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The possibilities are analyzed of investigating noncentrosymmetric molecular anhannonicities in 
orientationally ordered liquids by the method of doubling the frequency of the optical radiation. The 
hyperpolarizabilities of second order are calculated with allowance for the magnetodipole and quadruple 
transitions. The corresponding nonlinear susceptibilities that determine the efficiency of conversion into 
second harmonic as a function of the experimental geometry, are obtained by averaging over the molecule 
orientations. A classical model of a biopolymer molecule is developed. This model is used to estimate the 
nonlinear susceptibility due to spatial dispersion, namely - 10-'0-10-9 cgs esu, i.e., of the order of the 
electrodipole susceptibility of typical nonlinear dielectrics. It is shown that fixing a defmite type of wave 
interaction with the aid of phase synchronism should produce in the quadratic susceptibility a discontinuity of 
the order of L/R (L is the length of the helical molecule and R is the radius of the helix) at the point of 
helix-coil transition. 

PACS numbers: 42.65.Cq, 61.25.Em, 78.20.Bh 

6 1. INTRODUCTION ordered structure (measurement of the critical para- 
meters of a phase transition5" o r  of the higher moments 

Practically a l l  the new results  obtained in nonlinear of the orientational distribution function7), as well as 
spectroscopy of molecules a r e  based on the measure- nonlinear-optics applications ( lasers  based on dyes in 
ment of third-order susceptibilities. At the same time, 

LC matrices,'" laser-radiation frequency  converter^'^). 
on the microscopic level, the second-order harmonici- 
ties a r e  generally speaking stronger; exceptions a r e  
either molecules of nearly spherical shape or,  if one 
deals with observation of resonance effects, centrosym- 
metric molecular vibrations. The main cause of the 
suppression of the quadratic anharmonicities on the 
macroscopic level is the high symmetry of the custom- 
arily used thermodynamic phases, liquid or gaseous.' 
These phases a r e  resorted to because i t  is only in them 
that individual investigation of molecules is possible (the 
energy of the intermolecular interaction is W <<hi, 
where oi a r e  the frequencies of the quantum transitions 
of an individual molecule). In this case, however, the 
averaging of the optical response, due to the thermal 
motion, limits the number of measurable components 
of the tensor hyperpolarizabilities of higher orders 
(what is almost always measured in fact is a single lin- 
ear combination of them). The possibility of measuring 
the hyperpolarizabilities of even degrees a r e  subject to 
additional specific restrictions. In particular, the quad- 
ratic hyperpolarizability i s  not observable a t  al l  in the 
frequency doubling effect. To measure i t s  antisymmet- 
r ic  part  (and only this part) i t  is necessary to perform 
a technically much more complicated experiment on 
frequency addition in a two-wave noncollinear geomet- 
ry.' 

The way out here is to use condensed media of lower 
symmetry, with the same condition that the intermolec- 
ular interaction be weak, and that a reasonable scheme 
be available for taking this interaction into account in 
the reduction of the experimental data. 

There have been few investigations to date of optical 
effects based on the quadratic susceptibility of LC. 
There is only one successful experiment on second-har- 
monic generation in a nematic liquid crystal (NLC)," 
and doubling of light frequency was observed also in the 
presence of a constant electric field E,." The symmet- 
ry  of the NLC is the universally accepted model i s  quite 
high (inversion axis of infinite order),' so that no elec- 
trodipole quadratic effects should be observed in an op- 
tical field a t  E, = 0. The presence of E ,  + 0, which lifts 
the inversion degeneracy, can alter  substantially the LC 
structure (the Freedericsz effect, hydrodynamic flow,' 
and finally change of the configuration of the molecules 
themselves), and this diminishes the information obtain- 
able from experiments with a dc field from the point of 
view of molecular spectroscopy. In the usual scheme, 
on the other hand, frequency doubling i s  caused either 
by the debatable" structural noncentrosymmetry of the 
NLC (polar symmetry axis), or only by intramolecular 
spatial dispersion, i.e., by a multipole interaction me- 
chanism. 

