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Distinguishing features of hysteresis in distributed systems are demonstrated by using as examples two 
nonlinear-optics problems, optical thermal breakdown of semiconductors, and optical bistability in a 
nonlinear interferometer. The existence of waves due to switching between states corresponding to different 
branches of the hysteresis loop is demonstrated, as well as the presence of boundary layers and of hysteresis of 
the transverse profile of the output parameters at fixed input parameters. The hysteresis changes do not occur 
simultaneously over the entire cross section of the incident beam, but only in a narrow zone which is at the 
front of the switching wave. This front moves in a transverse direction at a velocity that vanishes when a 
definite position that corresponds to the quasistationary boundary layer is approached. 

PACS numbers: 42.65. - k 

Hysteresis changes in nonlinear mechanical, electric 
and other lumped systems have by now been well in- 
vestigated. Typical examples a re  the oscillations of a 
nonlinear oscillator under the influence of a periodic 
force, and hard excitation of oscillations.' Hysteresis 
of the same type takes place in competition between 
laser modes2n3 and in lasers  with nonlinear cells.4 Ad- 
vances in nonlinear optics have led to the observation 
of many related hysteresis phenomena when laser ra-  
diation acts on passive objects. These include the 
hysteresis produced when electromagnetic radiation is 
reflected from nonlinear media and in optical 
thermal breakdown of semiconductors,13 and in inter- 
ferometers filled with nonlinear media (see the review 
by ~ u ~ o v o ; ' ~ ) .  

The indicated phenomena, particularly nonlinear in- 
terferometers, can have important applications, a s  in- 
dicated already in Ref. 15. At the same time, they 
possess a number of interesting physical features. In 
recent years, in addition to the increase in the number 
of nonlinear effects that lead to hys te re~ i s , '~ - '~  inten- 
sive studies have been made of fluctuations and statis- 
tics of phonons and of the relation between optical hy - 
steresis and phase  transition^.'^'^^ We shall be in- 
terested here in nonlinear optical systems that a re  not 
lumped but distributed, and have an infinite number of 
degrees of freedom. In the previously employed theo- 
retical analysis the system was assumed to be lumped. 
In fact, in the most widely used approximation, that of 
a plane incident wave, all  the points of the beam cross 
section a re  assumed identical and in the general case 
hysteresis cannot be described for a bounded light 
beam. Another approach, based on mode expansion in 
a resonator with a nonlinear medium, is suitable in 
principle for the analysis of hysteresis of a distributed 
system i f  an infinite number of modes i s  considered. 
In i t s  actual application, however, which is feasible 
only for a small number of modes, the problem reduces 
to the analysis of one or  several interacting nonlinear 
oscillators,'4 i.e., again to a lumped system. Such a 
substitution presupposes the introduction into the non- 
linear resonator of several special filters, which a re  
absent in most experiments. That the analysis of non- 
linear interferometers with the aid of modes having a 
fixed transverse structure is inadequate was likewise 
noted in ~ u ~ o v o i ' s  review.14 

We consider in this paper hysteresis effects connected 
with "the transverse distributivitys of bistable optical 
systems. (Manifestations of "longitudinal distributiv- 
ityv a re  discussed in the Conclusion.) Optical bista- 
bility i s  understood here in a broad sense. Its defini- 
tive attribute i s  an S-shaped" plot of the output charac- 
terist ics (e.g., the power of the outgoing o r  reflected 
radiation, o r  else a parameter of the state of the non- 
linear system) against the optical power in the quasi- 
stationary regime. An ambiguous dependence of this 
kind i s  obtained in the plane-wave approximation for 
all the systems indicated above, with the middle branch 
unstable. 

If an optical beam i s  broad enough, diffraction effects 
a r e  weakly pronounced. It would then be possible, us- 
ing geometric optics, to break up the beam into individ- 
ual light tubes, within each of which the use of the 
plane-wave approximation would make i t  possible to 
determine the corresponding local output parameter.24 
This approach leads to a satisfactory solution of the 
problem, but only in the absence of hysteresis, when 
the considered dependence of the output characteris- 
t ics on the input characteristic i s  single-valued. In- 
deed, in the case of an S-shaped characteristic the 
central part of an incident beam of sufficient intensity 
will correspond to the upper branch of the S-shaped 
curve, whereas the peripheral part will correspond to 
the lower branch (see Fig. 3 below). The geometric- 
optics approximation does not permit matching of the 
solutions corresponding to the upper and lower 
branches. Of fundamental importance here is the al- 
lowance for even weak interaction of the light cubes. 
This circumstance was pointed out in our paperaS in 
connection with a discussion of the role of the spatial 
limits of an incident beam in hysteresis effects when 
light i s  reflected from a nonlinear medium." A nu- 
merical analysis relating to nonlinear interfero- 
meters2' confirms the point of view advanced in Ref. 
25. 

