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Because of the strong interaction at short distances, the Coulomb levels of hadronic atoms are shifted and 
acquire a width. Because the condition r,<a, is satisfied, one can construct an analytic theory of this 
phenomenon (re is the effective range of the strong potential, and a, is the Bohr radius). The equation that 
describes the level shifts takes into account terms of order re, the proton form factor, and the influence of a 
second channel (with nearly the same energy). A study is made of the level shifts, the level widths, and the 
rearrangement of the atomic spectrum in the case of a complex scattering length, i.e., in the presence of 
absorption. The limits of applicability of perturbation theory with respect to the scattering length are 
determined. The results are generalized to states with nonzero orbital angular momentum. 

PACS numbers: 36.10.Gv, 32.70.J~ 

5 1. INTRODUCTION 

In the theory of hadronic atoms, i t  is necessary to 
take into account the strong interaction which leads to a 
shift and broadening of the levels. For the lightest 
hadronic atoms ($5, Zj5, and others) the condition r, 
<<a, is well satisfied; here, re is the effective range of 
the strong potential V,(r), and a, = ~ / r n e 2  is the Bohr 
radius. This makes it possible to develop an analytic 
theory of nuclear level shifts and relate the shifts to the 
parameters of low-energy scattering, i. e . ,  the scatter- 
ing length a, and the effective range re. As long a s  the 
level shift is small, it can be calculated by perturbation 
theory.I4 For example, for s levels" 

where a, is the scattering length on the strong potential 
v* . 

However, (1.1) has a fairly narrow range of applica- 
bility (see Ref. 5 and in more detail 84 below) and does 
not describe the phenomenon of rearrangement of the 
atomic spectrum. Expressions going beyond the frame- 
work of perturbation theory were obtained earlier by the 
method of matching5 and in the previous paper6 by analy- 
tic continuation of the effective-range e x p a n ~ i o n . ~ " ~  We 
emphasize that these expressions, in contrast to (1. I) ,  
a r e  valid for an arbitrary shift AE,, and permit a 
model-free description of the rearrangement of the 
atomic spectrum2*" when a bound state appears in the 
strong potential V,. 

An interesting situation ar ises  when there is a suffi- 
ciently large positive shift of the atomic s levels. This 
case may be realized in the p9 atom; for in accordance 
with Ref. 12, for the ground Is level 

In view of the importance of this conclusion for fol- 
lowing experiments, i t  is necessary to consider the 
theory of nuclear level shifts in more detail. This is 
the aim of the present paper. In 82, we discuss an 
equation in which allowance is made for the terms -re/ 
a, and re/%, and also a correction for the electromag- 
netic form factor of the proton. We have made numeri- 
cal calculations of the effective range and other param- 
eters  for the one-boson exchange potential (OBEP). 
For the majority of hadronic atoms, one must calculate 
the spectrum with allowance for the multichannel nature 
of the problem (in connection with the pp atom, this was 
pointed out by ~ e r b i k o v ' ~ ;  see also Ref. 14). We shall 
show that allowance for the second channel nZ (which 
has nearly the same energy) reduces in the majority of 
cases to a renormalization of the effective range r, fo r  
the p$ atom. For sufficiently strong coupling of the 
channels, r, may become negative [see Eq. (2.20) be- 
low], with the consequence that the binding energy EQ* 

decreases. 

In 83, we investigate the behavior of the levels in the 
presence of absorption [associated, for example, with 
annihilation of P and a t  distances r- r, - (2mN)-'1. In 
the case of weak absorption, increasing depth of 
Re K(Y) leads to a rearrangement of the atomic spec- 
trum, a s  was found for purely real potentials. 5 * "  

There is however a certain critical value of the absorp- 
tion. If the absorption exceeds the critical value, then 
there is no rearrangement of the spectrum, and the 
levels fluctuate around the unperturbed positions when 
there is a monotonic variation in Re V,(r). In the same 
section, we calculate the shift and width for highly ex- 
cited (n >> 1) levels. In 84, we discuss the region of ap- 
plicability of the formula (1.1) obtained in perturbation 
theory with respect to the scattering length. In 85, we 

AE1,=3.04*0.06 keV, rls=300 eV (1.2) investigate the equation for the shift of levels with non- 

(the distance between the undisplaced 1s and 2s levels 
is 9.37 keV). It is clear from physical considerations 
that in this case the pp system must have a nuclear 
level (Qs) with low binding energy, which pushes the 
Coulomb levels upward. The equations obtained earli- 
e r  in Refs. 5 and 6 enable one, from known shift of one 
of the atomic s levels, to predict the position and width 
of the Qs level. Using the experimental data (1.21, we 
find that i t s  binding energy E,, is of order 1 MeV. 

vanishing angular momentum 1 and draw attention to an 
important difference between the cases I = 0 and I 3 I. 

The experimental investigation of the lightest hadronic 
atoms has only just begun." In particular, it is not 
known what spin (S= 0 o r  1)  corresponds to the mea- 
sured value (1.2) of the shift for the pp atom. The situ- 
ation will evidently be rapidly clarified once the slow 
antiproton storage ring (LEAR) at CERN has been com- 
missioned. l5 
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We note finally that a Coulomb potential distorted a t  
short distances ( r  << a,) is frequently encountered in 
solid-state physics. Indeed, the very phenomenon of 
rearrangement of the atomic spectrum was discovered 
by zel'dovich2 when considering the energy spectrum of 
a valence electron bound to an impurity atom in a semi- 
conductor. Therefore, i t  appears to u s  that the method 
presented below and some of the results  may also be 
helpful in a number of problems in solid-state theory. 