The importance of measuring the quadratic polariza- 
bilities of organic molecules (we have in mind the effect 
of frequency doubling in a low-temperature well-order- 
ed phase) is emphasized also by the possibility of re- 
constructing (and determining more accurately from 
them) the critical pre-transition parameters (the ob- 
servable phase-transition temperature, the jump of the 
order parameter, etc.). This possibility stems from 
the fact that i t  is precisely this polarizability which de- 
termines the term cubic in the order parameter in the 

These conditions a r e  satisfied by orientationally or-  Landau expansion of the f ree  energy of the ordering. 
dered liquid-crystal (LC) structures made up of various 
organic  molecule^.^ Their nonlinear spectroscopy con- The purpose of the present paper is a theoretical an- 
stitutes a new vigorously developing branch of nonlinear alysis of the multipole mechanism of the quadratic non- 
o p t i ~ s , ~  which includes both the spectroscopy proper of linearity of LC, the manifestations of which should be  

669 Sov. Phys. JETP 53(4), April 1981 0038-5646/8 1/040669-05$02.40 O 1981 American Institute of Physics 669 



strong in solutions of large organic molecules, partic- 
ularly those having a predominantly polar configuration 
(example: helical molecules with polypeptide chains13). 
In 1 3  we calculate the hyperpolarizabilities of second 
order; we take into account here the electric dipole- 
dipole interactions (DS), dipole-quadrupole interactions 
02Q), as well as electrodipole-magnetodipole ( 0 2 ~ )  in- 
teractions of radiation with matter. The transition to 
susceptibilities averaged over the orientations is also 
effected in this section. In 8 3 is calculated the efficien- 
cy of conversion into the second harmonic a s  a function 
of the experimental geometry. In 5 4 i s  presented a nat- 
ura l  model of a long mncentrosymmetric molecule, with 
which the susceptibilities can be  estimated. These esti- 
mates, together with discussions of the results, a r e  
contained in ii 5. 

52. QUADRATIC SUSCEPTIBILITY OF LC 

2.1. The second-order molecular hyperpolarizability 
is calculated by perturbation theory. To take spatial 
dispersion into account i t  is necessary to introduce into 
the operator V of the interaction of the field with the 
molecule, besides the electrodipole moment D, also the 
electrodipole moment M and the electroquadrupole mo- 
ment Q (see, e.g., Ref. 14). To consider an arbitrary 
geometry of the w -  2w frequency conversion we repre- 
sent the strong field a s  a superposition of two plane 
waves with wave vectors k,, a = 1,2: 

E=Z 5exp( io t - i l z r )+c .c . ,  B ~ = - ~ L x & ] .  
o (2.1) 

The perturbation operator is then 

V= (-DE.-MB.+ikQE.) exp ( i o t - i k r )  +H.c. (2.2) 

With the aid of (2.2) we calculate next the frequency 
Fourier components of the current produced by the mol- 
ecule a t  the point r ,  the operator of the current being 

In f i rs t  perturbation-theory order in the field we have 

where m i ,  is the linear polarizability and yij l  i s  the gy- 
rational polarizability with which a r e  connected the ef- 
fects of natural optical activity (rotation of the polariza- 
tion plane and circular dichroismL5). The known expres- 
sions for the tensors 8 and in terms of the matrix el- 
ements of D, M, and Q will not be written out here. We 
note only the symmetry relations that follow from them: 

The current, and hence also the polarizability, a t  double 
the frequency i s  given by second-order perturbation 
theory. We fix the polarizations of the fields a t  the fre- 
quency w: E, = e,A,; the projection of the nonlinear 
current on an arbitrary axis with unit vector e i s  then 

eJ (k,+k,, 2 0 )  =2io ( p e e , e , - i p e  (e,e,k, 

+e,e,k,) - ibMge( [k ,  ~ e ~ l e ~ + [ k ~  XeJe,)  

- ( i / 2 )  iM1[ (k,+kl)X ele ,eZ)A,Az.  (2.5) 

The third-rank tensor g D  describes the contribution 
of the pure electrodipole mechanism: 

$ : , = ~ h - ~  C {D,"nD,nkD,hO (onoo,,-o")F ( 1 1 ,  k .  o )  
k" 

+ (DlQkD~+D~kD,kn)D1n0(on00L0+20z)F (n ,  k ,  Z o ) ) ,  (2.6) 

F(n,  k ,  v o )  =[ ( o , 0 2 - ( v ~ ) 2 )  ( o h / - 0 2 )  I-', 

where v =  1 or  2, w,, a r e  the frequencies of the transi- 
tions, and Dyk a r e  the matrix elements of the dipole 
moment between the states n and k of the unperturbed 
Hamiltonian. 

