
3, Indeed, by changing from the expression for the Green's 
function (2.5) to the phonon distribution function (see Ref. 2) 
we can verify by direct summation over the frequencies that 
the resultant distribution function coincides in the case of 
integer n with the equilibrium Bose distribution: N:= [exp 
(w/n - 11 -I. 

4, Such a schematic representation of the nonequilibrium phonon 
Green's function was used in Ref. 7 and turns out to be quite 
useful in the discussion of many physical problems. 

5)We did not dwell in detail on the proof on this statement. A 
more detailed exposition of this problem a s  well a s  of other 
aspects touched upon in the paper will be given elsewhere. 

6, This estimate is  satisfactory in those cases when the fre- 
quency of the emitted phonons is  less than the threshold of 
quasiparticle production in the superconductor. 
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Nonlocal electron-interaction effects in the spontaneous- 
current model 
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We consider the influence of hybridization of the electron bands of a semimetal on the symmetry of the order 
parameter A(k) of the exciton phase. It is shown that an arbitrarily small hybridization suppresses the 
symmetrical component A,(k) of the order parameter in a one-dimensional system with weakly screened 
Coulomb interaction of the electrons and holes. In a three-dimensional system one can indicate for the 
hybridization a limit below which a first-order phase transition is possible with formation of a symmetrical 
component A, (k) =A ,( - k). One of the possibilities of formation of an inhomogeneous state for an excitonic 
dielectric is noted. The results of the study have a direct bearing on the spontaneous-current model. 

PACS numbers: 71.25.Cx, 71.35. + z, 71.45.Gm 

INTRODUCTION 

An indispensable part of the model of spontaneous 
currents in an excitonic dielectric1 is the presence of 
interband dipole transitions in the system. If an elec- 
tron-hole condensate with an imaginary component of 
the order parameter appears in a semimetal (semicon- 
ductor) system, then a macroscopic electron current 
can flow in the presence of interband dipole transitions 
in this system.' This, however, still leaves open the 
question of the influence of the interband dipole transi- 
tions of the electrons on the phase transition of the 

semimetal (semiconductor) into the state of an exci- 
tonic dielectric with imaginary order parameter. As 
will be shown in the present paper this influence is par- 
ticularly important when the electron-hole interaction 
is nonlocal. 

The most widely used and simplest description of 
electron bands, which takes into account the interband 
dipole transitions, is the approximation of Luttinger 
and Kohn. In this approximation these transitions a re  
represented in the form of band hybridization. The 
hybridization is expressed in the Hamiltonian in the 
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form of a single-particle operator. 

where a;, is the creation operator for an electron with 
momentum k in the band n, and u,,,(r) is the Bloch 
state wave function a t  the extremum of the band. 

In most problems in the theory of the excitonic die- 
lectric, an electron-hole point interaction is assumed. 
In this simplest approximation, the order parameter 
A(k) is independent of the momentum k, and the pres- 
ence of the hybridization (1) in such a system leads to 
two effects. First ,  owing to the angular dependence, 
the system acquires an anisotropy that lowers the 
phase-transition temperature in a certain manner.3 
Second, the hybridization fixes the phase of the order 
parameter A, giving preference to a phase that is a 
multiple of n,4 i. e . ,  to  a state in which there a re  no 
spontaneous currents. 

The electron-hole point interaction approximation i s  
to a certain degree an idealization that is justified for a 
system with a high density of free carr iers ,  and hence 
with a strongly screened interaction. In real  systems, 
fo r  example in semiconductors, the Coulomb interac- 
tion of the electrons is weakly screened and is essen- 
tially nonlocal. In particular, i t  is easy to verify that 
the amplitudes of the f i rs t  few harmonics of the Coulomb 
interaction a re  practically equal. Therefore the struc- 
ture of the order parameter ~ ( k )  is determined by the 
competition between different angular harmonics of the 
dependences of the parameter A(k) on the directions of 
the vector k. 