$2. EQUATION FOR THE LEVEL SPECTRUM (I= 0 )  

In Ref. 6, an equation was obtained [Eq. (2.4)] for  the 
nuclear level shift, the following approximations being 
made: 1)  it was assumed that the depth of the strong 
potential V, corresponds exactly to the value a t  which a 
bound state arises;  2) the Coulomb interaction in the re-  
gion r ' re was ignored. For  a, >> re, these approxima- 
tions a r e  rather accurate. However, for  the pp sys- 
tem3' a,= 7-8 F, i. e . ,  the parameter re/aB is not very 
small. Therefore, in the above equation i t  is necessary 
to take into account the corrections of f i rs t  order in  the 
range of the strong interaction. 

m e  single-channel case. Corrections of orde r  re.  
These corrections can be calculated by means of the 
method developed in Ref. 16 to obtain an "effective 
range" expansion near the boundary of the lower con- 
tinuum. Referring the reader to Ref. 17 for details of 
the derivation, we give the final expression: 

(2.1) 
(aB = h2/me2 = 1). If the value of the shift is given, this 
equation makes i t  possible to find the "purely nuclear" 
scattering length a, (for scattering on the potential V ,  
with the Coulomb interaction switched off). The nota- 
tion is a s  follows: x = ( - 2 ~ ) " ~ ,  where E is the energy 
of the level in atomic units; $(z) = r l (z) / r (z)  is the log- 
arithmic derivative of the gamma function; the effective 
range r, and the Coulomb radius rc a r e  determined by 
the expressions 

where xo(r) is the wave function in the strong potential 
a t  the moment when the bound state a r i se s  (E = I = 0, 
g=go): 

At the same time, we have taken 

2mVa/:lfiz=-gv ( r )  , 

and xo(r) must satisfy the boundary conditions 

In (2. I) ,  we have taken into account the f i rs t  two terms 
of the expansion in the small  parameter r /a,. In the 
zeroth approximation, 

[see Ref. 6; here, C =-$(I) = 0.5772. . . 1. The follow- 
ing coefficients can be found by expanding g, l/a,, and 
the wave function with zero  energy in a ser ies  in g- go 
(which gives bt) and e2 (which gives cl). The result can 
be obtained in a closed form1': 

where xi and pi a r e  solutions of the inhomogeneous 
equations and a r e  uniquely determined by the following 
boundary conditions: 

X I " + ~ O U X I = - V X O ;  (2.7) 

~ ~ ( 0 )  =O; X ,  ( r )  = - a , r + o ( l ) ,  r+m. 

In the simplest cases  (rectangular well, Hulthen and 
Yamaguchi potentials), the functions xi and cpl and the 
constants b1 and c1 can be found ana ly t i~a l ly . '~  The 
term C ~ / ( A ~ , ) ~  in (2.1) takes into account the finite sizes 
of the p and 5 and is determined below [see Eq. (2.13)]. 
Note that in Eq. (2.1) we have omitted the terms c c d ,  
whose contribution is small. 

If the strong potential is local, then the coefficients 
bt and cl  can be transformed to a form containing only 
the wave function xo. Indeed, one of the solutions of the 
SchrGdinger equation X" +govx = 0 is x = xo(r), and the 
second solution (linearly independent of xo) can be de- 
termined by quadrature: 

Using the method of variation of constants, we find xi 

and pl explicitly: 

dr' " 

X I ( ~ ) = - Y ( ~ )  { A  + j- j v ( P ) X 2 ( P ) d P ] ,  
X o  ( r  ) 

" d r  
B= ( r )  dr' (xo-' ( r r )  -1) .  

0 

For  an arbitrary local potential V,(r) the determination 
of the constants b1 and c t  reduces to the finding of the 
wave function xo(r) and the calculation of triple inte- 
grals. 

Allowance fw the proton farm factor. I n  determining 
r, in (2.2), we took the Coulomb interaction between 
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the p and 5 in the form l/r, which corresponds to point 
particles. At short distances, this expression is mod- 
ified by the electromagnetic form factor of the proton. 
Using for it the double dipole representation," we must 
make the substitution 

( p  =AT). We rewrite (2.2) in the form 

which, in contrast to (2.2), does not contain the limit- 
ing operation and is more convenient for numerical cal- 
culations. Here, R is an arbitrary parameter whose 
value does not affect r,. Bearing in mind that A-' <<re, 
we choose i t  to make A-' << R <<re. Then the modiiica- 
tion of the Coulomb potential (2.11) is important only in 
the last integral of (2.12), where, by virtue of r<< re, 
we can set xo(r) xol(0)r. Denoting A = r , [ d ~ ~ / d r ] , = ~ ,  we 
obtain r, - Fc , where 

Numerical calculations. We have considered some 
model potentials of the strong interaction: 

and also the "realistic" OBEP potentialisv20 

The parameter 0-' in (2.14) determines the range of the 
nuclear forces, and the function vk) the shape of the 
potential. The results of the calculations a re  given in 
Table I for the 1s (upper row) and 2s levels. As a rule, 
r, increases by 1.8-2 times on the transition from the 
ground to the f i rs t  excited state. The value of rc in- 
creases by about the same amount. Note that the ratio 
of the effective range to the Coulomb radius and also the 
coefficient b1 depend weakly on the shape of the nuclear 
potential and the level number. This fact was verifiedi7 
for the first  ten s levels in the Hulthen potential. 