The contribution of the quadrupole transition is deter- 
mined by the tensor go: 

XF(n, k ,  o)+[D,oh(Q,L"D."o-D,L"Qmi'o) +DiOaD,"'Qm))LO 
- Q m ~ " D l " ~ , M ]  (0.00k,+202)  F (a,  k., 2 0 ) ) .  (2.7) 

It i s  natural to subdivide the magnetodipole polarizabil- 
ity into a sum of two tensors 

$$=2eh-' x {M;"DinkD'ollO (who-o, , )F(n,  k ,  o )  
)n 

+ (DloLD,L"+M,"'DIk") Din' (on0+2ok0)F (n,  k ,  2 0 ) ) .  (2.8) 

while the tensor J M 2  is obtained by the permutation 
MDD- DMD in the f i rs t  group of t e rms  in (2.8), and by 
the permutation DMD - DDM in the second. 

The polarizabilities satisfy the symmetry relations 

2.2. We change from polarizability to susceptibility 
by averaging over the molecule orientations. For  LC 
we assume the classical model, in which the distribu- 
tion function is f = f (cos28) (Ref. 3), where 6' is the an- 
gle between the long axis of the molecule and the axis 
of the macroscopic ordering (the director no). Only the 
diagonal components of the linear susceptibility differ 
from zero; we direct the 3 axis along no, and then 

where 

N is the density of the number of molecules. In the 
right-hand side of (2.10) a r e  written out the components 
of the polarizability in the molecular coordinate frame 
(the index 3 labels the long axis of the molecule); the 
order parameter is S ,  = (3/2) (cos2e - 1/3). 

The nematic distribution function has inversion sym- 
metry, so that the only nonzero components a r e  those 
of the antisymmetrical (in the indices 1 and 2)  parts of 
the arbitrary third-rank tensor T (which has no addi- 
tional symmetry): 

(T , , , )=T( l -S , )  ec+(Sz/2)  (T,, ,-TI,,),  i ,  j-l, 2, 
(2.11) 

T=' / s~~ , rT~r  

and two other pairs of components (permutation of the 
index 3 with the first  and second indices). Formula 
(2.11) specifies the nonzero components of the tensor Xz. The pseudoscalar invariants T and Ti,, - T j b  van- 
ish if the molecules a r e  nonchiral and the effect of fre- 
quency doubling on account of X I M ' ,  as well a s  iD and 
^XY2 can therefore be  observed only in a solution of op- 
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tically active molecules, i.e., those tending to form the 
cholesteric phase. 

The relations (2.9) decrease the number of indepen- 
dent c o ~ p o n e n t s  to one; the nonzero components a r e  cD and XM2: 

Thus, observation of electrodipole polarizability is 
possible only in the presence of frequency dispersion: i t  
follows from (2.6) that @,,, = j3,,, a t  w<< ww,. The second 
condition, S, # 0, is connected with the need for lifting 
the degeneracy in the wavevector; for comparison-ad- 
dition of frequencies in a disordered medium i s  possible 
only in a noncollinear geometry.2 

The quadrupole-nonlinearity tensor 2' has 21 nonzero 
components; in each of them the indices a r e  repeated an 
even number of times. Eleven of them a r e  independent- 
the presence of the 3 axis of infinite order makes the in- 
dices 1 and 2 equivalent. It is important here that when 
account i s  taken of the frequency dispersion (this situa- 
tion is realized if the frequency w or  2w lies near the 
absorption band) the 2' components a r e  determined not 
only by the second moment S,, but also by the fourth 
moment 

for example, 

where (we omit the index Q) 

t, is a sum of two combinations of type t, with the pair 
of indices 1 and 2 replaced by 1, 3 and 2, 3. 

