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Contribution to the theory of heat exchange due to a 
fluctuating electromagnetic field 

M. L. Levin, V. G. PolevoT, and S. M. Rytov 
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Zh. Eksp. Teor. Fiz. 79,2087-2103 (December 1980) 

The generalized Kirchhoffs law [M. L. Levin and S. M. Rytov, Theory of Equilibrium Thermal Fluctuations 
in Electrodynamics [in Russian], Nauka, 19671 is used to obtain general expressions for the spectral and total 
Poynting vector of a fluctuating electromagnetic field in a flat vacuum gap between two arbitrary semi-infinite 
media of different temperature (Sec. 2; to simplify the derivation, the medium is assumed to be isotropic and 
spatially local). Some general consequences and particular cases are discussed (Sec. 3), and the case of good 
conductors is investigated in detail in the impedence approximation both for the normal and for the 
anomalous skin effect (Sec. 4). The heat-flow formulas are generalized in Sec. 5 (using the concept of the 
generalized surface impedance) to include anisotropic media with spatial dispersion. 

PACS numbers: 41.10.H~. 44.40. +a 

1. INTRODUCTION 

The question of uradiant" heat exchange was posed al- 
ready in the classical theory of thermal radiation. An 
example of i t s  solution is the Cristiansen integral for- 
mula (with respect to the frequency w)' for the energy 
flux between "gray" bodies. Interest in this problem 
was again increased in the 60's, when, in connection 
with experiments at cryogenic temperatures, attention 
was called to the fact that consideration of only travel- 
ing waves (of radiation) is valid only if the gap thickness 
I between the bodies is large, i.e., when I >> AX,, where 
kw is the Wien wavelength corresponding to the tem- 
perature of the colder body. On the other hand in the 
case of thin gaps (I s ~ , )  inhomogeneous waves (the 
near field) come into play and a s  a result the coeffi- 
cient of heat transfer through the gap can depend on the 
gap width 1. 

The presence (and even the role) of a near fluctuating 
field, of which sight was lost campletely in the classi- 
cal (i.e., geometrical-optics) theory of thermal radia- 
tion, was pointed out long ago.3 This field i s  essential 
in all cases close enough to the surfaces of the body 

and by the same token for all sufficiently thin cavities 
or  gaps." In particular, a general theory of thermal 
fluctuations of the electromagnetic field, developed by 
one of us,' was used by Lifshitzs to calculate the mole- 
cular adhesion forces between arbitrary bodies. 

The solution of any problem dealing with average 
bilinear quantities was subsequently greatly facilitated 
when a simpler and general method was developed6 for 
the calculation of correlators of a fluctuating electro- 
magnetic field-the generalized Kirchhoff's law-and 
made it possible in many other applications to obtain 
an even shorter solution of the aforementioned adhe- 
sion-force problem (Ref. 6, Sec. 18). It is clear that 
also for heat exchange (average Poynting vector in a 
gap between two bodies) the near field should also play 
an essential role at small gap thicknesses I. 

The heat flux in a flat gap between a semi-infinite 
medium and a well conducting nonradiating (cold) mir- 
ror was obtained already in Ref. 3 in connection with 
the question of experimental observation of the near 
field. There were pointed out, in particular, inter- 
ference deviations from homogeneity of the field at 
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small 1, an asymptotic transition to equilibrium 
(Planck) intensity a s  1 - m, and an inversely propor- 
tional increase of the energy absorbed by the mirror 
a s  1-0 (Ref. 3, Sec. 7)." 

The authors of a number of succeeding papers, evi- 
dently unaware of correlation t h e ~ r y , ~  solved the heat- 
transfer problem by other methods. It was customary 
to consider (just a s  in the present article) the simplest 
geometrical conditions: a flat gap between two semi- 
infinite media (1 and 2 in Fig. 1). For the case of 
transparent media, the solution was obtained in Ref. 8 
by summing the multiply re-reflected traveling waves 
and taking into account the seepage (tunneling) of the 
inhomogeneous waves, under the natural assumption 
that the primary field inside each of the media i s  the 
same a s  the equilibrium field in this medium at i t s  
temperature. The energy flux, expressed in quadra- 
tures, was calculated then with a computer under the 
assumption that there is no frequency dispersion of the 
refractive indices. 

In the opposite case of strongly absorbing media 
(metals) separated by an insulator, the problem was 
solved by the same method of multiple reflections a s  at 
Z>>A,; a s  well a s  for thin gaps.'' The primary radia- 
tion of each metal, however, was described in the 
cited papers on the basis of the concept of the radiation 
intensity within the absorbing medium," although it has 
become clear long ago3 that in strongly absorbing media 
the intensity concept connected with traveling natural 
waves becomes meaningless (extraneous-Langevin- 
sources a re  distributed in the medium). 