TABLE I. 

The individual terms in (2.15) correspond to the ex- 
change of scalar, pseudoscalar, and vector mesons 
(N=6). However, the OBEP potential is not well known 
at short distances. Because of this, we varied i ts 
shape in the region r < ro = 0.6 F, considering three 
variants: (I) V(r) = 0 for r < ro; (11) ~ ( r )  = V(ro) = const, 
r < ro; and (III), in which the expression (2.15) was 
used for all r. The scale of the changes is character- 
ized by the following numbers: re = 1.43, 1.14, and 
0.68 F; then rc/re = 0.417, 0.401, and 0.350; bi = 0.86, 
0.90, and 1.14; and cl = 1.35, 1.20, and 0.57 for the 
variants I, 11, and III (spin S= 0, ground-state level). 
For the states with spin S= 1, the picture is similar. 

For the final calculations, we chose4' variant I (see 
Table II). On the transition from the 1s to 2s level, 
the values of re and r c  increase appreciably; the re- 
maining parameters change very little. Since the 
OBEP potential for the N x  system is much deeper than 
for NN, the nuclear level with low binding energy is 
here evidently the state 2s. Since rc occurs in Eq. 
(2.1) under the logarithm sign, the existing uncertainty 
in the value of r, is unimportant. 

Remarks 

Hulthen potential 

Yukawa potential 

- 

- 

Gauvianpotential 
Rectangub well 
Yamwguchi potential 

(el-I) -1 

e-'lz 

e-i 

(ch 2 ) - 2  

e-" 
B(1-r) 
ex. [31] 

A s  one would expect, when allowance is made for the 
proton form factor the Coulomb radius of the pF system 
increases. The numerical values of the parameters r, 
and PC for the OBEP potential a re  given in Table 11. 

Multichannel case. For  the pF system, there is a 
neutral (nE) channel with nearly the same energy [the 
difference between the thresholds is A = 2(m, - mp) 
=2.59 M ~ v ] .  The same is true for the other hadronic 
atoms: A =5.29 MeV for P n  and K 3 ,  etc. The ef- 
fective-range approximation for the multichannel prob- 
lem has been considered by various people. 22*23p10 Gen- 
eralizing Bethe's method7 to the two-channel case, we 
arrive at an equation for the energies of s levels24: 

3.000 
5.500 
2.120 
3.962 
3.541 
6.597 
2 . W  
3.667 
1.435 
1.000 
3.000 

where g =-ele, (for the pp atom, 6 = 1); E = -x2/2 is the 
level energy, measured from the threshold of the p$ 
channel; a ,  is the nuclear-Coulomb pp scattering 
length; 

a,,= lim { C , t ( q ) M ~ ( E ) c u ( q ) )  ( i ,  j=i, 2), 
.*a 

0.374 
0.397 
0.364 
0,400 
0.395 
0,398 
0.406 
0.393 
0.418 
0.439 
0.374 

TABLE 11. Values of the parameters for the 
OBEP potential. 

Note. In the first and second rows, we give the parameters Note. The first and second rows correspond 
BY,, etc., for levels Is and 2s. respectively. For the poten- to the levels Is and 2s-for the given S. The 
tials to which only one row corresponds in the table, these values of re, rc,  and r are given in fermis; 
values refer to the ground Is level. S= 0 or 1 is  the spin of the state. 
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0.983 
1.453 
0.842 
1.428 
1.215 
1 495 
1.323 
1.491 
1.45i 
1.634 
1.333 

3.00 
-11.00 

3.27 
-11.44 

2.21 
-6.20 

2.00 
-5.50 

1.83 
1.57 
3.00 

1.000 
0.905 
1,056 
0.962 
0.903 
0.852 
0.863 
0.815 
0,814 
0.757 
0.667 



r,, MeV where the matrix M(E) is related to the matrix T b g '  
T =  (M- @)-I, rU is the matrix of effective ranges, and 
q = b/k is the Coulomb parameter. 

Let us  elucidate the physical meaning of p, the chan- 
nel coupling parameter. Outside the range of the nu- 
clear forces, the wave function of the scattering prob- 
lem with incident wave in the f i r s t  (pfi) channel has the 
form 

k-'F. (k ,  r )  +TI1 exp(-nq/2+iu0) Wfq, ( 2 .  
T,,ei9' - &"), (2.18) 

where Fo(k, r )  is a regular Coulomb function; W,, is 
a Whittaker function; o0 =arg  r ( l  - iq), k =  (zE)"', q 
= 12(E - A)]"~; the indices 1 and 2 correspond to the pp 
and n i  channels. For  bound states, 

and Tii and T2, become infinite. For r < r,, the Cou- 
lomb interaction can be ignored, by virtue of which 
xi(r) and x2(r) have the same r dependence and differ 
from the function xo(r) introduced above [see (2.2) and 
(2.311 only by a constant factor. From (2.18), we find 
that in the region r re 

(we have here expressed T, in terms of the elements of 
the matrix 44 and taken into account the definition of 
a v ) .  Thus, p2 exp[-2(2~)"~r,] gives the relative prob- 
ability of finding the system in the state nE (within the 
range of the nuclear forces). It can be seen from this 
that if the second channel is eliminated for kinematic 
(A -a) or  dynamical ((Y,, -0) reasons, the system is 
in the pure pF state. 