In the absence of frequency dispersion (w and 2 0  lie in 
the transparency band), the dependence of 2' on S, drops 
out, since the polarizability 8' now satisfies the sym- 
metry relation 

The tensors iD and j iM~ then vanish, i.e., only the mul- 
tipole mechanism of frequency doubling remains possi- 
ble. 

$3. CALCULATION OF FREQUENCY DOUBLING 
EFFICIENCY: INTERACTION GEOMETRY, 
SYNCHRONISMS 

3.1. The uniaxial character of LC lifts the polariza- 
tion degeneracy of the vector wave propagating in a fixed 
direction n = {n,, n,, n$ (n2 = 1); the length of the wave 
vector assumes a t  each frequency two values: 

where ell,, a r e  functions of the frequency. 

We fix the polarizations of the ordinary (0) and extra- 
ordinary (4 waves E,,, = e,,,A,,,: 

The equation for the slow amplitudes A,,e(2w) of the 
second harmonic1 is of the form 

([e.'t! [ ~ z ' e ; z '  1 1 v ) A:' = (8nio2/c2) dl' Pbo exp {iA.b,r). (3.3) 
D. 

Here Pbc is the nonlinear polarization a t  the frequency 
2w: P,, = (2io)" J(kb + kc, 2w); the current density J is 
set  by Eq. (2.5); the wave detuning is A,,, = e) -kt) - 
k!); the indices a, b, and c take on the values o and e; 
the superscript marks the frequency of the wave. 

The efficiency of energy conversion into the second 
harmonic is determined by a linear combination of the 
tensors jiD, ;', and jiM. The effective susceptibility can 
be  naturally defined by the equality 

~ ) P ~ ~ = ~ ( ~ C + ~ ) A : ~ ' A . ( ~ ' .  (3.4) 

An analysis of this equation answers the important ques- 
tion whether i t  is possible to measure a weak (in this 
case, only because of the connection with the antisym- 
metric part  of the hyperpolarizability) electrodipole 
susceptibility. 

Out of the six types of the (bc- a)  interaction, the 
symmetry of the susceptibility allows in the general case 
only five. The interaction (00- o) i s  forbidden and x (oo 
-0)  = 0: the tensor iD is antisymmetrical, while the 
remaining terms a r e  convoluted in the effective suscep- 
tibility with the wave vectors, therefore a transverse 
wave a t  the frequency 2 0  is possible only if the angle be- 
tween the vectors e t '  and e t )  i s  different from zero. 

The processes (ee- o) and (oe- e) have a pure dipole 
mechanism: 

x (ee-. o )  = ( x A / 2 )  he ( o )  sin 29, cos 9=nl, (3.5) 

x (oe-e) =- (xZa/2) h ( o )  h ( 2 o )  e ,  ( o )  el (2o)s in  29. (3.6) 

They can be  observed only near the absorption band (see 
S2). 

Processes in which an odd number of extraordinary 
waves take place a r e  ensured by a pure multipole mech- 
anism: 

0 (2) 0 (1' xs (a' n1 (2' 
x ( o o - ) ~ )  = ikl(i'{xsrl,el -Xt221ell + ~ , ~ ~ e ~ ~  -Xsitel }h (o ) s in  2912, (3.7) 

( i )  4 (1) 4 (t) XI ( i )  n, ( i )  
~ ( o e + o )  = {iko ( ~ t i s e l  - X ~ ~ ~ Z E I I  + X = J ~ E I  +x2t.el ) 

f ik!" (x~ i , e :"  -x?2,te~i' ) + i ( k : " + k ! " ) X ~ e ~ '  } h ( o )  sin 29/2, (3.8) 

X(ee-.e) =-ikdi' { [ X ~ , , e l : 2 ' e ~ '  -X:i,e:t) en(i' 

- (x:a,a+xP,,s) ejz' e:" ]el:')cos2rp+[-dale? 8:'' t x t l e : "  8:' 

+ ( X a f s i + X ~ l l )  e:1)eIl(' Ie:" sin2 9 } h 2 ( o )  h(2m)sin 29/2. (3.9) 

3.2. The maximum second-harmonic conversion co- 
efficient i s  reached, a s  i s  well known,' a t  A = 0 (the 
phase synchronism condition). In practice, the ensuring 
of synchronism i s  the principal method of separating one 
type of interaction, i.e., from the point of view of hyper- 
polarizability spectroscopy, of separation of one non- 
linearity mechanism. 