In a system with the hybridization (I) ,  the nonlocality 
of the electron-hole interaction becomes particularly 
important. Indeed, the hybrdization (1) takes the form 
of a single-particle interband interaction that is anti- 
summetrical in k, and enters explicitly in the self- 
consistency equation for the order parameter of the ex- 
citon phase: 

As already mentioned, in the case of a point potential 
V(p - k) = g =  const, the parameter A(k) does not depend 
on the momentum, and Eq. (2) determines i ts  tempera- 
ture dependence. For a nonlocal potential V(p - k) the 
term linear in the hybridization in Eq. (2) is the source 
for the parameter A(k) a t  any temperature, and in this 
sense the phase transition for A(k) vanishes ( T , - a ) .  
We note, however, that the angular dependence of that 
part  of A(k) which comes from the source W(k) is anti- 
symmetrical in k, i. e. , A(k)= -A(-k), and makes no 
contribution to the spontaneous current. ' 

In general form, the solution A(k) of Eq. (2) can have 
an arbitrary angular dependence. Interest attaches 
therefore to a phase transition such that a symmetrical 
component A,(k) appears in the system with induced 
antisymmetric parameter Aa(k). It should be recalled 

that the spherically symmetrical component As of the 
imaginary order parameter is of interest because i t  is 
just this component which contributes to the macro- 
scopic spontaneous current of the model. ' 

It will be shown in this paper that an arbitrary small 
hybridization in a quasi- one-dimensional system with 
a weakly screened Coulomb interaction makes a phase 
transition impossible for the symmetrical component 
of the imaginary order parameter. On going to  a three 
dimensional system, the integration with respect to 
angle changes the statistical weight with which each 
component of the parameter ~ ( k )  enters in the free 
energy functional, and electron-hole pairing with a 
symmetrical order parameter corresponds to the lar-  
gest statistical weight, in addition, in the three-di- 
mensional case, unlike the one-dimensional one, the 
symmetrical pairing of A, is least suppressed by the 
hybridization in solid angles directed perpendicular 
to the vector PI,. Therefore a first-order phase tran- 
sition becomes possible for  the component A, a t  a 
sufficiently low value of the hybridization W. 

In the second part of the paper we consider quali- 
tatively one more effect that takes place only in models 
with nonlocal electron-hole interaction. It is shown, 
for an arbitrarily small noncongruence of the Fermi 
surfaces of the electrons and holes, that the expansion 
of the free-energy functional in the components of the 
complex order parameter A(k, R) contains a term linear 
in the spatial derivative A ~ A / ~ R ,  made up of a sym- 
metrical A,(R) and antisymmetrical A,(R) component of 
the parameter A(k, R). The presence in the functional 
of this term, called the Lifshitz i n ~ a r i a n t , ~  makes pos- 
sible inhomogeneous states of an excitonic dielectric. 

1. HYBRIDIZATION AND NONLOCALITY OF THE 
POTENTIAL V (p - k) 

1. We consider an exactly solvable example of elec- 
tron-hole pairing in a one-dimensional semimetal with 
the Fermi level a t  k=&, c(k,,) =0 at zero temperature. 
Equation (2) integrated over the frequencies takes the 
form 

in the case of weak screening the one-dimensional Cou- 
lomb potential V(p - k) can be assumed to be given by 
V(p - k) = Vo6(p - k). Equation (3) is then easily inte- 
grated and yields 

A (ka) =Vo sign [A (k,) +p,,b]. (4) 

It is easily seen that the solution of (4) is of the form 
(see Fig. 1) 

V,, -v,<P,,~,<- 
A(14) = { -V,, -mtP,2k,<V,. 

In the region defined by the inequality (P,, . k,,( < V,, 
where the hybridization is small, there exist two solu- 
tions for A(k,): odd, A&,,) = - A(-k,) = * V,, and even 
A($) = A(-&) = * V,. Outside this region there exists 
a t  I PI,. k,l >V, only the odd solution A(%) = - A(-k,) 
=* v,. 