Except for the special case6' when ( ( Y ~ ~  + ( 2 ~ ) " ~ )  - 0 
and in (2.16) there is a pole associated with the nn chan- 
nel, the function R(x') can be expanded in powers of X2. 
Further, bearing in mind that the Coulomb correction 
to r, is small, and that the nondiagonal elements r,, 
a r e  much smaller than r,, and r,, (see Ref. 23), we se t  
r,,=re6,,. Then 

For the p p  atom, ( 2 ~ ) " ' ~  = 4.0 F. Using the values of 
re in Table II, we see that with increasing p2 (i. e., with 
increasing coupling of the channels p$ and n%) the effec- 
tive range r,, decreases, and for p2 > re/[(2~)-i12 - re] - 1 becomes negative. This is the main difference be- 
tween the two- and single-channel problems. 

When r,, decreases, the binding energy of the quasi- 
nuclear level cQs also decreases. However, for the 
physically reasonable values p2- 1 it remains in the re- 
gion of 1 MeV (see Fig. 1 in Ref. 24), which corre- 
sponds to the predictions of Ref. 5. 

Physical consequences. The large shift of the Is lev- 
e l  of the pp atom indicates the existence of a level Qs of 
quasinuclear type25 with low binding energy (cos" 1 
MeV). The position of this level is fairly sensitive to 
the value of the effective range r and the channel cou- 
pling parameter p2. In Fig. 1, we have plotted the 
binding energy of the level Qs as a function of the shift 

FIG. 1. Binding energy EQ, of the quasinuclear meson as a 
function of the shift of the ground level of thepp atom. 
Curves 1 and 2 correspond to the values re,= 1 . 5  F and 0. 
The arrow indicates the shift A* in accordance with 
Ref. 12. 

of the atomic level 1s calculated using Eq. (2.16) in the 
approximation (2.20). Curves 1 and 2 correspond to 
rc,=l. 5 F and rC,=0. 

To estimate the magnitude of the corrections ar, in 
Eq. (2. I), we use this equation to calculate the scatter- 
ing length a, on the basis of the experimental level shift 
(1.2). We assume that the quasinuclear level is a 2s 
state in the OBEP potential with spin S= 0. Then a, 
=6.75 F for bi =ci = c 2 = 0  and a,=7.34 F with allow- 
ance for all  corrections are. The inclusion in (2.1) of 
the terms containing bi, ci, and c2 changes the calcu- 
lated value of a, by =lo, 2, and 10/0, respectively. For 
S = 1, the situation is analogous. 

Coulomb comections to the scattering lengths. From 
(2. I), we obtain the formula 

which gives the connection between the "purely nuclear" 
scattering length a,, and the nuclear-Coulomb length a,,, 
which is measured directly in the experiments: 

Here b = - eie2 (5 = 1 for p$), and a, = 1. Comparison 
of (2.21) with the exact calculations (numerical solution 
of the Schriidinger equation) for some model potentials 
V, showsi7 that the e r r o r  in  extracting the value of a,  
does not exceed 1.5%. On the other hand, if we assume 
bi = ci = 0 in (2.21), then the accuracy of this expres- 
sion deteriorates by an order of magnitude. Therefore, 
the corrections cr, play a fairly important part. 

A generalization of the relation (2.21) to the case I 
2 1 was obtained earlier. " In this case, the Coulomb 
interaction renormalizes a p '  by an amount of order 
ro/a, << 1 [a large logarithm of the type ln(rc/aB) is not 
present in the difference (a!')-') - (a[cs))-']. 

$3. ATOMIC SPECTRUM WITH ALLOWANCE FOR 
ABSORPTION 

Introducing appropriate notation, we write (2.1) in 
the form 
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This equation also remains valid in the case of a com- 
plex scattering length (which takes into account a b s o r p  
tion phenomenologically, i. e. , the presence in the 
problem of open channels). At the same time, the 
atomic levels not only undergo a shift but also acquire 
a width, i. e., the parameter v= ( - 2 ~ ) " ~  becomes 
complex. 

We study the properties of the solutions of Eq. (3.1) 
in the complex plane of v. We set 

Figures 2(a) and 2(b) show curves of constant values of 
Re a,(v) and Im a,(v) in the region 0.5 < Re v < 2, -1 
< Im v < 0. The calculations were made for r,,= 1/30 
(the influence of the term r,,/2$ is here small). Note 
that the curves in Fig. 2(b)cnave different behaviors de- 
pending on the value of Ima,. The nature of the curves 
changes significantly at  Im a,, = -1/2n. The curve cor- 
responding to this value of Ima, goes to infinity and di- 
vides two types of curves. 

To elucidate the question of the shifts of the Coulomb 
levels in the presence of absorption, i t  is necessary to 
specify the scattering length a s  a function of the depth of 
the real part of the potential V,. For this, we use the 

FIG. 2.'Contoure for the real ( a )  and imaginary ( b )  parts of 
the function a,( v) on the complex plane of v= v,+ iv2. The 
numbers next to the curves give thi values of Re a,(v) and 
Im a&). The broken curves are the trajectories of the 
levels in the model of a complex rectangular well for W= 0. I 
(curve I) and W =  0 . 5  (curve 11). The arrows indicate the 
direction of motion of these levels with increasing U. 

model of a complex rectangular well (range ro, depth 
Vo), when 

a.-ro(l-z-l tg z), z = r , ( 2 m ~ , ) ' " = ( ~ + i ~ ) " ,  (3.3) 

where U and W are  dimensionless variables. Assuming 
W << U, we have approximately 

where 0 = w/2UU2, Uo= (n-*)2nz, n =1,2, .  . . . If W 
= 0, then a, becomes infinite a t  U = Uo. In the presence 
of absorption, the maximum and minimum of Re a, a re  
ro ( l*  27'') and are  attained at  U =  Uo* y/2, and Ima, is 
described by the Breit-Wigner formula with width y. 

