
When this condition is satisfied we can in Eq. (9) put 
approximately 

o,+mh=~h+ok+k,-k 

Changing to the one-dimensional case we write this 
formula in the form 

An order of magnitude estimate of the integral on the 
right-hand side of (12) gives 

Substituting 6," (kZ~,)l" we find that the non-linear cor- 
rection is of the order of the quasi-linear growth rate. 
The authors of Ref. 7 restricted themselves to just 
such an estimate and they based upon that estimate the 
incorrect conclusion that it is necessary to take the 
non-linear corrections to the quasi-linear theory into 
account. In fact, the integrals on the right-hand side of 
Eq. (12) can be evaluated exactly without particular dif- 
ficulties. Putting approximately I E  1's JE , )~  and using 

k! the residue theorem to evaluate the integrals over k, 
and k, (the poles of the integrand a r e  on both sides of 
the real  k,, k, axis) we get the following result: 

In each of the integrals over v and v' all  singularities 
of the integrand a r e  on one side of the real  axis (in the 
upper half-plane in the integral over v and in the lower 

half-plane in the integral over v'). Replacing approxi- 
mately the derivative 8f ,/av by i ts  value for v = ok/k 
one shows easily that the integrals over v and v' do in 
fact not contain the higher-order singularities which 
lead to the estimate (13). The non-linear corrections 
to the growth rate (12) a r e  thus small compared to the 
quasi-linear value. This conclusion is obtained for 
four-plasmon decays but a completely analogous proof 
can be given also for higher-order decays. 

When conditions (1) and (2) which were first  formula- 
ted in Ref. 1 as the conditions for the applicability of 
the quasi-linear theory a r e  satisfied the non-linear 
corrections to the quasi-linear equations turn out to be 
indeed small. In the present paper we showed that the 
non-linear corrections to the growth rate a r e  small; 
however, it follows from the energy conservation law 
that in that case the non-linear corrections to the dif- 
fusion coefficient a r e  also small. 
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Dynamo of smallacale fields 
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An equation for the dynamics of small-scale magnetic fields is derived for a non-Markov model by using the 
Lagrangian statistical characteristics of turbulence. It is shown that the behavior of the fields is closely 
connected with the correlation characteristics of the scalar admixture. In the case of extremely low magnetic 
viscosity D<v(v  is the kinematic viscosity), the dynamics of the fields is described at large wave numbers by a 
universal equation. It is shown in this case that a dynamo solution, i.e., a solution that increases without limit, 
exists. The problem of the dynamo of a small scale field is thus solved for the case D <v .  

PACS numbers: 41.10.H~ 

While the question of the dynamics of large-scale it is regarded as established that turbulence leads to 
magnetic fields in a turbulent medium is now regarded the onset of turbulent diffusion and to generation (in the 
as solved in the main outline, the problem of pulsation case of reflection non-invariance) of a large-scale 
fields remains open despite its large urgency. Indeed, field.'& The question lies here only in the accuracy of 
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the obtained diffusion and generation  coefficient^,^^^ and 
the absence of a small parameter raises great difficul- 
t ies  in the quantitative calculations. 

As for small-scale fields, no success was reached 
s o  far in strictly analyzing the principal question: does 
a turbulent medium produce a small-scale field dynamo 
o r  not? The first  attempt was made by Batchelor,' and 
was the cause of much discussion and criticism (mainly 
on the part of Zel'dovichs). Batchelor used the analogy 
between a magnetic field and a vortex in a liquid. A 
solution of this problem was presented in the Kraichnan 
direct-interaction approximation,' in the Markov model,' 
and for acoustic t u r b u l e n ~ e . ~  

The difficulty of the problem is that turbulence leads 
to two competing effects: the transfer of the small- 
scale field energy into a region of ever smaller scales, 
and the amplification of the small-scale fields; the 
ra tes  of these processes a re  of the same order of mag- 
nitude. Quantitative calculations therefore play the de - 
cisive role in the question of whether a small-scale- 
field dynamo can exist or not, in contrast to the question 
of the dynamics of large-scale fields, where the quanti- 
tative calculations determine only the velocity of the 
dynamo. The existing actual models'.9 make use of the 
small  parameter rv/l, where T is the correlation times, 
I is  the correlation length, and v is the mean squared 
velocity. The smallness of the correlation time corres- 
ponds to a white-noise process for the velocity field 
and to a Markov process for the magnetic field. In this 
case one uses in fact the perturbation-theory ser ies  in 
the form of an expansion in the parameter ~ v / l ,  and by 
the same token the rates of the aforementioned compet- 
ing processes a r e  determined by regular methods. 
Disregarding acoustic turbulence, which is not a s  fre- 
quently encountered in nature, the case rv/l<c 1 is not 
encountered in applications. It is  even difficult to 
imagine how to produce a turbulence with such exotic 
properties. This is precisely why the question of the 
small-scale-field dynamo has remained open to this 
day. 

The situation changes radically after the publication 
of Kraichnan's paper.'' He made use of a Lagrangian 
description of the turbulence. It turns out that in this 
approach there is  no need for the small parameter 
rv/l, but at the same time, when considering the dy- 
namics of a large-scale field (with scale L) Kraichnan 
uses a small parameter L/L. Of course, this small 
parameter does not appear in the dynamics of small- 
scale fields. Following the construction of an exact 
model in which there was no need for the small param- 
e ter  l/L (Ref. l l ) ( a  parameter, incidentally, which is 
realistic when it comes to large-scale fields), it be- 
came clear that the dynamics of small-scale fields can 
be explained by regular methods with the aid of a 
Lagrangian description. This in fact is the subject of 
the present article. 

