from resonance, and i ts  
amplitude i s  proportional to the parameter 

an- {exp (-io'T.) - I ) - ' .  

For the burst a t  a depth Do we find that a t  COT;"" - m 
the parameter CY does not depend on the detuning from 
resonance: a, = 2n-'(-l)"b/~7, and ki - rp(A). Therefore 
the width of the burst is k;'- ((p(A))'lJ3, and i ts  ampli- 
tude - (cp(~)) ' /~ .  On the other hand if the frequency w 
is a multiple of the revolution frequency of the electrons 
with the extremal effective mass,  then the multiple r e -  
turn of these electrons to the narrow field burst a t  the 
depth Do leads again to a resonant character of the am- 
plitude and of the width of the burst. In this case k;' 
is also proportional to (cp(h))-'I3, and the amplitude 
E(D,) a t  the resonance i s  -(cp(~))"'~, and is consequent- 
ly minimal. 

The shapes of the bursts a t  distances 2 r  + Do, 4r ,  and 
4 r  + Do from the surface can be analyzed in similar 
fashion. 

54. RESONANT PHENOMENA IN THIN CONDUCTORS 

Umklapp processes give rise also to new resonance 
phenomena in thin conductors, of thickness d smaller 
than the maximum diameter of the electron orbit. 
They lead to additional broadening of the size-effect 
cyclotron-resonance lines, a broadening due to the 
electrons that return to the skin layer upon reflection 
from the plate surface opposite to the skin layer.'7*18*22 
In addition, umklapp processes lead to the appearance 
of new resonant frequencies, The shapes of the reso- 
nance curves can be analyzed in analogy with the pro- 
cedure used above for a bulky conductor. For elec- 
trons that collide with the plate surface x = d ,  the high- 
frequency electric conductivity tensor i s  of the form3' 

4eaH 
Y b 

~ , . * ( k ,  k t )  = j d p 8 ( 2 r ( p Z )  -4 l v = ( ~ ) f ~ ( i )  dt cp~(o', t )  
nch 

0 0 

c~,,(w*. t )  =v,( t )  exp ( - io' t )+v,(- t )  exp (io't),  (67) 

which i s  similar to expression (5a) from Ref. 18, with 
the function fA replacing the resonance denominator. 
Here 7, is the root of the equation x(r,) -x(O)=d, while 
in the exponentials a, and p of (25) the periods T,(x) and 
T,(x) a re  defined a s  follows: 

Integrating in (67), we obtain an asymptotic expression 
for ~ , ( k ,  k'): 

1 
K,(x, k r )  = Z ~ < ~ ( O )  f A ( ~ d  >-{6 ( k - k f )  - - 

(kk')  II(k+k') ) ' (68) 

which i s  valid if the condition I exp(-iw*T,) -q  1 >> 6/r 
is satisfied. At small Q, the function f,(r,) can be 
represented after simple transformation in the form 
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P + 0' 
f* (2d)  - exp ( -2 i0 . z~)  -q+Q ex* ( - 2 i 0 . ~ ; )  -q+Q 

As seen from this formula, umklapp processes lead to J 

the appearance of new frequencies of the size-effect J a 

cyclotron resonance. These frequencies a re  given by 

At the Kold* frequencies ~7;"" = m for the resonant 
increment to the impedance, we obtain 

where in Eq. (54) for V(A) we must make the substitu- 
tion 7 ,  - y ,  + Q/2m, and rc replaced by 

At frequencies that a r e  multiples of n/~;"", the reso- 
nant increment to the impedance is multiplied by the 
small factor Q'. 

In pure samples with perfect surfaces, when the fol- 
lowing inequalities hold 

the width of the resonance curve is determined by the 
umklapp probability Q. Since the angle of incidence of 
the electron on the plate surface depends on the relation 
between 2 r  " f  and d, an investigation of this resonance 
effect can yield important information on umklapp pro- 
cesses for electrons incident on the sample surface a t  
arbitrary angle, and determine the dependence of Q on 
V. 

To observe the size-effect resonance described above 
i t  is obviously necessary that Do be less than d (Fig. 
3a). In a very thin plate, with thickness much less than 
the curvature radius r of the electron orbit, umklapp 
processes make i t  possible for electrons whose orbit 
center is outside the sample to take part  in the high- 
frequency size effects. Indeed, i f  the center of the 
orbit of a glancing electron is located after the umklapp 
exactly a t  the middle of the plate (Fig. 4), i.e ., 

then such an electron has only two choices: either re-  
main on i t s  orbit, or  turn again into an electron glanc- 
ing along one of the plate surfaces. Umklapp leads thus 
to a substantial correlation between the opposite faces 
of the plate and i ts  anomalous transparency under the 
condition (72). In such a plate, the glancing electron 
acquires a resonant period equal to the time ?,, of mo- 
tion from one surface to another, i.e ., resonance takes 
place under the condition 

FIG. 3. a) Electron umklapp in a thin plate and formation of 
a new resonance frequency determined by the time of motion 
along the arc 2. b) Formation of HF-field bursts in a plate 
whose both faces reflect carrier charges with umklapp. 

