Nature of the giant magnetostriction strains in single-crystal alloys of terbium with ytterbium and gadolinium

S. A. Nikitin
Moscow State University
(Submitted 8 April 1980)

Field-induced and spontaneous magnetostriction in single-crystal terbium-yttrium and terbium-gadolinium alloys is investigated experimentally. It is established that the dependence of the giant magnetostriction in the basal plane on the magnetization and on the temperature can be described by a relation that follows from the theory for the single-ion magnetocrystalline interaction. The magnetization dependence of the giant magnetostriction along the hexagonal axis, which accompanies the destruction of the helical magnetic structure in a magnetic field \(H > H_c \), indicates that this magnetostriction is due to a change of the exchange energy and of the electron structure at \(H = H_c \). It is shown that the spontaneous magnetostriction of terbium and its alloys results, beside the exchange contribution, also an appreciable contribution due to the single-ion magnetocrystalline interaction.

PACS numbers: 75.80. + q

The anomalously high magnetostriction of rare-earth metals (REM) and their alloys and compounds can at present be explained by the microscopic theory only qualitatively. To assess the contributions of the various interactions of the giant magnetostriction (\(H > 10^3 \)) of REM alloys we have investigated jointly the magnetostriction and magnetization as functions of the temperature and of the magnetic field in terbium–yttrium and terbium–gadolinium alloys.

The magnetization was measured with a vibration magnetometer (with accuracy 3%). The magnetostriction was measured by the strain-gauge method (accurate to 3%). A magnetic field up to 85 kOe was produced by a superconducting solenoid. The preparation of the alloy single crystals and the control of their quality were described in detail earlier.

Giant magnetostriction in the ferromagnetic state is observed in heavy REM and their alloys in a field applied to the basal plane when it is measured along the axes \(a \) and \(b \), which also lie in this plane.

Figure 1 shows the temperature dependence of the saturation magnetostriction \(\lambda_{s}(b, c) \), \(\lambda_{s}(b, b) \), and \(\lambda_{s}(a, b) \) of a single crystal of \(\text{Tb}_0.5\text{Ge}_0.5 \) (here and elsewhere, the first index in the parentheses designates the direction of the magnetic field, and the second the measurement direction). It is seen from Fig. 1 that at 4.2 K the values of \(\lambda_{s}(b, b) \) and \(\lambda_{s}(a, b) \) exceed \(1.5 \times 10^{-6} \), with \(\lambda_{s}(b, b) > 0 \) and \(\lambda_{s}(a, b) < 0 \). When the temperature is raised and the Curie point \(T = 263 \) K is approached, these values decrease monotonically to zero. The magnetostriction \(\lambda_{s}(a, b) \) along the \(c \) axis at \(H = 0 \) is relatively small, and an observable increase is observed only near \(0 \) as a result of the para-process. It follows also from the experimental data that \(\lambda_{s}(a, a) > 0 \) and \(\lambda_{s}(b, a) < 0 \). Thus, if the measurement and magnetic-field directions coincide in the basal plane then the magnetostriction is positive, and if they do not coincide it is negative.

This experimental fact can be described by a relation that is a particular case of a formula obtained by group theory when account is taken of the magnetic and crystallographic symmetry, namely, the magnetostriction induced by a field \(H \parallel b \parallel L \) (\(H \) exceeds the saturation field) along the \(b \) axis of a single-domain hexagonal crystal is equal to

\[
\lambda_b(b, b) = A_b(b, b) m^2 \cos^2 \phi, \tag{1}
\]

while for \(H \perp L \) we have

\[
\lambda_b(a, b) = A_b(a, b) m^4 \cos^2 \phi, \tag{2}
\]

where \(A_b \) is the magnetostriction constant, and \(\phi \) is the angle between the spontaneous magnetization vector \(L \) in a single-domain crystal and the easy magnetization axis (EMA) along the \(b \) axis (the angle between the axes \(a \) and \(b \) is \(\beta = 30° - 60° n \), where \(n = 0, 1, 2, 3, 4, 5 \)).