5 1. DESCRIPTION OF SMALLSCALE FIELDS BY A 
LAGRANGIAN APPROACH 

We note first  that in the problem of the kinematic 
dynamo (to the analysis of which we confine ourselves) 

the velocity field is assumed given and it is  required to 
determine the dynamics of the magnetic field. It is 
quite immaterial whether the velocity field is specified 
in the form of a characteristic functional, correlation 
tensors, o r  Lagrangian characteristics. Equations 
in Euler form admit of lucid interpretation but it is 
well known that to solve problems with large magnetic 
Reynolds numbers it becomes necessary to use a per- 
turbation-theory series.  This poses immediately the 
problem of the small  parameter, which does not exist 
in the case of a rea l  turbulence with rv/l= 1. We shall 
specify Lagrangian characteristics. Then, a s  made 
clear in Ref. 11, the dynamics of the large-scale fields 
a r e  determined in exact form. 

To describe the dynamics of small-scale fields, we 
use the exact solution for ideal magnetohydrodynamics 
of an incompressible liquid for a magnetic field H: 

x is the coordinate of a liquid particle leaving a point a 
at the instant t  =0, i.e., x = a  at t  =0,  and HJa) is the 
initial magnetic field. We replace ax,/aa, by 

axi 
-= 

lxf-'x* 
lim - 

a& 'G-'&I 

'x and a r e  the coordinates of the particles 'a and 'a 
Then 

Here 3x=3a and 4 ~ = %  at t  =O. 

We introduce a four-point distribution function (see 
Ref. 12, part I): 

p px I Pa, t )  =p( 'x ,  ' x ,  ' x ,  ' x  1 ' a ,  'a, 'a ,  'a, t )  

i s  the probability density of finding the liquid particles 
a t  the points ax if a t  t = O  there were located at the points 

(the Greek superscripts run through the values 1, 2, 
3, and 4, and the Latin superscripts through 1, 2, 3). 
We multiply expression (2) by P(% 1 Ba, t )  from the right 
and from the left, integrate with respect to d1ad3ad2xd4x, 
and average over the initial distribution of the magnetic 
field. We then obtain 

( H ,  ( 'x,  t )  H,('x, t )  >=B,(f -'x, t )  

Xp("xlBa ,  t )  B,, ('a-'a, 0 )  

= d l a d b ~ z ,  ('x, >x) I ' a ,  'a ,  t)Bmn ('a-'a, 0). 

Equation (3) was derived assuming statistical homo- 
geneity, therefore the correlation tensor B,, depends 
only on the coordinate difference. Integration with 
respect to d la  d3a corresponds to averaging over the 
initial position of the particles, and by integrating 
with respect to  d2xd4x we arrive at averaging of the 
tensor (alx,/ala,) (a3x,/a3u,,). Finally, expressing the 
magnetic fields in the right-hand side of (3) in the 
form of a correlation tensor corresponds to  averaging 
over the initial distribution of the field. 
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In the right-hand side-of (3), the hydrodynamic char- 
acteristics (the tensor T) and the magnetic-field char- 
acteristics (the tensor g) a r e  separated and a r e  repre- 
sented in the form of a product. This corresponds to 
assuming stat istical independence of the initial field 
and of the hydrodynamic characteristics in succeeding 
instants of time. Expression (3) must therefore be 
considered at t B T ,  where T is the "memory time," 
when the system forgets the initial data and a definite 
correlation is established between the hydrodynamic 
characteristics and the magnetic field. Physically, T 

is the correlation time of the velocity field. Homo- 
geneity of the turbulence corresponds to invariance of 
the tensor ? to the shift 

T ('x, 11 'a, 'a) = P  (Ix-a, 'x-a1 'a-a, 'a-a). 

From this follows, as  can be easily seen, invariance 
of the right-hand side of (3), a s  a function of 'x and 'x, 
to the shift. This is precisely why the left-hand side 
of (3) depends only on 'x- 'x, i.e., the homogeneity 
of the field at t>O follows automatically from the homo- 
geneity of the initial distribution of the field. 

In a large-scale-field investigation,'-' a two-point 
distribution function was introduced, its explicit form 
was specified, and expressions of the type (3) were 
calculated in final form. In the present case it is prac- 
tically impossible to proceed in this manner: it would 
be necessary to specify a four-point distribution func- 
tion of utterly unknown form. It turns out that it is 
simpler to specify not the distribution function itself, 
but an equation for it. To introduce such an equation it 
is convenient, from the methodological point of view, to 
use the properties of a scalar admixture with density 
9(x, t) in the turbulent medium. It is known that, in 
Lagrangian coordinates, 9(x, t)  = 9(a, 0), so that in place 
of (3) we have 

Since the equation for 9 is linear and the dynamics of 
9 is determined (in the case of homogeneous turbulence) 
only by the initial data, the equation for 8 takes the 
following general form: 

and Q is independent of time by virtue of the stationary 
character of the turbulence. Taking the derivative of 
(4) with respect to time, we verify that Eq. (5) is ob- 
tained if the equation for p is of the form 

It i s  interesting to note that the Lagrangian approach 
is used here when the distribution function is introduced. 
Ultimately, however, the result must be obtained in 
Euler coordinates, since both 8 in (4), (5) and B,j in (3) 
a r e  ordinary correlation tensors. Such a mixed ap- 
proach was developed by Kraichnan1° for large-scale 
fields . 