If W= 0, then to the unshifted level ns  there corre- 
sponds v=n. As U increases, this point moves to the 
left, remaining on the real axis the whole time. To the 
points v = 'i, there correspond poles of a,,(v) (see Table 
111). When v passes through FR, there is a rearrange- 
ment of the atomic spectrum. " p 6  In the case of weak 
absorption (W << 1, cosh or = 1) the trajectory of the level 
v= v(U) is shifted into the complex plane, though i ts  na- 
ture does not change qualitatively. This can be seen 
from the fact that at  U = Uo the condition Re a, = ro << 1 
holds, and IIm a, l = ro/W is not small. As can be seen 
from Fig. 2(b), the point v is then near Fz. In the case 
of strong absorption (Wz l ) ,  the picture is quite differ- 
ent, and with increasing U the level is first  shifted to 
the left and then has a retrograde motion. At the same 
time, Rev fluctuates around the original value v=n 
(see Fig. 2, in which the broken curves show the level 
trajectories in the two cases W=O. 1 and W=0.5). The 
transition from the one regime to the other occurs at 
W= 0.4 (which happends to correspond to Im a,,= 1/2n 
for Re a,, = 0). Such a value of Im a,, corresponds to 
the curve that divides the two types of contour in Fig. 
2(b). Thus, the nature of the trajectories v = v(U) is 
determined by the value Im a,, at  Re a,, = 0, and if 
IIm G, I > 1/2n then the levels move downward mono- 
tonically and there is a rearrangement of the spectrum, 
but if IIm a,, I < 1/2n the motion of the levels is oscilla- 
tory in nature. 

Note that an oscillatory variation of the shifts and 
widths of levels for hadronic atoms was discovered 
earlier by Erickson. 26 However, he did not note that 
for weak absorption the oscillatory regime is replaced 
by the regime of rearrangement of the spectrum [this 
is evidently due to the circumstance that in Ref. 26 the 
level shifts were studied in the framework of the per- 
turbation theory (1. I), which does not enable one to 
study correctly the case of large scattering lengths]. 
The replacement of the rearrangement regime by the 
oscillatory regime when the magnitude of the absorp- 
tion changes was considered qualitatively by Marku- 
shin. 27 
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TABLE In. R O O ~ S  of ~ q .  (3.1) 
for acs = m, yes= 0. 

94. THE REGION OF APPLICABILITY OF 
PERTURBATION THEORY 

We now turn to the case n >> 1 (highly excited states). 
In this case, i t  is convenient to rewrite Eq. (3.1) in the 
form 

the function f(v) being numerically small in the region 
of the atomic spectrum. Therefore, with increasing 
principal quantum number n the differences on = v,, - n 
rapidly reach the limiting value a,, and the dependence 
of v on n becomes periodic. This is illustrated by Ta- 
ble ID, in which we give the results  of a numerical cal- 
culation in accordance with Eq. (3. l )  for l/~,, =r, = 0. 
We obtain7' analytically from (3.1) in the limit n - 
the result z7,=n++- (12n2n2)-'+. . . , 

o,=a..(l-p/nz-!-. . .), (3.7) 
1 sinz nap 

a,== - arctg 2na.., p= - (1+3r,,) 
n 12n2a.. 

(we recall that in our case a, = 1). 

The periodicity property of v,, gives a convenient 
method for calculating the shifts and widths of excited 
levels. For this, determining vi = (1 - 2AEi + iri)-i '2 
from the experimental data for the 1s level, we set  

I t  has already been noted5 that perturbation theory 
(PT) for AE,, = 3 keV gives a scattering length a, with 
e r r o r  -1000/o. Let us consider the accuracy of (1.1) in 
more detail. 

Setting v=n+o,, we obtain in the limit on-- 0 

and using Eq. (2.4) from the previous paper Ref. 6, we 
find 

0 ll 
a. = 

1 
~ , ,= lnL-$ (n ) - - -  co. 

2(1-A,a,) ' rc 2n (4.1) 

Denoting A E ~ ~  = 2%/n3, we have 

and because of the large logarithm (ln(a,/r, ) >> 1) the 
coefficient u i  is anomalously large: 

By virtue of this, the region of applicability of pertur- 
bation theory with respect to the scattering length is 
rather narrow: 

which is also confirmed by the numerical calculation 
(Fig. 3). Already at a shift AEi, = 0.6 keV (vi = 1.025) 
the e r r o r  of (1.1) for a, reaches 10%. 

The question of the accuracy of perturbation theory 
can also be approached from a different side. In ac- 
cordance with (1. I ) ,  n3~F., must not depend on n. The 
curves in Fig. 4, obtained by means of Eq. (3.11, 
clearly demonstrate the extent to which perturbation 
theory breaks down. 

Because of absorption due to annihilation of 5 and p at 
short [r-7, = (2mN)", see Ref. 251 distances, the pa- 
rameter a, becomes complex. The width r, obtained 
from (3.9) is the annihilation width of the level ns. 

We note finally that in the case r, <<AE, formula 
(3.9) admits further simplification (see Appendix A). 

55. STATES WITH NONZERO ANGULAR MOMENTUM 

The case 1 2 -  1 has a specific feature due to the cir- 
cumstance that the behavior of the Coulomb wave func- 
tions in the limit r - 0 is different for 1 = 0 and 1 3 '-1. 