It follows from (1) that in a single-domain crystal with the EMA along the \(b \) axis the magnetostriction \(\lambda_{s}(b, b) = 0 \). The fact that experiment yields \(\lambda_{s}(b, b) > 0 \) (Fig. 1) must be attributed to the presence of a domain structure in the crystal.

An hexagonal crystal with an easy magnetization plane has three EMA and six domain magnetic-moment directions, so that if all the domains are equal in volume the field-induced magnetostriction along one of the direc-

![FIG. 1. Temperature dependence of the saturation magnetostriction: 1) \(\lambda_{s}(b, b) \), 2) \(\lambda_{s}(a, b) \), 3) \(\lambda_{s}(b, c) \), as well as of the magnetostriction \(\lambda_{s}(b, b) \) (curve 4) in a field \(H = 14.5 \) kOe for single-crystal \(\text{Tb}_0.5\text{Ge}_0.5 \).](image)
was obtained by solving the molecular-field equations for the magnetization, using the previously obtained or can occur when the samples are cut.

netization in the basal plane, alloys with different values of z.

magnetization dependence expected for single-ion contributions [relation (3)]. This allows us to conclude that the giant magnetostriction in the basal plane is due to the interaction of the orbital angular momentum of the 4f subshell of the rare-earth ion with the crystal lattice field.

In the antiferromagnetic TbY$_{1-x}$ alloys one observes besides the magnetostriction in the basal plane also a giant magnetostriction of another type, namely magnetostriction directed along the hexagonal axis and accompanying the destruction of the antiferromagnetic helicoidal structure in these alloys in magnetic fields $H > H_{c1}$. At $H < H_{c1}$, this magnetostriction is small, but at $H > H_{c1}$ it increases abruptly and reaches $\lambda \sim 10^4$ at low temperatures. This can be seen in Fig. 3, which shows the isotherms of the magnetostriction $\lambda(H,c)$ measured in a field $H \parallel b$ along the c axis for a Tb$_{0.95}$Y$_{0.05}$ single crystal in which, according to neutron-diffraction and magnetic investigations, a helicoidal magnetic structure exists below the antiferromagnetism-paramagnetism transition point T_g. The $\lambda(H)$ isotherms exhibit near H_{c1} a noticeable hysteresis when the magnetic field is increased and decreased. This indicates that the phase transition at $H = H_{c1}$ is of first order. The width of the hysteresis loop increases strongly with decreasing temperature. There is prac-

\[\lambda_x=\frac{1}{4}\sum_{i=1}^{6}x_i \]

where δ_0 runs through the values $60^\circ n$ ($n = 0, 1, 2, 3, 4, 5$). Substituting these values in (3) and summing, we obtain the saturation magnetostriiction of a crystal with a domain structure:

\[\lambda_0(\delta_0, b) = \lambda^0/2. \]

The saturation magnetostriiction of a multidomain crystal along the b axis with the field applied along the a axis can be found in similar fashion:

\[\lambda_0(\delta_0, a) = -\lambda^0/2. \]

Consequently, at $\lambda^0 > 0$ we have $\lambda_0(\delta_0, b) > 0$ and $\lambda_0(\delta_0, a) < 0$, which agrees with experiment (see Fig. 1).

Unequal absolute values of $\lambda_0(\delta_0, b)$ and $\lambda_0(\delta_0, a)$ are observed in experiment because in real crystals the domains are not strictly statistically distributed along the six equally probable magnetization orientations. This can be caused by even negligible defects and internal stresses in the crystals in the course of their growth, or can occur when the samples are cut.