The first  investigation of heat transfer between ar- 
bitrary media, in which the previously developed3 cor- 
relation theory was employed, was made by Polder and 
Van Hove.'' They presented their correct result only 
for  identical media one and two [formula (19) of Ref. 
131. In the subsequent treatment, use was made of nu- 
merical calculations, and furthermore not of the flux 
itself but of i ts  derivative with respect to temperature, 
i.e., their resultsL3 pertain only to small temperature 
differences. Unfortunately, their paper contains no 
analytic formulas in closed form whatever. The case 
of metallic surfaces and low temperatures was again 
considered by c a r e d 4  with the aid of the same amode" 
approach which he used earlier4, i.e., without allow- 
ance for the near field. The general theory3 was used 
by him only in a later paper,'5 in which he considered 
the case of metals with anomalous skin effect, and in 
which the impedance approximation was used from the 
very outset. However, certain aspects of Caren's 

FIG. 1. 
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later paperi5 a re  doubtful. For example, the presence 
of a factor 1/14 in formulas (26) of his paper contradicts 
the perfectly general conclusion that the heat flux does 
not contain terms with powers of 1/1 higher than the 
second (see Sec. 3). 

Thus, the investigations cited considered only parti- 
cular cases of media (identical media, transparent in- 
sulators without dispersion, well-conducting metals). 
In addition they made no use of the simplest formulas 
of the theory of electromagnetic fields of thermal 
origin-the generalized Kirchhoff's law.' It is pre- 
cisely this form of the theory which makes i t  possible 
to obtain in briefest form the final result for the gen- 
e ra l  case of two arbitrary media, including anisotropic 
ones and those having not only temporal but also spatial 
dispersion. Initially, in Sec. 2, we confine ourselves 
(to simplify the exposition) to  homogeneous and iso- 
tropic media without spatial dispersion. 

2. EXPRESSION FOR HEAT FLUX 

We are  interested in the z -component of the total 
Poynting vector of the thermal field in a vacuum gap 

- 
P = j~ ( " )d" ,  

0 

which can be expressed a s  a sum of opposing fluxes 
from medium 1 into 2 and from 2 into 1: 

This equality is satisfied, of course, also for the spec- 
t r a l  densities 

It must be emphasized that P,,(w) i s  calculated for 
the heat flux produced in a gap by medium 1 [permit- 
tivity t,(w,T,)] in the presence of medium 2 [permit- 
tivity w,(w, T,)]and conversely. Of course, the deter- 
mination of this field, which reduces to a solution of a 
certain boundary-value problem: yields automatically 
a result that already incorporates multiple re-reflec- 
tions of traveling waves and diffusion (tunneling) of in- 
homogeneous waves generated by each of the media. 
Since the sources of the thermal fluctuations in media 
1 and 2 a re  statistically independent, both fields a re  
incoherent, and i t  is this which causes the additivity 
of the fluxes in (1). It i s  furthermore evident that i t  
suffices only to determine P,,(w), since P,,(w) can be 
immediately obtained by permutation of the indices 
1 s  2 and by reversal of the sign. We therefore com- 
ment here on the case when the thermal field is pro- 
duced by medium 1, while medium 2 is present passive- 
ly, a s  if it were absolutely called, although i ts  permit- 
tivity i s  -2(wI T,). 

The spectral density P,,(w) at a frequency w 2 0 i s  

where the asterisk denotes complex conjugation, and 
the angle brackets denote statistical averaging. The 



correlators of the spectral components of the thermal 
field at the point q,={O,O,zo} (Fig. 1) a re  expressed, in 
accord with the generalized Kirchhoff's law, in terms 
of the Joule losses of certain auxiliary (*diffractionw) 
fields in the radiating medium 1.' The latter consti- 
tute Green's functions with sources chosen in a definite 
manner (dipoles placed a t  the point r,). For planar- 
layered media this boundary-value problem was solved 
long ago (see, e.g., Ref. 161, the diffraction fields are  
known and can be expressed in the form of spatial in- 
tegrals containing both traveling and inhomogeneous 
waves. 

Finding the correlators in (2), we arrive at the fol- 
lowing expression for the spectral density of the energy 
flux of the thermal field produced in the system by 
medium 1: 

Here 

Ill=ho(exp (AolksT1)-I)-' 

i s  the Planck fu~~c t ion ,~ '  

and for A, we have the same expression a s  for A,, but 
with the interchange E ,  = p,. For p, we choose the root 
with Rep, > 0, and formula (4) is independent of the 
choice of the sign of p .  The integral M is written out 
here for media that have, in addition to E, and &,, also 
complex permeabilities pl and p,. 4' 

We note that the obvious requirement that P12(w) be 
independent of the position of the point of observation in 
the gap (of the distance zo to the boundary of the medi- 
um 1) is automatically satisfied: zo drops out of the 
integrand of (4) i f  it is recognized that p i s  either real 
o r  pure imaginary, and only the width of the gap 1 re- 
mains. 