In the present paper, using two nonlinear distributed 
systems a s  the example, we construct analytically the 
transverse profiles of the output parameter, demon- 
strate the existence, under certain conditions, of a 
boundary layer in which the output parameter has an 
anomalously abrupt variation, and obtain the hystere- 
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sis of the transverse profiles and i t s  kinetics. The 
similarity of the results obtained for systems that a r e  
substantially different physically, as well a s  the pre- 
sence of related phenomena for waves in chemical and 
biological  kinetic^^*-'^ and in switching effects in plas- 
ma and in s o l i d s ~ *  indicate that all exhibit rather com- 
mon features of hysteresis of distributed systems. 

1. OPTICAL THERMAL BREAKDOWN OF 
SEMICONDUCTORS 

A convenient example with which to demonstrate the 
specific features of hysteresis of a distributed system 
is the temperature profile T ( x )  in a thin semiconducting 
rod, whose lateral face is irradiated by a broad light 
beam of intensity G(x), where x  i s  the coordinate along 
the rod axis. 33 The temperature dependence of the 
light-absorption coefficient a(T) can be arbitrary. In 
a case typical of semiconductors (see Ref. 12) it can 
be assumed, for example, that 

where E, is the gap width, k is Boltzrnann's constant, 
and a, = const i s  the value of the absorption coefficient 
a t  high temperatures. 

The heat conduction equation for a temperature 
averaged over the rod cross section is 

Here c is the bulk specific heat, X and H are  the coef- 
ficients of thermal conductivity and heat transfer, To 
is the ambient temperature, and P is the per-unit ab- 
sorption averaged over the path length 1 in the rod: 

We change to dimensionless quantities 

where xo and a, a re  the characteristic values of the 
light-beam width and of the absorption coefficient. 
Taking (1.3) into account, we obtain for stationary r e -  
gimes 

We assume that the rod length exceeds greatly the 
beam width, so  that the boundary conditions can be 
written in the form2' 

d0ldXl X-*--O. (1.5) 

To solve the problem (1.4), (1.5) i t  is useful to re-  
sort  to a mechanical analogy (see, e.g., Refs. 5 and 
9). We can regard (1.4) a s  Newton's equation for the 
motion of a particle of mass p under the influence of a 
force F. The corresponding *potential energya is 

U= WA (0) -B (0) , (1.6) 

If we assume (1.11, then a t  a,l<< 1, a, = a,, and 5 
= 2kTo/E, we have 

A(0)-t-LIEi(-l/gO)+EO exp(-l/&O) I, (1.7) 

where Ei is the integral exponential function. We in- 
troduce the "energy" E 

It follows from (1.4) that 

Therefore on the rising sections of w(X) the energy E 
increases at a rate proportional to the rate of trans- 
verse change of the intensity of the incident beam. If 
w(X) i s  constant on some interval3' then E is constant 
and 

The determination of the temperature distribution 
0(X) at constant w(X) reduces thus to a solution of the 
classical problem of one-dimensional motion in a poten- 
tial field. 34 According to (1.6), the potential U is a 
linear function of the light intensity w with a slope A(0) 
> 0. The situation typical of hysteresis conditions is 
illustrated in Fig. 1. The potential curves have single 
humps at w >wl and w <w, and two humps a t  w2 <w > w,; 
the left hump is higher than the right one if w2 < w < w, 
and lower if w, <w <w,. The extrema of the potential 
curves correspond to homogeneous (independent of the 
coordinate X) solutions of (1.41, (1.5), for which F = 0 
and 