Equation f o r  the level spectrum. The energy depend- 
ence of the phase shifts for small k i s  determined by 
the e q ~ a t i o n ~ * ' ~  

FIG. 3. Dependence of the scattering lengths 
a, and a, on the shift of the ground level of 
the pp atom. The broken straight line corres- 
ponds to perturbation theory [formula (1.1) 1. 
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FIG. 4. The values of 6 . = n 3 ~ d 2 a ,  for ns levels. The nurn- 
bers next to the curves are the values of v i  (the corresponding 
shifts of the Is  level are  MI,= 1.16,  2.17 ,  and 3 .05  keV). 

af" and af have the dimensions of The 
poles of the scattering amplitude a re  determined by the 
condition cot 6 3 k )  = i .  To go over from (5.1) to the 
discrete spectrum, i t  is necessary to make the substi- 
tution k = iX ,  11 = -iS/X, cot 6;S - i, which gives 

8-1 

v 4 + 1  - 

(v-A-', c - I ;  for 1=0 @.(A)-2).  (5.2) 

Since the function a, (x) is positive for v > 1 and increas- 
e s  monotonically with increasing v, the graph of the 
left-hand side of Eq. (5.2) in the interval 1 < v < w has 
qualitatively the same form a s  in the case 1 = 0 (see 
Fig. 1 in Ref. 5). Therefore, the conclusions drawn 
earlier for the s states5n6 about the dependence of the 
level shifts on the scattering length remain valid. In 
particular, for la:' I << a,, the function $(I - x") in 
(5.2) is near a pole: v = n + on,, l u,, I << 1, whence 

A,'=ln n-$(n) -1/2n. 

Numerically, the coefficient A: is small: A ;  = 0.0772, 
A:= (12n2)" for n >> 1. Therefore, (5.3) goes over into 
the formula of perturbation theory with respect to the 
scattering length3*': 

Collapse of bound state with 1 # 0. The solution of the 
SchrZjdinger equation with Coulomb potential decreasing 
at  infinity can be expressed in terms of a Whittaker 
function: 

cpl(r, h) a W. l+ s (Wrf .  

In particular, 

W 1 + l . l + l , , ( ~ )  - e -x lZ~ l+L  . wt,r+a~, (2) 

When v =  1 + 1, the function cp,(r, A) is regular a t  the 
origin. As v -01, a difference ar ises  between the cases 
I = 0 and 1 2 1. For 1 = 0, cp,(r, X) preserves a physical 
meaning and remains normalized, going over in the 
limit v -1) into 3he mave function for a 6 potential: 

PO ( r )  z (2h) 

But i f  I # 0, then cp,(r, X j  has an inadmissible singularity 
-r-' at the origin. This means that the idealization of a 
point charge (V,(r) = - b / r ,  0 < r < w) is here invalid, 
and when axutoff of the Coulomb potential V, in the re- 
gion 0 < r < ro is introduced the system "sits" at  dis- 
tances -yo. Thus, in the interval 1 < v < 2 + 1 there i s  a 
collapse of the bound state, and its mean radius (r) de- 
creases from values of order a, to (r) -re. The calcu- 
lations shows that this occurs in a fairly narrow range 
of energies near v = I + 1: 

(see Appendix B). 

The inescapability of collapse at v = v,, near 1 + 1 also 
follows from examination of the curves of the effective 
potential energy 

For 1 = 0, the level sinks, remaining in the Coulomb 
field until the mean radius (r) of the state is comparable 
with re. Using the expressions of 85 in Ref. 6, we ob- 
tain 

For v= l ,2 ,3 ,  . . . , Eq. (5.7) goes over into the well- 
knowns expression (r) = 1 . 5 2  for s levels in the field of 
a point charge. For nonintegral v there is a correction 
a sin2nv, which, however, rapidly vanishes with in- 
creasing v and for v> 0.8 does not exceed 1%. The 
condition (r) >> r is satisfied to v- r, << 1, i. e. , to Xr,  - 1. 

On the other hand, in the case 1 2  1 a level in a Cou- 
lomb potential and having radius (r) 2 1 cannot have en- 
ergy less  than Urn,,= -1/21(1+ 1). In fact (with allow- 
ance for the zero-point energy) the minimal energy is 
- 1 / 2 ( ~ + 1 ) ~ ,  i.e., v,,,=l+l. F o r v < l + l ,  thelevel 
can no longer remain in the Coulomb well and collapses 
into the region of the nuclear forces. This explains 
why v,, is close to 1 + 1. 

Note that Eq. (5. a), a s  in the case 1 = 0, remains val- 
id to X r , -  1. Using it, one can calculate the position of 
the quasinuclear level Ql with angular momentum 1 from 
the known shifts of the atomic nl levels if the binding 
energy satisfies E,, << l / 2 4 -  10 MeV (for the pp atom). 

The collapse of states with orbital angular momentum 
1 # 0 when the potential becomes deeper in the region of 
small r was recently discovered2' in numerical calcula- 
tions of the 4f shell of r a r e  earth elements made in the 
Fock-Dirac approximation. The rearrangement of the 
atomic spectrum in a narrow range AZ- 0.2 was also 
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demonstrated (see Fig. 2 in Ref. 29). These numerical 
calculations a r e  in qualitative agreement with the above 
analytical theory. [see Eq. (3) in Ref. 51. 

We thank B.O. Kerbikov, L.A. Sliv, Yu. A. Simonov, 
and I. S. Shapiro for  discussing the results  of this work, 
and also I. M. Band and V. I. Fomichev for information 
about Ref. 29. 