To assess the nature of the field-induced giant magnetization in the basal plane, $\lambda(0, b)$ and $\lambda(\delta, b)$, we consider the temperature dependence of the magnetostriiction constant λ^0, which is independent of the initial domain distribution and describes orthorhombic distortions in the basal plane:

\[\lambda^0 = \lambda_0(0, b) - \lambda_0(\delta, b). \]

Figure 2 shows the dependence of λ^0 on the relative magnetization m_{rs2} of the terbium sublattice for the alloys Tb$_x$Y$_{1-x}$ and Tb$_x$Gd$_{0.05}$. In Tb$_x$Gd$_{0.05}$, the value of m_{rs2} was obtained by solving the molecular-field equations for the magnetization, using the previously obtained values of the exchange integrals. To construct the $\lambda^0(m_{rs2})$ plot we used magnetostriction and magnetiza-

\[\lambda^0 = \frac{1}{4}\sum_{i=1}^{6}x_i \]

or $\lambda^0(0, b)$ in a wide temperature range, from 4.2 K to the points of the phase transitions from the magnetically ordered into the paramagnetic state.

The solid line (curve 2) of Fig. 2 is plotted in accord with a formula obtained in the theory9 by taking into account the strain dependence of the single-ion magneto-crystalline interaction:

\[\lambda_4 = \frac{1}{4}\sum_{i=1}^{6}x_i \]

where $\lambda^0(0)$ is the value of the constant at 0 K, $\tilde{\lambda}(x)$ is the ratio of the hyperbolic Bessel function of order $\gamma/2$ to the hyperbolic function of order $1/2$, and $L^0(m_{rs2})$ is the inverse of the Langevin function $L(x) = \tilde{\lambda}(x)$. In the wide temperature interval $1 > m > 0.5$ we have $\lambda_4(L^{-1}(m_{rs2})) = m_{rs2}$.

The dashed line in Fig. 2 corresponds to the relation expected for the exchange mechanism:

\[\lambda^0 = \frac{1}{4}\sum_{i=1}^{6}x_i \]

It is seen from Fig. 2 that in these alloys λ^0 has the magnetization dependence expected for single-ion contributions [relation (5)]. This allows us to conclude that the giant magnetostriction in the basal plane is due to the interaction of the orbital angular momentum of the 4f subshell of the rare-earth ion with the crystal lattice field.
FIG. 4. Temperature dependences of the saturation magnetostric-
tions λ_1, m_1 (curve 1) and λ_{s1}, m_{s1} (curve 2) of Th$_3$Al,
Y$_{1-x}$, and of the magnetostriction constant $\lambda_{s2} = \lambda_{s3}$ (3)
satellite magnetostriction λ_3 (4) at $H = H_{sp}$. The dashed curve was
calculated from formula (3). The curve drawn through the experiment,
points was calculated from the formula $\lambda_{sp} = \lambda_{s2} = \lambda_{s3}$ (0) m^2.

ically no hysteresis near θ_1.

The jump of the magnetostriction along the c axis at $H = H_{sp}$ will be
called here "helicoidal" magnetostriction and will be designated λ_{sp}. It turns out that in Th$_3$Al,
alloys λ_{sp} is proportional to the square of the spontane-
ous magnetization in a wide temperature interval (Fig. 4), in contrast to the constant λ^2_{sp}, which can be de-
scribed by relation (3).

A proportionality of the magnetostriction constants to the square of the sponta-
aneous magnetization is expected, as noted above, for the exchange mechanism. It can
therefore be concluded that the helicoidal magnetostric-
tion along the c axis is due to the change of the energy
of the two-ion exchange interaction between the magnet-
ic layers and to the change of the energy spectrum of
the conduction electrons in the antiferromagnetism-
terfamily transition at $H > H_{sp}$.