$2. CHOICE OF MODEL. DYNAMICS OF 
LARGESCALE FIELD IN THIS MODEL 

We assume the turbulence to be isotropic, invariant 
under reflection, and homogeneous (the latter property 
was already taken into account in $1). We use the 
following version of the kinetic equation (6): 

(summation i s  implied over both Greek and Latin re-  
peated indices). From the definition (7) of the tensor Ti, 
it is seen that Ti, has the properties of the correlation 
tensor of a certain homogeneous isotropic solenoidal 
field, d ivn =O. The derivatives in the expression for 
Ti, a r e  taken with respect to one of the variables in u. 

We assume that Eq. (7) describes correctly the 
hydrodynamic characteristics a t  least t > > ~ .  The 
kinetic equation (7) recalls the diffusion (Fokker- 
Planck) approximation and is  actually obtained for a 
rapid process T V / ~ > >  1. To verify this, it suffices to 
expand the distribution function in a Taylor ser ies  in 
the displacements 

A nonzero contribution is obtained only in second order 
(i.e., from the second derivatives a,~,). The higher 
orders a re  insignificant in the TV/E- 0 approximation. 
The principal difference between (7) and the Fokker- 
Planck equation is that (7) corresponds to a process 
that is  stationary in the statistical sense, whereas the 
diffusion approximation describes a relaxation of a 
distribution function. The evolution of the probability 
density fi in (7) describes, roughly speaking, the dis- 
persal  of liquid particles that were initially close to one 
another-a process which by itself acts continuously. 

A kinetic equation in the form (7) contains no informa- 
tion on the parameter rv/1: the tensor Ti, has the di- 
mensionality of the diffusion coefficient, we have also 
the correlation length of the function u ,  and these two 
parameters a r e  insufficient to determine the parameter 
T U / ~ .  In the particular case rv/l<< 1, the tensor Ti, is 
defined a s  

T,,(ax, Ox) ='/z+f(u, ex, t )  q(%, t+r))dr;  -- 
here v is the Euler velocity. In the general case, how- 
ever, the parameter T U / ~  need not be small, and then 
Ti, cannot be expressed in simple fashion in terms of 
the velocity. 

The distribution function p is subject to rather str in- 
gent requirements. In particular, when two points 
coincide, p must vanish; e.g., if ' x = ~ x ,  then p =0, with 
the exception of the degenerate case 'a ='a. Indeed, two 
liquid particles cannot land in the same point, unless 
they coincided a t  the initial instant (i.e., they were in 
fact not two liquid particles but one). Equation (7) 
does not contradict this property. This can be verified 
in the following manner. If the function p has this 
property at the instant t = t,, then the right-hand side 
of (7) vanishes at 'x ='x, meaning that p =O at the next 
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instant. Indeed, if p('x ='x, 3x, %) =0 then in the vicinity 
of the point 'X='X the function p is approximated by the 
positive-definite form P-  aij('xi -2xi) ('x, - 'xj); a,, 
depends, generally speaking, on all  the coordinates. 
It is then immediately clear that all the terms of the 
right-hand side of (7), which contain the derivatives 
'8, and 'aj, vanish a t  'x='x. The remaining terms also 
vanish; this can be easily verified by using the fact 
that in this case 

T,('x, 'x) -TU('q ' x )  -Tu('x, ' x )  - T U ( f ,  ' x )  . 
The most important property of the distribution func- 

tion p is that it is positive-definite. Equation (7) should 
not lead to  the appearance of negative sections of the 
function p. That this requirement is indeed satisfied 
can be verified in the following manner. Assume that 
p.3 0 at t =tl. In order to become negative, this function 
must go through zero. If p vanishes at the point ax(0) at  
t =t l ,  then p is approximated in the vicinity of this point 
by the positive -definite form 

We represent the tensor 6 in the form OL8bfj = u b i B b f ,  
and then the right-hand side of (7) is written in the posi- 
tive definite form 

Consequently, a t  the point %= %(') the derivative ap/at 
= O  and the distribution function cannot become negative. 

We have illustrated here the fact that Eq. (7) does not 
contradict the most important properties of a distribution 
function. In principle, it is necessary to verify the 
satisfaction of a l l  the properties. This is, however, 
difficult: we have previously" listed eight requirements 
imposed on a two-point distribution function. The num- 
ber of requirements will be much larger for a four-point 
function. At the same time it is clear that there is no 
need to verify the satisfaction of a l l  the conditions. The 
point i s  that, a s  mentionedabove, Eq. (7) can be obtained 
for a real  random process with the property ~ v / l < <  1, 
yet there is no information on the parameter ~ v / l  in (7). 
Consequently, Eq. (7) satisfies the necessary require- 
ments automatically. 

To clarify the dynamics of large-scale fields, let us 
dwell on the two-point distribution function obtained 
when (7) is integrated with respect to dSxd% over all  of 
space : 

aplat=T ('A+'A)p+2TU ('x, 'x) '&'alp, 

T,,('x, ' x )  -T,j('q 'x) -6jjT. 
(8) 

It can be verified that the function P defined by Eq. (8) 
satisfies the eight requirements cited in the preceding 
paper ." 