In LC, ell and E, depend quite strongly on the temper- 
ature [mainly via the S, (T)  dependence] or on the type of 
solvent; in addition, (ell - E,)/E~, " lo", compared with 
a ratio on the order of for solids. Solution of Eq. 
(3.3) shows that in the.region of normal dispersion, 
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where the inequality n t ) > n t )  i s  satisfied and, further- 
more, nta>n(,'), only non-synchronus generation of the 
extraordinary second-harmonic wave is possible. To 
excite the ordinary wave i t  is possible to choose the an- 
gle ? of the synchronous interaction, as shown by esti- 
mates, in a wide range of temperatures (0.5 SS 5 0.8). 
For the (ee- o) interaction 

and for the (oe -0) interaction 

The susceptibility (3.6) contains no more information 
on the nonlinearity than (3.5), and a t  the same time the 
impossibility of synchronous conversion with the sus- 
ceptibilities (3.8) and (3.9) leaves only one combination 
of multipole hyperpolarizabilities measurable in prac- 
tice. 

84. QUADRATIC SUSCEPTIBILITY OF 
NONCENTROSYMMETRIC MOLECULE 
(CLASSICAL MODEL) 

4.1. A quantum calculation in conjunction with statis- 
tical averaging yields an exact description of the sym- 
metry of the susceptibilities. I t  is practically useless, 
however, when it comes to quantitative predictions for 
organic molecules of any significant complexity. At the 
same time, i t  is just for these molecules that i t  i s  nat- 
ural to resor t  to nonlinear spectroscopy, viz., for the 
determination of the relative spatial arrangement of the 
individual parts of the molecules (trans- and cis-iso- 
merism, configuration transitions of the helix - coil 
type). The construction of a classical model of a mole- 
cule of arbitrary configuration is a problem in itself. 

Highly anisotropic noncentrosymmetric molecules 
(e.g ., organic molecules with polypeptide chains) a r e  
modeled in natural fashion by a helically twisted chain 
of monomers," each of which is represented by an an- 
harmonic oscillator. Noticeable susceptibilities (par- 
ticularly the multipole mechanism) can be expected only 
for molecules made up of a large number of monomers, 
n -  10' - lo4. In this case one can c ross  over from a 
discrete distribution of the oscillators along the helix 
to a continuous one. 

We introduce the deviation u(s) of the oscillator from 
the equilibrium position, where s is the dimensionless 
coordinate along the helix and is given by 

X,=R cos s, X%-R sin s, 2,-soz; OGSGS,. (4.1) 

The number n;= s,/2n of helix turns is connected with 
the length L of the molecule by the relation L =zonl (ac- 
tually one turn of a polypeptide chain contains up to ten 
 monomer^'^). 

The equation of motion of the oscillator in the field of 
a plane electromagnetic wave is 

s, a, 

p;+ j as1; (s ,  s ' )u ( s l )  + j ds' j dsfG (s, s', st/) u(s l )u(sN) 
0 * a 

-pA(') exp[iot- ikr(s)  ]+ c.c.: (4.2) 

Here g and p _are respectively the mass and charge den- 
sities. 2 and b a r e  the nonlocal linear- and nonlinear- 
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elasticity tensors and satisfy, neglecting damping, the 
permutation relations 

Further simplifications a r e  connected, f irst ,  with the 
negligibly small contribution of the end groups (n'>> I): 
the displacement i s  uniform along u(s) = u(s+ 2n), and the 
elastic tensors depend only on difference arguements 
elastic tensors depend only on difference arguments: 

The second and sponger assumption i s  that ;(a) = 0 a t  
1 ~ 1 =  ~ s - s ' ~ > I I ,  b (uT,~ ' )=  0, (u/>IT,  I u t I  = IS-s"(>n-  
the region of interaction of the oscillators i s  restricted 
to the length of one turn (this can be directly generalized 
to the case of bonds extending over several turns). 