The most interesting fact is that resonance is possible 
in a magnetic field so  weak that the bending of the elec- 
tron trajectory i s  significant only in the skin layer. 
That i s  to say, if only the inequality (6r)'lac< d is 
satisfied, the electron-trajectory segment that crosses 
the plate is an a r c  with small curvature -d/r, and the 
period ?,, is practically independent of the magnetic 
field. The resonance frequencies a re  determined in 
this case by the extremal electron velocities on the 
Fermi surface along the normal to the plate boundary. 

The results can be easily generalized to the case of 
an arbitrary number N of channels of specular reflec- 
tion of the electrons. The electrons produced in this 
case, in the interior of the metal, a t  a distance on the 
order of the extremal diameter of the electron orbit 
(N - 1 ), a narrow electromagnetic-field burst. New 
resonance frequencies and their harmonics a re  also 
produced, viz., 

where T: i s  the extremal time of motion of the electron 
from the skin layer to the N-th field burst. In addition, 
combination resonance frequencies of the type w(T: 
+ Tf)= 2m,  determined by the time of motion of the 
charge from one electromagnetic-field burst to another. 

It should be noted that the formation of field bursts a t  
distances that are  multiples of Do from the surface, is 
possible also in the presence of only two scattering 
channels. In fact, let Eq. (19) have a solution T ,  at A 

= 71, then the electrons reflected a t  the instant A = 7, 
absorb HF-field energy a t  a depth Do, and after umklapp 
form a new burst a t  a depth 2D,, etc. The shape of the 
field in the burst, in contrast to the case when it  is 
produced by direct urnklapp from the skin layer, then 

FIG. 4. Trajectories of glancing electrons in a plate with 
specularly reflecting faces; the center of the electron orbit 
is located at the center of the plate after umklapp. 

857 Sov. Phys. JETP 53(4), April 1981 ~eschanskcet at. 



depends on the distribution of the field i n  the preceding 
burs t .  

In a plate with specular ly reflecting faces,  uni lateral  
excitation of an electromagnet ic  wave produces a pecu- 
liar doubling of the number of HF-field b u r s t s  (Fig. 3b). 
The reason is that  the e lec t rons  colliding with the s u r -  
face x = 0 produce field b u r s t s  at a depth 5 2r,,, while 
the e lec t rons  that  in te rac t  with the sur face  x = d fill, as 
a r e s u l t  of umklapp the region 27,- 5 x 5 4r,, with 
burs t s .  If the sample  thickness  d sa t i s f ies  the condi- 
tion d = 2ND0, then the next b u r s t  e m e r g e s  to the plate 
sur face  opposite to the sk in  layer ,  and th i s  sur face  
t u r n s  out to be  transparent to the electromagnet ic  
waves . 
APPENDIX 

The equation f o r  the F o u r i e r  t rans form & ,(k), in  the 
dimensionless  coordinates  

F ( f )  =- (2aE ( 0 ) l a z ) - ' k 2 8 ( k ) ,  ' f =klko, (A. 1) 

is of the f o r m  

If we seek  the solution of th i s  equation, following 
Hartmann and ~ u t t i n g e r , "  in the f o r m  of a contour in -  
t egra l  

Fo ( f )  = ~ * r  dzEzM0 ( z ) ,  
2ni e-,- 

then the Mellin t rans form 

(A. 3) 

can be obtained in explicit  f o r m  15: 

q ZIZ+ZIIS 

~0 (2)  - (=-) (-L) 1-1 
x , . ~ r ( ~ + i ) r ( - $ E )  2 r ( F ) .  (A. 5) 

The impedance of the metal ,  in  the pr incipal  approxi - 
mation in an anomaly p a r a m e t e r  that  depends smoothly 
on the magnetic field, is expressed  i n  t e r m s  of the 
values of Mo(z) at the point z = -1 : 

(A. 6) 

(A. 7) 

')we use standard notation: e is the electron charge, h i s  
Planck's constant, c is the speed of light, and m* is the 
conduction-electron effective mass. 

')we a r e  forced to cite here the exact formula for 1Rzl(k) and 
discuss the shape of a field burst at xa2+' in a metal with a 
real  boundary, since the results of many investigations of 
the anomalous penetration of an electromagnetic field in a 
metal (see, e. g., Refs. 20 and 21) a r e  contradictory and 
do not agree with formula (63) for the Fourier component 
of the electromagnetic field. 

3 ) ~ h e  kernel e, (k, kt)  does not play an important role in 
the impedance. 
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