In addition, in analogy with (4)-(6), we have 

where the derivatives a re  taken with respect to  the 
variable r ='x - 'x. This is the equation for the correla- 
tion function f ( r )  of the pulsations of the scalar admix- 
ture. That f ( r )  possesses the required properties can 

be verified by changing to the Fourier transform of (9), 
i.e., to an equation for the spectral function. The latter 
turns out to be positive-definite. The vanishing of the 
right-hand side at 'x='x corresponds to conservation 
of the quantity (a2)-a property obtainable from the 
Euler equation for the scalar admixture. 

The model of the velocity field (8) does not agree, 
generally speaking, with the previously considered 
model," s o  that it is sensible to oCCain an  equation 
for the large-scale component (H) of the field. In place 
of (3) we have 

We shall use below the property 

('zl-'2,) ('2,-'8,) 
p ('x, ' x l l a ,  'a,  t )  -0, (11) 

which follows from the fact that p behaves like 
pl (k ,  'X )6('x - 'x) as 'a-'a, and p1 is a slowly varying 
function without singularities. Replacing the 6 function 
by any of i ts  approximations that include the parameter 
2a - la, e.g., 

we verify that (11) is correct. 

To derive an equation for (H) we take the t ime deriva- 
tive of (10). We replace ~ p / a t  in the right-hand side of 
(10) with the aid of (8); using the convergence of the in- 
tegrals, we integrate with respect to dlx (in those cases 
when it is necessary to integrate an expression with the 
operator 'aj). We next reduce this equation to a form 
in which the operator '8, acts on the entire expression 
in the right-hand side of (10). This gives r ise ,  in par- 
ticular, to terms of the type 

which can be calculated by using the proximity of 5 t o  
'x a s  'a- 'a, i.e., expand T" in terms of 'x, - 'x,. Then, 
taking (11) into account, al l  the terms cancel out, with 
the exce#ion of the diffusion terms 

We have used here again Eq. (10). 

If we now forgo the invariance with respect to reflec- 
tions, then it is necessary to add t o  the definition (7) 
of T i ,  the term 

where C i s  a pseudoscalar. In the expansion of 
T,,('x,~x) with respect to ' x j  -'xf, the term with C 
makes then its contribution 

a(H)/a t=TA<H)-2C(O)  rot < H ) .  (13) 

This well known equation for the generation of a large- 
scale field was initially obtained using a small param- 
eter (a small magnetic Reynolds number Rm or  r v / l  
<< I ) ,  by Kraichnan'' using the real  small  parameter 
I / L ,  and in our preceding paper1' in an exact model 
[but not the same a s  the model (8)]. 
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53. DYNAMICS OF SMALLSCALE FIELDS 

To derive an  equation for the correlation tensor Bij 
of the small-scale fields, we take the t ime derivative of 
(3). The procedure is here quite analogous to that used 
in  the derivation of (12). I t  is necessary only to use 
expression (7) [in place of (8) in the derivation of (12)]. 
All the tensors T i ,  must be expanded in the vicinity of 
the points 'x and 'x. After cumbersome but straight- 
forward calculations we obtain 

All the tensors depend here  on r =3x- 'x, the derivatives 
in the right-hand side a r e  taken with respect  t o  the 
same variable, B,, depends additionally on t ,  and T is 
constant [see (8)]. 

We can verify directly that (14) sat isf ies the most im- 
portant requirement, that the magnetic field be solenoi- 
dal (a,B,, =O), i.e., application of the operator a,  
should cause the right -hand side of (14) to vanish. It 
is obvious that 

and the analog of the ~ o i t s ~ a n s k i i  invariant n i j  is ap- 
parently equal to zero. It follows from the second prop- 
e r ty  of (15) that Bijincreases exp~nential ly.  However, 
a s  noted above, enhancement of the field i s  accom- 
panied by a decrease of the scale,  and ultimately finite 
ohmic damping s e t s  in, and Eqs. (14) and (15) a r e  no 
longer valid. 

By reducing (14) t o  a SchrGdinger equation, we verify 
that the eigenfunction decreases  too slowly outside the 
"potential well." Formally this is due to the vanishing 
of the coefficient of the highest-order derivative, i.e., 
to a singularity in the potential well. Physically a l l  
this is explained by the fact that the scale decreases just 
the same: if Eq. (14) were to have a "good" eigenfunc- 
tion, this would mean that there exists  a solution with- 
out a decrease of scale. I t  can thus be stated that (14) 
contains no eigenfunctions having correlation-function 
properties (this circumstance manifests itself more 
clearly in Fourier space, see  below). 

Since the decrease of the sca le  is s o  important in the 
field dynamics, we turn  to equation for quite small-  
scale fields, i.e., such that 1,<< 1, where I, is the 
correlation length of the tensor B,,. It  suffices then to  
retain the following t e rms  of the expansion of the tensor 
Tij: 

T ,  (r) =T6,-T, (?S,,-'/,rirj) , T ,  T2>0. 

The equation for  the fluctuations with 1,<< 1 will take 
the form 

o r ,  in the Fourier  representation 

the primes correspond to derivative with respect  t o  k, 

and ~ ( k )  is the Fourier t ransform of the correlation 
function Bii. 