As a result we arrive, in f i rs t  order of the spatial dis- 
persion, a t  the integro-differential equation 

n n 

pi + j & ( o ) u ( s - o ) + j  doJ dY1%(a,a')u(s-o)u(s-a')  
-r -il -n 

- - p ~ " )  (1-cp(s))eim'tc .c . ,  (4.5) 
cp(s) =I (k ,R cos s+k,R sin s f  k,zos). 

Solution of (4.5) by successive approximations in terms 
of the small anharmonicity yields the total dipole mo- 
ment of a stretched helical molecule a t  double the fre- 
quenc y : 

9 

(1) (L) 
p , (20)=  p  j dsul(20,  s )  (1+2cp(s) )= sofigjl (l+is,z,k? )Aj A, . (4.6) 

0 

The symmetry of the hyperpolarizability density pU, is 
determined by the formula 

where 

and i is a unit tensor. 

4.2. The polarization P(2w) a t  the doubled frequency 
is obtained by averaging over the orientations of the' 
molecules 

For a disordered liquid P(2w) 1 1  k, i.e., generation of a 
transverse wave is impossible.17 By averaging over 
f = f (cos2 6) we obtain the effective susceptibility in the 
form of a sum of two tensors 

The symmetry of the f i r s t  of them coincides with the 
symmetry X I D  [formula (2.12)], while the second, which 
describes the combined contribution of the D2M and D2Q 
mechanisms, admits of the permutation j=  I [in Sec. 4.1 
we have considered for simplicity only processes of the 
(bb - a) type, i.e., we introduced degeneracy in the wave 
vector]. 
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Thus, the ratio of the multipole and dipole suscepti- 
bilities of the molecules of the considered type is deter- 
mined directly by their configuration: Xo/XD-s~ok .  In 
addition, by fixing the interaction oe-o,  say with the 
aid of phase synchronism, thereby excluding the dipole 
nonlinearity, we should obtain a discontinuity of the or-  
der  of L/R in the quadratic susceptibility a t  the helix - 
coil transition point. 

$5. CONCLUSION 

Our analysis shows that observation of frequency 
doubling of light in an orientationally ordered liquid 
makes i t  possible to determine the components of the 
antisymmetrical part of the dipole molecular anharmon- 
icity. The measurements must be carried out in this 
case near the absorption band. 

In the determination of the noncentrosymmetry con- 
stants of the molecular anharmonicities, the ordering of 
the medium leads, f irst ,  to an effective collinear and 
energywise most favorable experimental geometry. Sec- 
ond, a larger number of these constants can be  measur- 
ed in the ordered phase than in the isotropic one. The 
strong anisotropy of the ordered phase makes the satis- 
faction of the wave synchronism conditions realistic, 
i.e., makes possible separation of the contributions of 
the individual components of the tensor anharmonicity 
(or of their linear combinations). 

Promising objects for research with the aid of the 
doubling of the optical frequency a r e  biopolymer mole- 
cules. They form ordered phases in a number of organ- 
ic  solvent^.^ An estimate of the magnitude of the effect 
in them i s  provided by the results  of 14. Molecules of 
poly-y-benzyl ether of L-glutamine acid have a helical 
structure typical of polypeptides and become ordered in 
a dioxane solution, for example at concentrations of the 
order of several percent. The dipole hyperpolarizabil- 
ity of the monomer is13 

pm~,gm~.5.~0-=~ cgs esu, 

where s,= soL,/L, L, i s  the length of the monomer, 
and L = z0nf i s  the total length of the helical molecule. 
It follows that the effective quadrupole susceptibility is 

therefore a t  A = 
constant field,13 
i.e., X% - (10''O 

for molecules investigated in a 
we have X& -N(10-27 - cgs esu, 
- 10") cgs  esu already a t  N- 10'17 ~ m ' ~ .  
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