A graphic interpretation of (1.10) i s  shown in Fig. 2. 
The points of intersection of the lower branch of the 
a(0) curve with the lines b(0)lw (w <wl) corresponds to 
the line LL, which joins on Fig. 1 the vertices of the 
left-hand humps, and also to the lower branch of the 
hysteresis curve of Fig. 3b. Analogously, the points 
of intersection of the upper branch of the a(0) curve 
with the line (w > w2) .corresponds to  the line RR (Flg. 
1 )  that passes through the vertices of the upper humps, 
and to the upper branch of the hystersis curve in Fig. 
3b. Hysteresis is possible, generally speaking, in the 
range w, <w <w,. [ ~ n  the case corresponding to (1. ?), 
a necessary condition for hysteresis is 5 <+I. The sta- 
bility of the homogeneous solutions i s  determined in 

FIG. 1. "Potential curves" U for different intensities of the 
incident radiation. The trajectories with "energies" E' and 
E" are the temperature profiles for the inhomogeneous solu- 
tions while Et and wr correspond to the boundary layer that 
"matches" the left and right humps of different heights. 
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FIG. 2. Typical plot of a (0). The intensities w= wt corres- 
pond to equality of the two shaded areas. 

standard fashion by invoking the nonstationary equation 

where T =tH/c  i s  the dimensionless time. It i s  easily 
seen that the growth rate of small perturbations is pro- 
portional to the curvature of the potential curve d2U/d$ 
in the corresponding extremum. Therefore the inter- 
mediate branch of the hysteresis curve i s  unstable, 
whereas the upper and lower branches a re  stable. 

In the intensity interval w, <w < w,, in addition to the 
invariant temperature profiles with constant 0, there 
a re  also inhomogeneous (X-dependent) stationary solu- 
tions of the problem (1.4), (1.5) (Fig. 1, the trajec- 
tories E = E' and E = E" 4) ) .  The corresponding tem- 
perature dependence O(X) has in a certain *centralw 
region either a minimum (w <w,, E = E') or  a maximum 
(w > w,, E =En). The possibili& of such a spontaneous 
violation of the spatial symmetry is due to the charac- 
t e r  of the temperature dependence of the absorption co- 
efficient a(T). The colder sections of the rod a re  not 
heated because less heat is released in them. The 
stability of the inhomogeneous solutions O = O,(X) is in- 
vestigated by linearizing (1.11): 

E . Instability corresponds to the presence of discrete 
negative-energy levels. They exist provided that the 
potential well present in the region of the inhomogen- 
eous solutions is not too narrow. S5 The inhomogeneous 
solutions a r e  therefore unstable in the cases when the 
temperature change is not small, which a r e  apparently 
of practical interest. 

The last conclusion, however, i s  incorrect in the im- 
portant case when 

We a re  dealing then with a transition-type temperature 
profile (Fig. 1 ) that approaches asymptotically, a s  
X- *w, constant values corresponding to the upper and 
lower branches of the hysteresis curve. The actual 
form of the profile can be obtained by substituting the 
values (1.13) in (1.9). 

We ascertain now what takes place with such an in- 
homogeneous profile when the intensity changes: w # w, . 
It is appropriate to note here the analogy between the 
general form of the nonstationary equation (1.1) at w(X) 
= w = const with the equations investigated in the prob- 
lem of diffusion propagation of chemical threshold re-  
actions in a flame. This analogy predicts the ex- 
istence of switching waves between the lower and upper 
branches of the hysteresis curves; these waves propa- 
gate in the transverse X direction at a constant velocity 
v and with an invariant temperature profile. For sta- 
tionary displacement waves, replacing the time r by the 
variable 5 = T -X/v, we change from (1.11) to the equa- 
tion 

Equation (1.12) can interpreted a s  a one-dimensional 
Schriidinger equation with a potential V(X) and an energy 

Solutions for  a steplike w(X) dependence a re  obtained 
by matching a t  the intensity -disc'ontinuity points the 
values of the temperature 6' and of the heat flux dO/dX. 
For one step 

the asymptotic values of the temperature 8 f  = Ox,,, a r e  
determined by a condition similar to (1.10) 

FIG. 3. Scheme for determining the temperature profiles: a) 
two profiles (1) and (2) of the temperature 6( (2) which are 
possible at W ,  < w,,< wi; b) hysteresis dependence of the temp 
ature O(w) on the light intensity for an unbounded beam (plane 
wave); c)  lighbintensity profile w = w ( X ) ,  w,,,,= ~ ( 0 ) .  