The problem of the eigenfunctions of Eq. (17) will be 
formulated in the form ~ ( k )  = Bn(k) exp(-E,t). It is 
c l ea r  that an exponentially increasing solution with 
E n <  0 [corresponding to the presence of a deep well in 
t he  potential of Eq. (17)] remains in the asymptotic 
regime a s  t- Q). The largest  contribution i s  made a s  
t- Q) by the lowest harmonic with a maximum increment 
1 ~ ~ 1 .  Of course,  the eigenfunction must be positive 
here ,  since this i s  a spectral  function. However, the 
eigenfunctions of Eq. (17) 

with E,<O have a singularity ei ther  at  z e ro  o r  a t  infinity, 
This  demonstrates clearly the validity of the statement 
made above that a solution of the general equation (14) 
a s  an  eigenvalue problem i s  incorrect. The reason is 
the  decrease of the scale,  i.e., the increase of k, and 
follows directly from (17). It is easily s een  that 

d '  2 j Bdk-4T2j Bdk, -I Bkdk=BT,j Bkdk, 
dt 0 0 dt 0 0 

i.e., the f i r s t  moment increases more  rapidly than the 
zeroth moment (6> 4), which illustrates in fact the 
growth of the effective k. 

The  situation changes substantially if ohmic dissipa- 
tion is introduced. It is this dissipation which deter- 
mines the characterist ic  sca le  of the eigenfunction. If, 
e.g., we add to the right-hand side of (14) diffusion 
t e r m s  DAB,,, and correspondingly in the right-hand side 
of (17) 2k2DB(k), D =2/4nu,  u i s  the electr ic  conduc- 
tivity, then the singularity a t  the zero  potential of (14) 
disappears : the highest derivative a t  r = 0 will have a 
coefficient D. The  actual reason is that (in Euler co- 
ordinates) the equation for H is of the form 

and a t  D =O the order of the system changes, the equa- 
tion becomes a partial differential equation for which 
the eigenvalue problem i s  meaningless. In  the general 
case  when D # 0 and v is a stationary field, the eigen- 
value problem is correct ,  and the same can be stated 
concerning the equation for  Bij in the case  of a turbu- 
lence that is stationary in the statistical sense. 

It must be borne in mind, however, that the general 
form of the equation for  B,,, with account taken of 
finite D, is not known. Addition to  (14) of a diffusion 
t e rm is possible only for the Markov model, i.e., when 
TV/Z<< 1 (Ref. 8). We, however, s tarted from Eq. (I) ,  
which was obtained with diffusion neglected. Therefore 
(14) is valid when 

and (17) is valid when 

The general eigenvalue problem can therefore be posed 
for the equation 
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which goes over at k<< k, into (14), in the interval (20) 
into (17), at k>> k, into 8 B/at = - ~ D P B ,  and into an un- 
known form at k=  k,. 

We shall seek the solution of (21) in the form B(k) 
= B,(k) exp(-E,t). Then for the eigenfunctions of Eq. (21) 
and for its conjugate we have the equations 

The system of functions i), is conjugate (dual) to the 
system of eigenfunctions B,, the asterisk denotes com- 
plex conjugation. It is important in the following that 
Eq. (21) can be reduced to a self-adjoint form, i.e., the 
corresponding eigenfunction problem (22) reduces to 
two identical equations. Indeed, the equation conjugate 
t o  (18) 

a&=-[V x rot B] +DAB, 
coincides with the equation for the vector potential of 
the magnetic field H following the substitutions x- -x 
and v(x)-v(-x). The transformation x- -x is the re-  
flection transformation, to which the statistical proper- 
t ies  of the turbulence a r e  assumed to be invariant. This 
means, in particular, that the equation for the spectral 
function of the field E is connected with Eq. (21) for the 
spectral function of the field H in the same way a s  the 
spectral equation for the vector potential is connected 
with the corresponding equation for H ,  i.e., one of the 
equations in (22) should follow from the other upon the 
substitution Bn(k)k2 - B,(k): 

From this we get that for a function z =B(k)/k the oper- 
ator of the right-hand side of (21) in self-adjoint, 
ImE, =0, and the equations for the eigenfunctions (22) 
for z coincide. In fact, a s  can be easily verified, the 
Fourier transform of Eq. (14) and its particular form, 
Eq. (17), have the indicated property, namely, they 
can be reduced to a self-adjoint form for the function z. 

To obtain the eigenvalues we use avariational principle 
that is  valid for self-adjoint operators: 

It is clear that if one can find a tr ial  function z that can 
make the functional (23) negative, then the lower eigen- 
function (with eigenvalue E, =minE,) will make this 
functional more negative in absolute value, i.e., E,< 0 
and an exponentially increasing solution (dynamo solu- 
tion) with an increment IEo I does exist (see Ref. 9). 

We choose trial functions in the form 

k, lies in the interval (20). Then the contribution of the 
region with q>  k, to the integral with respect to q in 
(23) is exponentially small. In fact, the inverse state- 
ment, that a substantial contribution is made by the 
integral at q 2 k,, would mean that according to (21) 
[in which ~ ( q )  is replaced by zq, which also attenuates 

exponentially at q =  kl], the dynamics of a field with 
scale 2, =2n/& is determined by ohmic diffusion. This 
contradicts the well known fact that for a field with 
scale 1, =2n/k,>> 2n/k1 the "freezing-in" condition is 
satisfied, i.e., the ohmic diffusion does not play any 
role in (18). It is clear a t  the same time that in the 
integration with respect t o  q the contribution of the 
region q 5 ko is quite small, therefore we can use (17) 
to calculate (23). All the calculations then become 
simple and it is easily seen that t r ia l  functions with 
m =0,  1 ,2 ,3 ,4 ,5 ,6  make the functional (23) negative. 
Consequently, a dynamo solution exists. 