Of the two solutions in the ambiguity region, i t  is 

1 66 Sov. Phys. JETP 53(1), Jan. 1981 



FIG. 1. 

ponent , ( k )  exists a t  all  temperatures [on account of 
the source ~ ( k ) ]  and means many-electron renormali- 
zation of the single-particle hybridization W(k). The 
temperature Ta,, (7a) for this parameter means for- 
mally the temperature near which A, increases abruptly. 
To  solve the problem of the phase transition A,, i t  is 
not sufficient to find the temperature a t  which the 
corresponding solutionof Eq. (2) appears. It is necessary 
to compare the free energy corresponding to these solu- 
tions with the free energy of the normal state. 

necessary to choose the more convenient one on the 
basis of minimization of the energy. If i t  is recognized 
that the energy difference between the normal (A, = 0) 
and bound states is given by the expression 

then the energy difference between the odd and even 
solution will take the form 

This quantity is always positive, and consequently the 
odd solution is always favored. By the same token we 
have shown that in the considered case there is no 
phase transition with formation of a symmetrical com- 
ponent A, of the order parameter. 

2. We turn now to the three-dimensional situation. 
For a qualitative analysis of the problem we make cer- 
tain assumptions. We consider an order parameter 
A(k) in the form of two components: 

where n, is the unit vector in a direction parallel to 
the hybridization vector P,, [ ~ q .  (I)] and n, = k/ 1 kl. 
In the Coulomb interaction V(k - k') we also confine our- 
selves to the f i rs t  two harmonics: 

The constants g, and g, can be calculated a s  the mean 
values of V(k - k') on the Fermi surface 1 kl = 1 k' ( = k,: 

From which i t  is seen that in the weak-screening limit 
k, >> .H., the constants g, and g, a r e  practically equal. 
Therefore the temperatures T:;P for each of the com- 
ponents A, and A,, defined by the relation 

where & is the cutoff frequency, can be regarded a s  
close to each other. 

It must be noted that the temperatures T:g are  not the 
true critical temperatures of the corresponding phase 
transitions, since when one of the components of the 
paraneter ~ ( k )  is produced and increases if the tem- 
perature is lowered, the next low-temperature phase 
transition is shifted in temperature o r  is completely 
suppressed. 

In our problem, the antisymmetrical imaginary com- 

We shall solve Eq. (2) near the temperature T, of the 
proposed phase transition for  A,. We assume that the 
hybridization W is small enough, s o  that Aa is also 
small. Then Eq. (2) can be expanded in the vicinity 
of T, up to terms cubic in ~ ( k )  and integrated over the 
angles. After separating the symmetrical and anti- 
symmetrical parts of Eq. (92) we obtain the following 
nonlinear system of equations: 

rS-51, (A:  ( T )  -3A.L) r-w=O, 

A12=A,P ( T )  -rZ, 
where 

The numerical coefficients in the system (8) a r e  deter- 
mined by integration over the angles and a r e  typical 
of only the three-dimensional case. 

The expression for the expansion of the free energy in 
the parameters As and A,, canbe obtainedby direct sum- 
mation of the perturbation theory diagrams, or  re-  
constructed from Eqs. (5). Accurate to a constant that 
stems from the change of notation l?= A, + @, we obtain 

(9) 
For  comparison, it is useful to write down the expres- 
sion for 6F in the one-dimensional case 

1 1 3 1 1 
TZ6F=--AOa(T)A,2+-At  +-A:ra--A,P(T)r2+-r'-Wr. 

2 4 2 2 4 
( 9 4  

It is seen that in both cases the hybridization w(@) 
causes the parameter r to make a linear contribution 
to the free energy. This is precisely why in the one- 
dimensional case, when the statistical weight (the coef- 
ficient of the second and fourth powers of the parame- 
ter)  of both parameters A, and l? is the same, and 
pairing with the antisymmetry parameter , ( r )  is al- 
ways more convenient. In the three-dimensional case 
described by (9) the statistical weight for the parameter 
I' is smaller than for A, because of the angular depen- 
dence of the former. A possibility is thus uncovered 
of the formation of a state with A, #O. 