Apart from the notation and the actual form of the 
function F(8), Eq. (1.14) coincides with Eq. (7.11) in 
Zhabotinskii's r n o n ~ g r a p h , ~ ~  so that we can use the 
known results. We indicate only that the front velocity 
i s  determined uniquely and depends only on the inten- 
sity w. Wave propagation of this type is stableSs (the 
unstable solutions a re  those in the form of switching 
waves on the unstable section of the hysteresis curve). 
At w = w, the front propagation velocity vanishes, v = 0, 
and we obtain the stationary inhomogeneous solutions 
cited above. 

This corresponds in Fig. 4 to motion along horizontal 
straight lines with energy levels I? = U(@). The tem- 
perature 8, = 81,,, is determined by the relation 

The geometric determination of 9, is illustrated with 
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FIG. 4. "Potential curves" for steplide function a): a) 
"matching" of the solutions for two humps; b) hysteresis, the 
indices (1) and (2) pertain to the two possible solutione; c) ab- 
sence of hysteresis at w2 d w, , the unique solution corres- 
ponds to mixing of two left-hand humps. 

the aid of Fig. 4. Corresponding to a certain value of 
8, is the same value of the kinetic energy for both (w 
= w+ and w = w,) potential curves. For fixed values of 
8*, in view of the monotonic character of A(8) [since 
dA/d8 = a(@ ) > 01, relation (1.16) yields not more than 
than one value of 8,, after which the temperature pro- 
file is completely determined by (1.9) for both X < 0 
and X >  0. Hysteresis appears a t  w, < w+ < w,, when the 
same value of w+ corresponds to two values of 8+ and 
3P (Fig. 4b). We note there is no hysteresis in the in- 
tensity interval w, < w+ < w,, since no matching is pos- 
sible at E =E:< E- (Fig. 4c) [the right-hand side of 
(1.16) becomes negative, whereas the left side is al- 
ways positive]. Other steplike variations of the beam 
intensity can be treated similarly. 

Although the correct form of the temperature profile 
can be obtained for a smooth beam by replacing w(X) 
with a series of steps and using relations of the type 
(1.161, we shall obtain the solution of the problem 
(1.41, (1.5) by an asymptotic (singular-perturbation) 
methods7 based on the smallness of the p<< 1. 
The solution is made up of external expansions that a re  
matched internally by the boundary-layer expansion. 
The external expansion corresponds to solution of (1.4) 
and (1.5) in the form of a ser ies  

In the lowest approximation ( p  = 0) i t  follows from (1.4) 
that F = 0. The corresponding coordinate profile Bat (X) 
is obtained by inverting the relation 

w(X) =b (OtX') /a(B:*') (1.17) 

which is the inverse of (1.10) and (1.15). The tempera- 

ture profile for the external solutions is thus repre- 
sented in the assumed approximation by motion along 
the vertices of the left-side (lower branch of the hyster- 
e s i s  curve of Fig. 3b) and right-hand (upper branch) 
humps of the potential curves (lines LL and RR in Fig. 
1). For  smooth solutions confined to the lower branch 
only [this calls for the condition w(X)<w,] the external 
solution with (1.17) is already sufficient. At w, 
= max w(X), only solutions with jumps between the 
branches a r e  possible. To construct a solution with a 
jump it  is necessary to resort  to the boundary layer 
(internal expansion), the position of which X, is gen- 
erally not known beforehand. We introduce a new 
coordinate 

After expanding w(X) in a Taylor se r i es  in the vicinity 
of X,, Eq. (1.4) takes the form 

where w, =dnw/dX, I,,,,. The solution of (1.18) is 
constructed in the form of a se r i es  

In the lowest approximation i t  follows from (1.18) that 

which coincides with (1.4) if the substitutions p- 1 and 
w (X) - w, = w (X, ) are  made. The corresponding solu- 
tions were given above [see (1.9)]. 