Thus, for 17, #O the solution which i s  regular a t  the 
origin has the singular solution mixed to i t  with a coef- 
ficient proportional to the level shift. Using the ap- 
proximation (B. 2) for  the wave function and making 
some elementary calculations, we obtain (I 2 2) 

APPENDIX A 

In the case r, << AE, (weak absorption), Eq. (3.1) can 
be solved as follows. First ,  ignoring the width In, we 
find real  roots v= v, from the shift of the ground level. 
After this, the annihilation widths of the s levels a r e  
calculated in accordance with the formula in which A, and B, also depend on the wave function in 

the region 0 < r < ro: 
(A. 1) 

Here, we assume 17, >> 1 and we have adopted the nor- 
malization condition cp,(ro) = 1. Therefore, A, and B ,  
a r e  of the order unity. (A. 2) 

The widths rns decrease ml/n3: A s  long as 71, <<Y~-"" '~ ' ,  the expression (B. 4) agrees 
with the usual formula (Ref. 9) (r) = (1 + 1)(1 + 9 )  for a 
level with n = l  + 1 (hydrogenlike atom with point nucle- 
us). For v1 - ro-'1+3'2', the radius (r) begins to de- 
crease with increasing q,. Finally, at v , -~ , , - (~*)  the 
value of (r) ceases to depend on q, and becomes of the 
same order a s  the range of the nuclear forces: 

It is also easy to explain the increase in the width on 
the transition from the 1s level to the quasinuclear Qs 
level. Indeed, for via- 1 and vo, << 1, we obtain 

(the scattering length a,-# is here still small com- 
pared with a,). Thus, the collapse of the bound state 
occurs before the rearrangement region (where a,- 1) 
is entered. 

For vQs= 0.1 and vi,=l. 15; this simple estimate gives 
r,,/ Ti,- lo3, which agrees qualitatively with the nu- 
merical calculation of Ref. 5 for the p 3  atom. 

Above, we assumed I > 1. The case of the P levels is 
singular and requires separate treatment. This is due 
to the circumstance that a t  the time when the level 
a r i ses  (o,(r) - r-' for r >  yo, and therefore (Y) becomes 
infinite for 1 = 1. But if  1 2  2, then (Y) remains finite in 
the limit X - 0, which makes i t  possible to obtain ex- 
pressions of the type (B. 4) and (B. 5). 

APPENDIX B 

We calculate the mean radius of the state with angular 
momentum 1 for v= 1 + 1. The wave function is 

cp, (r, L) - const . { E!::,, ( 2 ~ T 7 , 2 0  

[we assume for simplicity that VS(r) =O for r > yo], 
where W,. is a Whittaker func tionso: 

(in the limit r - 0, the f i rs t  term is mr", and the sec- 
ond myrY). For v= l  + 1, the regular solution in the 
Coulomb field is 

')we use atomic units: ti= m = e= 1, where m i s  the reduced 
mass of the system; the unit of length i s  the Bohr radius 
aB. Thus, for thep? atom a,= 57.6 F ,  and the binding ener- 
gy of the unshifted Coulomb levels is  a,= 12. 5/n2 keV. For 
the 2-p atom. aB= 51.4 F.  GI= 14. O/n2 keV. etc. 

2 ) ~ n  this connection, we note that the authors of Ref. 12 them- 
selves regard the result ( 1 . 2 )  for the shift of the I s  level of 

Mv,l+rlJ2hr) =e-L' (2Ar) '+I,  

and 

the proton-antiproton atom as  preliminary. 
3 '~uch a value of the s-wave scattering length in one of the spin 

states (S= 0 ,  1) follows from the, experimentali2 shift of the 
atomic I s  level ( s e e  Fig. 2 in Ref. 6 ) .  

4 ' ~ h i s  variant of the cutoff of V(r)  for 7 <ro takes into account 
qualitatively the presence of a hard core in the nuclear forces 
and was already used in the calculations of Ref. 21. To cal- 
culate re,  rc , etc., we solved the single-channel SchrMinger 
equation with the potential ( Vo+ v~ )/2, where V,(r) i s  the 
potential (2 .15)  for states with isotopic spin I .  

Hence 
r(21+1) 

q , l + , , ~ ~ ~ r )  4-(2~r) -I+ (ar) l+i  I e-'! 

(0 < I  + 1 - v<< 1). Using (5.3), we express l / r ( ~  + 1 - v) 
= I +  1 - v in terms of the scattering length, and we final- 
ly obtain 

Wv,l+ tlj2Lr) = (2L) ' + ' ~ - ' ~ [ r ~ + ' - q , r ~ + ' r - ' ] ,  (B. 2) 
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5'~n the single-channel case ,  T= (eZC - 1)/2ik coincides with 
the scattering amplitude, and M=k cot 6. 

 his case  can occur only in a narrow range g= -l/aZ2= 3.5- 
4.0 F of nii scattering lengths. In the remaining cases ,  the 
position of the Qs level is stable with respect to  the opening 
of the second channel ( for details ,  s e e  Ref. 24, in which 
the correspondence with the resul ts  of Ref. 1 3  i s  a lso  dis- 
cussed ) . 

 he parameter u. differs only in sign from the quantum de- 
fect used in atomic physics. 

's. Deser ,  M. L. Goldberger, K. Baumann, and W. Thirring,  
Phys. Rev. 96 , 774 ( 1954). 