$4. CONNECTION WITH REAL TURBULENCE 

The problem of generation of small-scale fields was 
solved in the non-Markov model (7). The extent to 
which this model is universal and describes the real  
turbulence is unknown. At the same time, a s  shown in 
03, to prove the existence of a small-scale field 
dynamo we have actually used not the general equation 
(14), which follows from the model (7), but only its 
asymptotic form (l7), since the t r ia l  functions (24) make 
a negligibly small  contribution to  the functional (23) in 
the region where it is necessary to use the general 
equation (14). For this approach to be valid, it is 
necessary above all  that the interval (20) exist. For 
turbulence witha power-law spectrum of the Kolmogorov 
type the transition from (14) to (16) and (17) is possible 
if the scale Eis taken to mean the viscous length 
2 =(v3/~)''', v is  the kinematic viscosity, and F the 
energy flux over the spectrum. To estimate T, it is 
then necessary to take the characteristic frequency of 
the velocity field variation for the scale 2, T, = (F/V)'~.  
From this it follows directly that for the existence of 
the interval (20) it is necessary that 

i.e., the magnetic Reynolds number calculated for the 
external turbulence scale L, must strongly exceed the 
ordinary Reynolds number. 

Thus, for rea l  turbulence, the solution of the problem 
of the small-scale field dynamo is determined when (25) 
is satisfied by the extent to which Eq. (17) represents 
correctly the real  dynamics of the field. As will be 
shown later on, Eq. (17) is equally universal for the 
region k>> ko, a s  the Kraichnan approximationlo is for 
k<< 2n/ll and k c  k,. F i rs t  of all, the interval (20) cor- 
responds to a small-scale magnetic-field structure for 
which the velocity field can be represented by the ex- 
pansion v, = vy + aijxj, i.e., the basic equation (18) can be 
represented in the form 

We have not written out the term (vO. V)H which leads 
to a simple field shift, since v" does not depend on the 
coordinates, and therefore plays no role in the dynamics 
of the field in the presence of homogeneous turbulence. 
The diffusion term is likewise insignificant because of 
the second inequality of (20). 

It is seen from (26) that the statistical characteristics 
of the field a re  connected only with the tensor a,,, which 
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does not depend on the coordinates and is a random pro- 
ce s s  in time. Therefore a l l the  hydrodynamic character-  
istics in the equation for  the correlation function and 
the spectral  function must not contain a length param- 
eter. Then the only possible representation of the 
operator (21) i s  in the form of a differential operator 
with coefficients connected with the hydrodynamic char-  
acterist ics ,  but independent of k and q [T, in (16) and 
(17) is precisely such a coefficient]. The coefficients 
a r e  likewise independent of t ime in view of the stationary 
character  of the turbulence. 

The same  conclusion can be reached by using the 
representation of the distribution function with the aid 
of similarity considerations (see Ref. 12, part  11). For  
the smal l  particle displacements considered by us, P 
should depend on 

etc., and on tT,. At various smal l  displacements 
(much smal ler  than I ) ,  al l  the spatial dependences a r e  
replaced in f irst-order approximation by zeros.  We a r e  
left with the time dependence, and consequently the 
operator (21) can be only differential with coefficients 
characterizing the hydrodynamic turbulence. This  c i r -  
cumstance simplifies very greatly the general form of 
the kinematic equation for p. One can expect that by 
satisfying a large number of requirements imposed on 
the kinetic equation, we shall  be left with only a smal l  
number of coefficients. And indeed, a s  shown in the 
Appendix, only one coefficient is left, and the equation 
obtained fo r  P leads t o  Eq. (17) for the region (20). 
Consequently, the  conclusion that a dynamo solution for 
small-scale fields exists  i s  generally in character  if 
(25) is satisfied. 

$5. DISCUSSION 

1. It was made c lear  f i r s t  that if Lagrangian stat is-  
tical characterist ics  a r e  specified for the turbulence, 
then the dynamics of the magnetic field can be explained 
for  the non-Markov model 7 = l /v .  T o  determine the 
dynamics of the large-scale field it is necessary to  
specify a distribution function for two liquid part icles,  
or ,  equivalently, a two-point correlation for  a sca lar  
admixture [see Eqs. (8) and (9) and the result  (12) and 
(13)]. T o  determine the dynamics of small-scale 
fields, i.e., to calculate the two-point correlation 
function of the magnetic fluctuations, it is necessary 
to use a four-point distribution function. For  the (non- 
Markov) turbulence model (7), Eq. (14) is obtained for 
the dynamics of small-scale fields. A shortcoming of 
this  approach is that this method cannot explain the be- 
havior of small-scale fields in the region k =  k,, where 
the dissipation begins to come into play [see the defin- 
ition (20)]. If k c  k,, then the freezing-in approximation 
is satisfied and the solution ( I ) ,  meaning also (14), i s  
valid; in the region k>> k, we have simply aB/at =-2DKB. 
For  the Markov approximation it is possible to obtain 
an equation for B in the entire region.' 

2. The dynamics of a large-scale field is described 
by the general-form equation (13). In the present art icle 
this  result is obtained in an  exact model, but the results  

of ~ r a i c h n a n "  is more general, Eq. (13) is obtained 
by expansion in a sma l l  parameter Z / L  for any model. 
The  dynamics of the small-scale fields for kl>> 1 is des- 
cribed by the asymptotic equation ( l? ) ,  which i s  obtained 
here  both for the exact model (7) and a s  an expansion 
in the parameter (kl)-' [ ~ q .  (A.11) a small-scale field 
dynamo can be deduced only on the basis  of Eq. (17)]. 
It can therefore be stated that the dynamo solution exists 
if only the condition (25) i s  satisfied. 