The Callens' theory leads, under certain assumptions
for the low-temperature region $T > m > 0.5$, to re-
lations that describe the magnetization dependence of
the spontaneous magnetization A along the crystallog-
ographic axes a, b, and c:

$$\frac{\Delta m}{m} = \frac{1}{\alpha} \delta_{ab} x_{ab}$$

$$\frac{\Delta m}{m} = \frac{1}{\alpha} \delta_{ac} x_{ac}$$

$$\frac{\Delta m}{m} = \frac{1}{\alpha} \delta_{bc} x_{bc}$$

FIG. 5. Dependence of the spontaneous magnetostriction A divided by the square of the relative saturation magnetization m on the value of m for Th$_3$Al, Y$_{1-x}$ at different values of a.

It is assumed here that the EMA is in the b axis, and the
magnetostriction constants $\lambda_1, \lambda_2, \lambda_3$ are de-
termined by the one-ion magnetoelastic interaction. It follows from the theory that $\lambda_1, \lambda_2, \lambda_3$ stem from
the two-ion exchange terms of the Hamiltonian and de-
scribe the strains, which depends only on the magnitude
of the magnetization and not on its direction.

Using the magnetostriction contributions to the ther-
mal expansion, which we determined experimentally by
a previously proposed method, and which coincide with
the spontaneous magnetization at $m > 0.5$, as well as
the spontaneous magnetization $I(T)$ obtained from
the magnetization curves, we plotted the functions λ_{sp}/m^2
and λ_{sp}/m^2 against the relative magnetization $m = I(T)/ I(0)$ for terbium-yttrium alloys and for the alloy
Th$_3$Gd$_{0.5}$. It is seen from Figs. 5 and 6 that the $\lambda_{sp}/m^2 = \lambda_{sp}(m)$ and
$\lambda_{sp}/m^2 = \lambda_{sp}(m)$ curves have linear sections, as expected
on the basis of Eqs. (7)-(9). The intercepts of the lines
$\lambda_{sp}/m^2 = \lambda_{sp}(m)$ and $\lambda_{sp}/m^2 = \lambda_{sp}(m)$ on the ordinate axis are
equal to $\lambda_1, \lambda_2, \lambda_3$, and the slopes amount respective-
tly to $\lambda_1, \lambda_2, \lambda_3$ for each straight line.

Having determined $\lambda_1, \lambda_2, \lambda_3, \lambda_4$, and λ_5, λ_6, in this
manner we can easily find λ^2_{sp} if we substitute the ex-
perimentally determined λ^2_{sp} in formula (10). The cal-
culated magnetostriiction constants for the alloys
Th$_3$Al, and Th$_3$Gd$_{0.5}$ are listed in Tables I and II. The tables show also the magnetostriction constants ob-
tained for Gd and Dy by the same method from the pre-
viously published experimental data.

The plots of Figs. 5 and 6 were obtained using the
 spontaneous magnetostriction and magnetization values
measured for the same single crystals in a magnetic
field stronger than both the saturation field and
H_{sp} (for the antiferromagnetic alloys Th$_3$Al, and Dy).

It follows from Table II that the magnetostriction con-

TABLE I. Magnetostriction constants and contributions to the
spontaneous magnetization of Th$_3$Al, alloys at 4.2 K.

<table>
<thead>
<tr>
<th>x</th>
<th>λ^2_{1s}</th>
<th>λ^2_{1s}</th>
<th>λ^2_{2s}</th>
<th>λ^2_{3s}</th>
<th>λ^2_{4s}</th>
<th>λ^2_{5s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.7</td>
<td>-2.3</td>
<td>-0.3</td>
<td>0.3</td>
<td>-0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>0.02</td>
<td>-2.3</td>
<td>-0.3</td>
<td>0.3</td>
<td>-0.3</td>
<td>0.4</td>
<td>-0.3</td>
</tr>
<tr>
<td>0.08</td>
<td>-0.3</td>
<td>0.3</td>
<td>-0.3</td>
<td>0.4</td>
<td>-0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>0.30</td>
<td>-2.3</td>
<td>-0.3</td>
<td>0.3</td>
<td>-0.3</td>
<td>0.4</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

FIG. 6. Dependences of λ_{s1}/m^2 (1) and λ_{s2}/m^2 (2) on the re-
relative saturation magnetization m for the alloy Th$_3$Gd$_{0.5}$.
TABLE II. Magnetostriction constants of Gd, Dy, and Tb, at 4.2 K.