' ~ a .  B. ~el 'dovich ,  Fiz. Tverd. Tela. ( Leningrad 1, 1637 
( )959), [Sov. Ptrys. Solid State 1, 1497 (1960)l. 

3 ~ .  Lambert ,  Hdv. Phys. Acta 42, 667 (1969). 
4 ~ .  Backenstoss, '' Pionic atoms ," Ann. Rev. Nucl. Sci. 20, 

467 ( 1970) 1 Russian translation published in Usp. Fiz. Nauk 
107, 405 (1972)l. 

5 ~ .  E. Kudryavtsev and V. S. Popov, Pis 'ma Zh. Eksp. Teor. 
Fiz. 29, 311 ( 1979) [ J E T P  Lett. 29, 280 ( 1979)l. 

%. S. P O ~ O V ,  A. E. Kudryavtsev, and V. D. Mur, Zh. Eksp. 
Teor. Fiz. 77. 1743 (1979) [Sov. Phys. J E T P  50, 865 
(1979)l. 

'H. A. Bethe, Phys. Rev. 76, 38  (1949). 
8 ~ .  F. Chew and M. L. Goldberger, Phys. Rev. 75, 1637 

(1949); M. L. Goldberger and K. M. Watson, Collison 
Theory, Wiley , New York ( 1964 ) . 

'L. D. Landau and E. M. Lifshitz, Kvantovaya mekhanika: 
nerelyativistskaya teoriya, Fizmatgiz, Moscow., 1963 ; 
English translation: Quantum Mechanics: Non-Relativistic 
Theory, 2nd ed., Pergamon P res s .  Oxford ( 1965). 

"J. Hamilton, I. Overbi5, and B. Tromborg, Nucl. Phys. B60, 
443 (1973). 

"A. E. Kudryavtsev, V. E. Markushin, and I. S. Shapiro, Zh. 
Eksp. Teor. Fiz. 74, 432 (1978) [Sov. Phys. J E T P 4 7 ,  225 
(1978)l. 

1 2 ~ .  Izicki, G. Backenstoss, L. Tausher,  et d., Preprint  
CERN-EP/8O-40 ( 1980). 

'%. 0. Kerbikov, Pis'ma Zh. Eksp. Teor. Fiz. 30,  22 
11979) [ J E T P  Lett. 30, 1 8  (1979)l. 

1 4 ~ .  0. Kerbikov, R e p r i n t  ITEP-68 (1980). 

15Proc. Joint CERN-KfK Workshop on Physics with Cooled Low 
Energy Antiprotons. ( ed. H. Poth) . Karlsruhe March 19-21 
(1979). 

'%. D. Mur and V. S. Popov, Teor. Mat. Fiz. 27, 204 
(1976).  

"A. ,E. Kudryavtsev, V. D. Mur, and V. S. Popov, R e p r i n t  
ITEF-180 [in Russian 1, Institute of Theoretical and Experi- 
mental Physics ( 1980 ) . 

I%. Levinger. Phys. Rev. 162, 1589 (1967). 
1 9 ~ .  A. Bryan and R. J. N. Phillips, Nucl. Phys. B5, 209 

(1968).  
20 
J. M. Richard, M. Lacombe, and R. Vinh Mau, Phys. Lett. 
648, 121 (1976). 

2 1 ~ .  N. Bogdanova, 0. D. Dal'karov, and I. S. Shapiro, Zh. 
Eksp. Teor. Fiz. 70, 805 (1976) [Sov. Phys. JE'PP43. 417 
(197611. 

n ~ .  H. Dalitz and 6. F. Tuan, AM. Phys. (N.Y.) 3, 307 
(1960). 

2 3 ~ .  H. Ross and G. L. Shaw, AM. Phys. (N.  Y.) 13 ( 1961 ) ;  
Phys. Rev. 126, 806 (1962). 

2 4 ~ .  D. Mur, A. E. Kudryavtsev, and V. A. Popov, Pis 'ma 
Zh. Eksp. Teor. Fiz.. 31, 429 (1980) [ J E T P  Lett. 31, 401 
( 1980)l;  R e p r i n t  ITEF-46 [in Russian I ,  Institute of Theo- 
re t ica l  and Experimental Physics (1980).  

2 5 ~ .  S. Shapiro, Phys. Rep. 35C, 129 ( 1978).  
2 6 ~ .  E. 0. Erickson, Int. Conf. on High Energy Physics and 

Nuclear Structure, Dubna ( 1971 ), p. 267. 
2 T ~ .  E. Markushin, Kandidatskaya dissertatsiya (Candidate's 

Disser ta t ion) ,  Institute of Theoretical and Experimental 
Phycsics, Moscow ( 1978),  p. 50. 

2 8 ~ .  E. Norman, Opt. Spektrosk. 12 ,  333 (1962) [Opt. Spec- 
trosc.  12 ,  183 (1962)l. 

2 9 ~ .  M. Band, V. I. Fomichev, and M. B. Trzh- 
askovstaya,  Preprint  LIYaF-574 [in Russian 1 ( 1980 ) . 

3 0 ~ .  Erdelyi et ul. ( eds. ) , Higher Transcendental Functions, 
Vol. 1 (California Institute of Technology). H. Bateman 
MS Project ,  McGraw-Hill, New York ( 1953) [Russian trans- 
lation published by Nauka, Moscow ( 1973 )]. 

3 1 ~ .  Yamaguchi, Phys. Rev. 95 .  1628 ( 1954 ). 

Translated by Julian B. Barbour 

658 Sov. Phys. JETP 53(4), April 1981 Popov eta/. 