3. It i s  c lear  from the foregoing how greatly impor- 
tant for  the elucidation of the dynamics of magnetic 
fields is the experimental determination of the dis- 
tribution function, or ,  equivalently, the determination 
of the dynamics of the two-point and four-point correla-  
tion functions of the sca lar  admixture. This makes it 
possible to determine exactly the coefficients of the 
turbulent diffusion and generation in Eq. (13). In  addi- 
tion, this  method can explain the behavior of the small- 
sca le  fields in the entire region kc< k,, i.e., to verify 
that the model (7) is general. This  i s  particularly nec- 
e s sa ry  if the condition (25) i s  not satisfied: in this  case 
there  is no region (20) and the question of the small-  
scale-field dynamo remains open. On the other hand 
if (25) is satisfied, then a study of the sca lar  admixture 
makes it possible to determine the  coefficient T, in 
(17), which agrees in order  of magnitude with the 
growth r a t e  of the dynamo instability. We note in this 
connection a lso  the importance of measuring the Lagran- 
gian character  is t ics in astrophysical investigations. 
We reca l l  that the problem of turbulent dynamo arose  
precisely in astrophysics. For example, it becomes 
possible in principle to determine the distribution func- 
t ion from the motions of distinct details in the so lar  
photosphere. 

APPENDIX 

The right-hand side of (17) can contain t e rms  of the 
type %B, dl)kB,  &)PB,  a,kB', a!')kaB', a##, 
dl)@B", %k3B", etc. At the same t ime the presence 
of t e r m s  with derivatives of order higher than the 
second contradicts the requirement that the spectral  
function be positive-definite. In  fact, whereas a t  the 
initial instant the spectral  function in the vicinity of 
k =k, is represented in the form 

then at  the point k = k, we have 

[therefore the coefficient of B" should be positive, a s  
in (17), T, > 0] and B" = 6b. However, since both the 
magnitude and the sign of b a r e  generally speaking 
arb i t ra ry ,  the te rm with the third derivative can give 
a negative contribution such that 8B/8t becomes less  
than ze ro  and B becomes negative at  the point k =k,, 
which is inadmissible. It can be similarly proved that 
there  a r e  no t e rms  with fourth and higher derivatives. 

We analyze now the t e r m s  proportional to B. It is 
clear  that the right-hand side of (17) cannot contain 
t e r m s  of the type a!jl)kB, # ) k 2 ~ ,  &)k3B, d 4 ) k 4 ~ ,  etc. 
The  point is that $) and c$) contain the dimension of 
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length, whereas in (26) the components a(, have the 
dimension of frequency and depend only on the time. A 
similar selection for the terms aB1 and a B "  reveals the 
following general form of the operator: 

(all the coefficients have the dimension of frequency). 
This means that the equation for the four-point dis- 
tribution function, if the points are  close enough to one 
another, contains derivatives of order not higher than 
the second, and the coefficients have the dimension of 
frequency. 

We now write down this equation after integrating it 
with respect to  two points. In other words, we write 
down the equation for the two-point distribution func- 
tion: 

aBX r -  -a x , - ~ G .  (A .I) 

The Greek letters run here through the values 1 and 2. 
The equation is written in divergent form, i.e., so 
that the integral with respect to p over space is pre- 
served (this accounts for the term without the deriva- 
tive). Setting all possible combinations for the isotropic 
reflection-invariant tensor u8Yb, we see that they in- 
evitably contain a certain vector: bUBYb, abBbrb, etc. 
In turbulence, however, there is no selected direction 
and Ob =O. In other words, all the coefficients OLBYb 
vanish. 

To determine the coefficients of the term with the 
second derivative, we recall that Eq. (A.1) coincides 
according to (5), (6), (8), and (9) with the equation for 
the correlation function of the scalar admixture, f 
=f ( 1 ' ~ -  'x I). Then, recognizing that '8, =-'a,, we 
have in the right-hand side of (A.1) only a term of the 
form 

The requirement of isotropy and obvious symmetry with 
respect to the subscripts m and f leads to the following 
form of the tensor 

Finally, we recall that the equation for the scalar ad- 
mixture 

(X is the molecular diffusion coefficient) and its conju- 
gate 

go over into each other with the aid of the transforma- 
tions x- -x and v(x)- v(-x). Consequently, just a s  in 
$3, the operator acting in the right-hand side of (A.1) 
(and in the equation for f) should be self-adjoint. From 
this follows the connection between the coefficients A 
and B, namely B = - ~ / 4 .  

We turn now to the four -point distribution function. It 
likewise is written in the form (A.I), and the terms with 
the first derivative vanish for the same reason a s  in 
Eq. (A.1) itself. As for the coefficient of the second 
derivative, isotopic combinations (of Kronecker sym- 

bols) a re  se t  up here. Taking into account the antisym- 
metry with respect to  the indices a --j3 and y-6 and the 
symmetry with respect to E-q, and taking also into 
account the requirement that p vanish a t  (see §2), 
the only terms left a r e  of the type 

bij ,m1a:aj(1a-2z,)  (*Z~-=X, , , ) ,  

and similar ones for the point combinations 1,3; 1,4; 
2,3; and 3,4. Then, only one term remains in the inte- 
gration of the equation for p with respect to  any two 
points, and the form of the tensor birr,,, can be ex- 
plained in exactly the same way a s  in the analysis of 
Eq. (A.1). Consequently, the general form of the equa- 
tion for close points (distance much less  than l) is 

apiat---T,  x a a : a , [  ( a ~ - o ~ ) 2 6 , ,  
-8 

-' /z(ux,-Pzo,(azj-pzj)  l p .  