To find the simultaneous solutions of the system (8) 
we substitute the second equation in the first, thus 
eliminating the variable A,. The resultant cubic equa- 
tion for the parameter r 

and the corresponding functional 
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FIG. 2. a) Graphic solution of Eq. ( 10 ). ro= r/Ao(  T, $o= 
4/4h T) , wo = w/A~(T). Solution 1 is stable, while 2 and 3 
are unstable. b) Dependence of the order parameter 40 on 
WO: A$ (w0) =I  - r;(w0). 

1 1 1  
+ - A 2 ( T ) r 2 - - r L - - w F  

3 5 5 

describe the behavior of the complete hybridization 
r=  Aa + @ for coexisting A, and I?. The region in 
which Eq. (10) is valid is determined by the condition 
A: 3 0, corresponding to S A~(T) .  

It is easy to verify that Eq. (10) has three solutions 
(see Fig. 2), two of which correspond to local maxima 
of the free-energy functional 6F,, and one to a minimum 
and is therefore the only stable one. 

It is convenient to solve Eq. (10) in the dimensionless 
variables r, = r/A,(T) and w, = w/AE(T). A stable solu- 
tion of (10) is given by the approximate equality 
r,*= 3wd10 and its  energy is equal to 

It remains to take the difference between the energies 
(11) and (13) 

It is seen that with decreasing w, (this corresponds 
exactly to a lowering of the temperature o r  to  a de- 
crease of the hybridization), the energy AE becomes 
negative a t  w, S 1 51J2/9. This determines the tempera- 
ture below which a first-order phase transition leads 
to  a state with a symmetrical component A, of the order 
parameter A(k) = As + Aa(k). 

2. PHASE TRANSITION INTO AN INHOMOGENEOUS 
STATE 

We consider now the question of one feasibility of 
inhomogeneous states of an excitonic dielectric. As 
already noted, departure from the framework of the 
approximation of a pointlike electron hole interaction 
provides the system with additional degrees of free- 
dom, with angular harmonics appearing in the complex 
order parameter A(k). Above the phase transition 
point, the interaction of fluctuations of different angular 
harmonics of the parameter ~ ( k )  determines to a con- 
siderable degree the character of the phase transition. 

In the.genera1 case the order parameter A(r, R) is de- 
scribed by two coordinates, r and R. The coordinate 
r corresponds to the relative motion of the electron and 
hole in the exciton pair and i s  already conjugate to the 
employed momentum k. The coordinate R describes the 
position of the mass center of the exciton, while the 
A(R) dependence means an inhomogeneous state of the 
electron-hole condensate. 

An analysis of the expansion of the free-energy func- 
tional 6F  in terms of the components of the complex 
order parameter Aa(k) shows that if the system has no 
inversion center then the expansion of 6F can contain 
terms that a re  linear in the spatial derivative A@~A' /  
aR. The structure of these terms should have the fol- 

1 3  lowing invariant form5: 6E,'=- - - - 
4 1oowo*. (11) 

We note that the temperature dependence of the energy 
(14) 

6E*, is incorporated in the scale that make the quantity where (Y and are indices that denote the corresponding 
w dimensionless. angular harmonic. The coefficients d can be deter- 

The energy (11) for A(&), which contains the symme- mined from the microscopic theory of the excitonic 
trical component A,, must be compared with the energy dielectric. It turns out that the invariant (14) can be 
of the normal state, which is characterized by a zero made up of the component pairs A:,, A:, and A;,, AS,,. 
symmetrical component A,'O. To determine the tem- 

The coefficient d is the same for each invariant and 
perature dependence of the total hybridization in the 

is given by normal phase one can use the f i rs t  equation of (8) with 
A: term omitted: 

rx'-s/tAo2(T) ~ N = w .  
Here n, is a unit vector that defines the axis of the 

The stable and most convenient solution of this equation antisymmetrical component Aa(k), the direction of 
takes in the dimensionless variables the approximate which will be discussed below. In the general case 
form the coefficient d is different from zero to the extent 

rN'=(5/l)'+ s / , O ~ O  that the Fermi surfaces of the electrons and holes 
and has an energy a re  not congruent, and only the simplest noncongruence 