<table>
<thead>
<tr>
<th>Composition</th>
<th>$\lambda_{2}^{\alpha\beta}$</th>
<th>$\lambda_{1}^{\alpha\beta}$</th>
<th>$\lambda_{2}^{\alpha\beta}$</th>
<th>$\lambda_{1}^{\alpha\beta}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd</td>
<td>-0.43</td>
<td>-0.09</td>
<td>-0.40</td>
<td>-0.30</td>
</tr>
<tr>
<td>Dy</td>
<td>-0.43</td>
<td>-0.19</td>
<td>-0.14</td>
<td>-0.09</td>
</tr>
<tr>
<td>Tb, Yb, Gd,</td>
<td>-0.17</td>
<td>-0.14</td>
<td>-0.10</td>
<td>-0.09</td>
</tr>
</tbody>
</table>

Constants $\lambda_{2}^{\alpha\beta}$ and $\lambda_{1}^{\alpha\beta}$ obtained for REM by other methods are in fair agreement with those obtained in the present study. This important circumstance verifies the method proposed by us for the determination of the magnetostriction constants.

It is seen from Table II that in Gd the exchange contributions to the spontaneous magnetostriction $\lambda_{2}^{\alpha\beta}$ and $\lambda_{1}^{\alpha\beta}$ [Eqs. (7)-(9)] exceed by an order of magnitude and more the one-ion contributions $\lambda_{2}^{\alpha\beta}$ and $-\lambda_{1}^{\alpha\beta}$. This can be attributed to the absence of the orbital angular momentum ($L = 0$) and to the sphericity of the electron 4f subshell in the ground state of the Gd^{3+} ion. The spontaneous magnetostrictions of Tb, Dy, Tb, Yb, and Tb, Gd, along the c-axis contain, besides the positive exchange contribution $\lambda_{2}^{\alpha\beta}$, also a noticeable negative one-ion contribution $-\lambda_{1}^{\alpha\beta}$. The exchange interaction expands and the one-ion magneto- crystalline interaction contracts the lattice parameter c. Since $\lambda_{2}^{\alpha\beta} > -\lambda_{1}^{\alpha\beta}$, the exchange contribution predominates here, and expansion along the c-axis is observed as a result. In spontaneous magnetostriction along the EMA, on the contrary, the positive one-ion contribution $\lambda_{2}^{\alpha\beta}$ exceeds in absolute value the negative exchange contribution $\lambda_{2}^{\alpha\beta}$, as a result of which expansion is observed also along the EMA.

The exchange interaction produces the same change of the dimensions of $\lambda_{2}^{\alpha\beta}$ along the axes a and b, so that the crystal symmetry is preserved. The one-ion magneto- crystalline interaction alters the circular symmetry in the basal plane, since it leads to unequal changes of the dimension along and across the EMA. This change equals λ_{4} along the b-axis and $\lambda_{4} > -\lambda_{4}$ along the a-axis, as follows from Eqs. (7)-(9). It is seen from Table I that these contributions are not equal, therefore orthorhombic distortions take place in the basal plane.

The reasons for the presence in the spontaneous magnetostriction of Tb, Dy, and their alloys of an appreciable contribution due to the one-ion magneto-crystalline interaction are that the ions Tb^{3+} and Dy^{3+} have an orbital angular momentum $L = 0$ and that these ions have an asymmetric distribution of the electron density in the 4f subshell.

In conclusion, we are grateful to K. P. Belov for a discussion of the results, to N. P. Arutyunyan and V. P. Posyado for help with the work, and to G. E. Chuprikov for supplying the alloy single crystals.

Translated by J. G. Adashko