The boundary layer should thus be represented by a 
section of the horizontal line E = const (Fig. 1). Our 
problem reduces now to construction of a solution that 
consists of motion on the left humps [X <X, for the in- 
creasing section of w(X) o r  X>X, for the section where 
w(X) decreases], a horizontals transition from the 
left hump to the right at X sX,, followed by motion over 
the right humps (at X > X, o r  X <X, ). It follows from 
the foregoing that the transition from the left to the 
right hump is possible only if their heights a r e  equal, 
E = E, , corresponding to an intensity w = w,. This de - 
termines the position of the boundary layer from the 
condition 

For this boundary layer a t  we arrive a t  ;-- *m at  the 
vertex of the right and left hump, respectively 

ext e,BL(+-)= e z ,  e,BL(--)= e,,,,, 

and we use for the external expansion the upper (2) and 
lower (1) hysteresis branches, respectively. With in- 
creasing 1x1 the deviations of 8 t L  from the indicated 
asymptotic values decrease exponentially. 

The geometric value w = w, corresponds to an inci- 
dent -radiation intensity such that the heights of the 
left and right humps of the potential curve coincide 
(Fig. 1). Relation (1.6) allows us to reformulate this 
condition into the requirement that the two shaded 
areas  on Fig. 2 be equal. After determining with the 
aid of (1.19) the position of the boundary layer, rela- 
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tion (1.9) describes i t s  profile with a characteristic 
width - (A/H)'/' << x,. If the last inequality no longer 
holds o r  the beam width x, approaches the size of the 
rod, the hysteresis of the temperature profile becomes 
less  pronounced. 

Neglecting the small width of the boundary layer, the 
temperature profile is described by the construction of 
Fig. 3. We have confined ourselves here to the ap- 
proximation with independent boundary layers, which i s  
valid if the distance between them exceeds their width. 
If the maximum intensity over the beam w,, ew,, then 
we have a unique solution that corresponds fully to the 
lower branch of the hysteresis curve, s o  that the left- 
hand edge of the upper branch of the hysteresis curve 
(dash-dot in Figs. 1 and 3b) is not realized. The solu- 
tion i s  also unique a t  w,, > w,, but i t  consists of a cen- 
tral  section corresponding to the upper branch of the 
hysteresis curve (w > w,), and of a peripheral region 
determined by the lower branch (w <w,), with a jump 
between them in the vicinity of wzw,. Hysteresis ap- 
pears in the temperature profile, in accord with the 
foregoing analysis for  a steplike w(X) dependence, only 
in the range w, <w,,, e w,, when at a fixed incident 
beam we have a smooth profile 1 constructed in accord 
with the lower branch (Fig. 3a) and a profile 2 with a 
jump between the branches. 

Which of the two possible 8 (XI profiles i s  established 
depends on the prior history. If the radiation powEr 
w,,(t) increases slowly with time to the value w, =w,, 
the profile B(X) will be smooth and correspond to the 
lower branch of the hysteresis curve. In the vicinity 
of w,, = w, there i s  produced at the center of the beam 
a narrow and abrupt temperature spike, which subse- 
quently broadens gradually, even when w,, stabilizes, 
to the stationary position corresponding to condition 
(1.19). The velocity of the expansion front for broad 
beams is close to v = v(wf), where wf i s  the local value 
of the beam intensity in the region of the front, and v 
is the switching-wave propagation velocity defined by 
Eq. (1.14). When the indicated stationary position vf 
= v, is approached, the front slows down: v - 0. The 
hysteresis transition takes place thus not simultaneous- 
ly over the entire beam cross  section, but in a narrow- 
zone-the moving front of the switching wave. Accord- 
ingly, the time of the hysteresis transition is deter- 
mined by the velocity v of the transverse propagation 
of the switching wave. 

The foregoing results a re  fully applicable also to the 
case of a plate irradiated by an axisymmetric light 
beam, provided that the jump defined by the condition 
(1.19) between the branches of the hysteresis curve 
does not take place in the immediate vicinity ( - ( A / H ) ' / ~ )  
of the beam axis. Indeed, in the considered lowest- 
order approximation in p ,  the additional term (~ / r )dO/  
d r  that appears in the left-hand side of Eq. (1.4) does 
not enter in either the external o r  the internal expan- 
sion. The anomalously large values of the temperature 
gradient (in the radial direction), which appear in the 
narrow boundary layer o r  in the front of the switching 
wave (ring), determine essentially the thermoelastic 
s t resses  of semiconducting optical materials.38 A nu- 

merical analysis shows that the switching waves and 
the stationary profiles a re  stable, and confirms also 
the indicated character of the kinetics of the hysteresis 
transition. 