A single coefficient Tz is used for different combinations 
of points, a s  follows from the obvious symmetry be- 
tween the points. From (A.11) follow directly (16) and 
(17), with T,> 0 in order to satisfy the condition that the 
spectral function be positive-definite. 

Note added in proof (31 October 1980 ). Recently 
(F. Krause, in "Dynamo Theory," Report of Internation- 
a l  Workshop, KARG, ~ l & o v i c e ,  1979, p.20) a state- 
ment was made that the Markov model used by Kazant- 
sevs is not a dynamo model. The reasoning is the follow- 
ing. Since 7 is regarded in this model a s  a small  quan- 
tity, we have the condition 7 << 1/~p .  Since k is arbi- 
t rary ,  it follows therefore that D - 0. But at D = O  the 
amplification of the field is not a dynamo, and the 
amplification is always temporary when D + 0 is turned 
on. Actually, there is no such condition in the model. 
In fact, from the Kazantsev equation, which differs 
from (17) in that a term D ~ B  is added to the left-hand 
side, it follows that the growth rate y = T, =(~/Z)'T 
=Dk2,, where k, is a wave vector that cuts off the spec- 
tral  function. Thus, T is small  but not zero! At the 
same time the use of 6-correlation in time is fully 
justified: 7 is small  compared with the quantities 
l/v, l/y, IZ/D, and l/D%. The last circumstance 
makes it possible to regard all  the components of the 
type exp[-Dp(t, - t,)], which arise when diagrams 
a re  shown, to be regarded a s  equal to unity, which is 
equivalent to  multiplying these quantities by 8 ( t ,  - t ,) .  
Thus, the Markov model by itself is naturally self- 
consistent. The only question is whether this model 
applies to real  turbulence. 
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A quantum kinetic equation for the conduction electrons with arbitrary dispersion law, in the presence of two 
homogeneous alternating electric fields, is obtained in the approximation of weak electron-phonon coupling. 
In the case of electromagnetic fields with quantum energy exceeding the width of the conduction band, 
expressions for the coefficients of the intraband absorption of each of the fields are obtained on the basis of a 
solution of the kinetic equation. In the considered situation, one of the coefficients turns out to be negative, 
thus indicating the possibility of mutual enhancement of electromagnetic waves in semiconductors with 
narrow conduction band. 

PACS numbers: 71.25.C~ 

Malevich and fipshteinl have investigated, on the basis 
of a quantum kinetic equation, the behavior of the elec- 
trons of a semiconductor in the presence of two strong 
homogeneous alternating electric fields: E(t) =El  sinwit 
+ E2 sinw2t. They used a quadratic isotropic electron 
dispersion law, therefore the results  obtained by them 
a r e  no longer valid a t  high frequencies, where the en- 
ergy of the electromagnetic-field quanta is comparable 
with o r  larger than the width A of the conduction band. 
In a semiconductor with a narrow conduction band, A 
can be quite small  ( ~ 1 0 ' ~  eV in semiconductors with su- 
perlattice' and in organic3" o r  polaron semiconductors), 
i. e., the results of Malevich and gpshtein cease to be 
valid already a t  wi,, 2 lot3 sec". 

No assumptions whatever a r e  made in this paper con- 
cerning the electron dispersion law in the conduction 
band. This makes it possible to investigate the situa- 
tion'' wl,, 2 A  (a system of units with E = l  is used). 
The frequencies wiv2 a r e  bounded from above only by 
the assumption that there a r e  no interband transitions. 

E ( t )  =E,  sin o , t + E ,  sin o,t 

by the relation 

a,' and a, (b,', b,) a r e  the operators of creation and an- 
nihilation of an electron (phonon), w, is the phonon fre- 
quency, and C, is the electron-phonon coupling constant. 

In the derivation of the quantum kinetic equation for 
the description of the processes in the high-frequency 
fields ( w ~ , ~  >> T", where T is the relaxation time), we 
follow the procedure developed by ~ ~ s h t e i n .  Assuming 
the phonons to be in equilibrium and the electron gas to 
be nondegenerate, we obtain in the lowest order in the 
coupling constant C, an equation for  the electron distri- 
bution function 

W P ,  t ) / a t =  { f(r0 RI j dlf o r p  [ -i j dr  ( [ p+e j E ( ~ ~ i a r ~ - q  
q - - 1. 

I 

The Hamiltonian that describes the interaction of the where (p - p +q} stands for the expression written out 
electrons with the phonons takes in the presence of an explicitly in the curly brackets, with the corresponding 
electromagnetic field the form change in the arguments 

h= c ( p  - - ~ ( t ) )  ap+ap+C mqbq+bq 
P  cl 

and T is the temperature in energy units. In the deriv- 

C a + a (b,+b-,+).  +C . P - . P  
ation of (I), the phonon energy w, was assumed to be 

P.'I 
- small  compared with the characteristic electron energy 
c (quasielastic scattering). 

Here ~ ( p )  is the electron dispersion law in the conduc- 
tion band, A(t) is a certain potential connected with the We consider now in greater detail the terms in the ar -  
electromagnetic-wave field gument of the exponential in (1). We have 
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