5 21 1 3  that results from the degree of doping p is incorporated ,ENm=- - -- ~ 2 -  - (-1" w0. 
36 600 3 5 (I3) in Eq. (15). 
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The presence of the linear invariants (14) in the ex- 
pansion of the functional of the free energy raises the 
question of the feasibility of inhomogeneous states. For  
examples, invariants of this type a r e  actively used 
to construct helicoidal structures in spin magnets. We 
write down part of the free-energy expansion for two 
components of the order parameter ~ ( k ) ,  which a r e  
connected with the invariant (14). For  the sake of 
argument we take the parameters A:, and A;, and as -  
sume them to be small, s o  that we retain only the li- 
near and quadratic terms of the expansion: 

where 

and the temperatures Tzbs a r e  connected with the struc- 
ture of the potential of the electron-hole interaction by 
the relation (7a). 

In this form, the functional (16) makes i t  possible to 
determine the mutual influence of the fluctuations of the 
parameters A h  and A:",,bove the phase transition 
point. The minimum of the functional (16) corresponds 
to the system of equations 

This system is linear in the parameters A"*' and there- 
fore does not make i t  possible to find the structure of the 
nucleating phase, but determines the temperature of the 
phase transition. We change over in (17) to the momen- 
tum representation, and then the phase transition tem- 
perature is determined from the condition that the deter- 
minant of the system 

vanish. If we put a, = a, = a and y, = y, = y, then it is 
seen directly from (18) that with increase in tempera- 
ture the phase transition will take place a t  the point 
a = (d2/4y) >0, Q = d/2y. This means that above the 
temperature Tco(a = 0) for the homogeneous phase 
transition (q, = 0) there appears an inhomogeneous 
state (q, #O). 

In the general case, the critical temperatures a re  
different for the parameters A:, and A:,. Let for the 
sake of argument a, >a ,  (TO,, <Tzo). The condition for 
the appearance of inhomogeneous can be regarded to be 
the condition when the temperature a t  which the deter- 
minant (18) vanishes is higher than the critical tem- 
peratures TS,, and Tz,, a t  which the onset of an inhomo- 

geneous state is still possible, is determined from Eq. 
(18) at aS=O: 

It should be noted that the difference between the tem- 
peratures TS,, and T:, determines in accord with (7a) the 
degree of screening of the potential of the electron- 
electron interaction. An increase of a, corresponds to 
a larger localization of this interaction, g, >>g4. The 
coefficients d(p) and y(p) depend on the degree of doping 
of the sample, with d(p) increasing with increasing g, 
while the coefficient y(p), on the contrary, decreases 
with increasing p.' Consequently, in accord with the 
inequality (19), the permissible difference T:, - c, [or 
the degree of screening of the potential V(k - k') (6)] 
will increase with increase in the doping p. 

As seen from (15), the vector q, will be parallel to 
the vector n,, which determines the antisymmetric 
component of the parameter A;,. In the isotropic model 
of a semimetal the direction of na is not fixed. The 
direction of n, and hence of q,, becomes fixed when ac- 
count is taken of the anisotropy of the electron spec- 
trum, and in particular when account i s  taken of the 
hybridization W(k). The anisotropy that stems from 
the hybridization (1) is characterized by the fact that in 
directions parallel to the vector P,, there i s  a single- 
particle gap in the spectrum of the electrons and holes. 
which decreases to zero in directions perpendicular to 
P,,. This is precisely why the most effective electron- 
hole pairing i s  one in which the vector n, is perpen- 
dicular to P,,, for in this direction the single-particle 
forbidden gap is minimal. The bare vector inhomo- 
geneity q,, which is parallel to n,, is also perpendicu- 
l a r  to the vector P,,. It is just in this case, a s  already 
noted,7 that a spontaneous current is produced in a 
system with an inhomogeneous imaginary component 
A;,(qo) (at q, 1 Pl,). 
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