2. NONLINEAR INTERFEROMETER 

We consider a Fabry-Perot interferometer in which 
a nonlinear medium is placed. Hysteresis is possible 
in such such interferometers a t  practically any type of 
nonlinearity.14 Since the hysteresis characteristics 
a r e  common to various nonlinear interferometers, we 
confine ourselves, for the sake of argument, to the 
case of saturation absorption. l5 For a Kerr nonlinear - 
ity, and later also for other types of nonlinearity, 
boundary layers and hysteresis of the light-beam pro- 
file were found in Ref. 27 with diffraction of the light 
taken into account. Diffraction means the mixing of 
neighboring light tubes that a re  independent of one 
another in the geometric-optics approximation. For 
the analytic treatment we shall find i t  more convenient 
to consider another type of mixing, namely spatial dif- 
fusion of the nonlinear medium, neglecting a t  the same 
time the diffraction of the light. This i s  justified i f  the 
diffusion path during the lifetime T, of the levels that 
a re  a t  resonance with the optical radiation exceeds the 
characteristic width - (XL)'/' of the diffraction spread- 
ing, i.e., 

where D is the diffusion coefficient, A is the wavelength 
of the light, and L is the interferometer length. The 
diffusion coefficients in gases and liquids a r e  given in 
a handbook. 39 Diffusion can take place also in the ab- 
sence of mechanical motion of the particles (for exam- 
ple in activated solids via interaction of impurity cen- 
ters).  

The kinetic equation for the population difference of 
the lower and upper levels n is of the form 

where B is the Einstein coefficient, I is the light in- 
tensity, A is the Laplace operator, the term n,/~, is the 
difference between the pumping rates to the upper and 
lower levels, z is the coordinate along the interfero- 
meter axis, and 1 is the thickness of the nonlinear lay - 
er .  Equations similar to (2.1) were used earlier in 
laser  theory. 40 

Since we a re  interested here in transverse distribu- 
tion effects, we average over the longitudinal direction 
z ,  which coincides with the beam axis (the validity of 
the averaging was investigated in detail, e.g., in Refs. 
4 1 and 42, and diffusion mixing extends the region of 
validity of the averaging). We introduce also the di- 
mensionless quantities 

r=t /ro ,  X=x/xp, P-ZBT~, w=GBro, 

where x,, a s  before, characterizes the width of the in- 
cident light beam, and G is i ts  intensity multiplied by 
the transmission coefficient of the entrance mirror. 
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Next, again considering the case of one transverse 
coordinate X, we reduce (2.1) to the form (1.111, 
where now 

To close the equation we use the following connection, 
which follows from the geometric-optics approximation, 
between the intensity P inside the interferometer and 
the intensity w of the incident beam. We assume that 
this connection i s  not subject to inertia. This is true 
in both the stationary and nonstationary regimes, if in 
the latter case the level lifetime 7, exceeds the photon 
lifetime; which is determined by the figure of merit, 
in the interferometer. We express the local trans- 
mission coefficient of the nonlinear layer in the form 
(the interferometer i s  assumed for simplicity to be 
annular) 

where o is the absorption cross section of the transi- 
tion. Then 

P=w/[l-2RT" cos Acp+RaT]. (2.4) 

Here R i s  the product of the amplitude reflection coef- 
ficients of the interferometer mirrors, Arp i s  the de- 
phasing over the interferometer length, due to the de- 
viation between the frequency of the incident signal and 
the resonant frequency of the interferometer. Expres- 
sions (2.3) and (2.4) allow us to express the 'forcen F 
in the form (1.4), where 

a ( 0 )  =0/(1-2R cos Acpe-te"+R'e-Le). (2.5) 

Thus, the difference from the optical thermal break- 
down problem considered above, under the assumptions 
made lies only in the actual form of the function a (6). 
Accordingly, the analysis and the main results of the 
preceding sections are applicable in their entirety to 
the case of the nonlinear interferometer. This enables 
us  to find the transverse profile of the population dif- 
ference @(XI, from which the intensity of the trans- 
mitted light i s  uniquely determined. 

The form of the function a(6) that follows from (2.5) 
i s  shown in Fig. 5. The character of 'potential 
curves" U(6), which can be expressed in terms of a 
special function (the Eulder dilogarithm) i s  the same 
as in Fig. 1. In the stationary regime, the intensity 
wt corresponding to the transition layer is again deter- 

FIG. 5. Typical plot of a (8 )  for a nonlinear interferometer. 
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mined from the condition that the heights of the left 
and right bumps be equal, o r  that the shaded areas in 
Fig. 5 be equal. The intensity profile i s  obtained by a 
construction similar to that indicated in Fig. 3. Hy- 
steresis of the intensity profile i s  possible under the 
condition w, <wmaX< w,, where wm,, is the maximum 
intensity of the incident beam on its cross section. 
Outside this range, the stationary regimes are  uniquely 
determined by the incident beam, and at lower inten- 
sities (w,, <w,) the profiles are smooth and corre- 
spond to the lower branch, while at higher intensities 
(w,, > w,) the profile of the central part of the beam i s  
constructed in accord with the upper branch, while that 
of the peripheral i s  based on the lower, with a jump 
between the branches in the region d = w,. Just a s  in 
the case of optical thermal breakdown, the hysteresis 
takes place not simultaneously over the entire cross 
section of the beam, but only in a relatively narrow 
moving switching front. The switching wave propaga- 
tion velocity determines in essence the total time of the 
hysteresis transition. The results a re  again valid not 
only for a planar geometry but also for an axisymme - 
tric incident beam. 

The presented analysis agrees with the results of the 
preceding paper:' where the position of the boundary 
layer was determined numerically. Under the condi- 
tions of Ref. 27, the calculations led to the relation 
w, aw,. The very form of the transition-layer profile 
i s  not the same, both because of the difference be- 
tween the mechanism that mixes the light tubes (diffrac- 
tive in Ref. 27 and diffusive in the present paper) and 
because the form of the nonlinearity i s  different. 

In the system considered above the longitudinal dis- 
tribution was not significant, although in the general 
case it does lead to additional nontrivial singularities 
in the kinetics. The simplest case here i s  that of the 
so-called hybrid optical-bistability schemes. For 
these schemes, if the time of propagation (retardation) 
of the light exceeds noticeably the characteristic es -  
tablishment (relaxation) time there can occur in the 
feedback circuit periodic and stochastic regimes in the 
absence of any nonstationarity or  noise in the system 
itself or  in the radiation incident on the system.43 Such 
regimes were obtained for nonlinear interferometers 
by Ikeda44 in the plane-wave approximation. 

The possibility of converting stationary incident ra- 
diation into pulses after passage through a nonlinear 
interferometer was pointed out earlier in a number of 
papers.15*"*46 These phenomena a re  typical of multi- 
stable systems, for example for an interferometer with 
saturable absorption and free spectral range,44 where 
the stationary solutions corresponding to appreciable 
sections of the hysteresis curve a re  unstable. Ikeda's 
interesting results call, however, for additional ver- 
ification when it  comes to taking into account the trans- 
verse structure of the field. An important role i s  
played here by instability of the type of small-scale 
self-fo~using,~' which lead to a splitting of the beam 
(or of its central part) in the interferometer into in- 
dividual filaments. Application of a previously de- 
veloped procedurez7 to multistable nonlinear inter- 
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f e r o m e t e r s  shows that when sui table  spa t ia l  f i l ter ing is 
produced and the incident b e a m  is stat ionary,  per iodic  
and s tochast ic  t i m e  variat ion of the  t ransmi t ted  b e a m  is 
possible. 47 

') In the case of a more complicated mutiloop dependence, 
the system is called multistable, and is  also subject to the 
effects considered below. 
The general solutions presented below are actually valid 
for all boundary conditions, but if one forgoes (1.5) i t  is 
necessary to take into account the possibility of additional 
boundary layers at  the ends of the rod. We note that the last 
term in the right-hand side of (1.2) is written in a form that 
corresponds to convective heat exchange. Allowance for 
heat exchange by radiation leads only to a change in the form 
of the function b ( 0 ) .  

3, If the incident radiation is  an infinite plane wave, then it can 
be assumed that x o =  (A/H)' / '  andp = 1. 

4, In addition, a s  seen from Fig. 1, solutions exist also with 
periodic dependences of the temperature on the coordi- 
nate X, and also solutions that are  not bounded as  1x1 - m .  

They can be disregarded here, since they do not satisfy the 
boundary conditions (1.5). 
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