The integral M is symmetrical with respect to per- 
mutation of the indices 1 and 2, so  that the flux from 
medium 2 is equal to P2,(w) = -II2M/r2, and the result- 
ant flux is 

The integral (4) contains contributions from traveling 
waves ( 0 s  x -< k, p imaginary) as well a s  from inhomo- 
geneous waves ( x >  k, p real), i.e., from the near o r  
quasistationary field. 

3. CERTAIN CONSEQUENCES AND PARTICULAR 
CASES 

It is clear that when the width I of the gap i s  in- 
creased the role of the near field becomes smaller and 

smaller (at real p ,  the quantities A, and A, increase 
like e P ' ) ,  and in the l imit  only the traveling-wave field 
i s  left, when, in essence, the heat-exchange can be 
meaningfully called radiant. To calculate the integral 
with respect to x. from zero to k a s  1 - 0 we proceed 
in the following manner. We introduce in place of x 

the variable h = (k2 - x2)112 (p = ih). The term Mnin (4) 
then takes the form 

~ . = p d e .  ( v = l ,  2 ) ,  
A.=2i(asin hl+g cos hl ) ,  a - y , ~ 2 - h 1 ,  $= (y l+ya)h.  (7) 

In expanded form 

With increasing I, the period of the oscillations of 
the denominator, namely Ah =If /I, decreases and i t  is 
therefore expedient to  calculate the integral in two 
stages: the interval (0, k) is broken up into periods Ah 
(their number is a21/k) ,  and the integration i s  carried 
out over each of the intervals Ah, assuming that within 
the limits of this interval all the quantities except 
sin 2hl and cos 2hl of constant values corresponding to  
p =fi, = j A  h, and then take the sum over all the inter- 
vals Ah: 

We denote the integral that enters in this expression 
by I, and change i t s  integration variable to x=2hl: 

Since the condition 

is satisfied, the integral i s  

When this result is substituted in ME, it is natural to 
change, a s  1 - 0, from a sum to an integral. This 
yields, after substituting expressions (7) for cu and p, 

To obtain M, we must make the interchange E = p, i.e., 
Put Yv =P"/P,. 

If the media a re  identical, i.e., despite the difference 
between their temperatures we can assume that c 2  =E,  

= E and p2 = p1 = p, then 
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and (8) takes the form 

I 17-7'1 jm h2 dh. 
(I 

In particular, for transparent identical media (E  and p 
real) we obtain 

This case (in addition to the more general case of two 
different transparent media) was investigated by a nu- 
merical method in Ref. 8. 

The integral in (9) i s  easily evaluated: 

Replacement of c by p yields Mu. In particular, for 
identical nonmagnetic transparent media (pl = p, = 1, 
El=&,=n2) we have at l = m  

-4n2 arctg n - (n2 - I )  arctg I (10) 

In the case 1 = 0 (media in direct contact) 

If both media absorb ( E ,  and (or) p, complex), then the 
integral (11) diverges at the upper limit, a s  should be 
the case in the absence of spatial dispersion, i.e., for 
spatial locality of the material equations. 

It is of interest to establish in the general case the 
order of the divergence a s  1 - 0. Replacement of the 
integration variable in (4) by x =  XI yields 

where 

The integrals that remain in (12) converge already at 
all 1, including 1 = 0, so  that the expansion of M in pow- 
e r s  of 1 at small 1 is of the form 

with ( E ,  = &: - i~:))  

Thus, the first  term of the expansion is in the gen- 
era l  case of the order of 1/12, and the presence of high- 
e r  powers of 1/Z in Caren's paper15 i s  an error .  With 
increasing losses, the term of order 1/12 remains, but 
the region of 1 in which it plays a role becomes ever 
narrower (C-, - 0) and can reach, in the absence of 
spatial dispersion with macroscopic scale, microscopic 
scales at which the phenomenological theory no longer 
holds a t  all. It is furthermore clear that the term of 
order 1/12 vanishes if a t  least one of the media i s  trans- 
parent. 

Assume for the sake of argument that medium 2 is 
transparent, then 

where n2 = ( E , ~ ) ' / ~ .  Thus, the integration with respect 
to 14 i s  cut off at u = kn,, and there i s  no divergence at 
any 1, including 1 = 0. This last case of contact be- 
tween an absorbing medium in the half-space z <O with 
a transparent medium, was considered in detail in Refs. 
5 and 6. We note that the convergence of the integral 
(11) in the case of one transparent medium means that 
not only C-, but also C,, vanishes in the expansion (13). 

If both media a re  transparent, then the upper limit in 
(4) i s  determined by the medium with the smaller re-  
fractive index, i.e., it is equal to h, at  n, z n,. For- 
mula (11) takes therefore the form 

1 
- (k2n2-x2)% e, 1 xdx -z (n ,>n,) .  

The integral can be evaluated in close form, but the 
resultant expression is rather unwieldy and will not be 
presented here. On the other hand, for the case of 
identical refractive indices (n, =n, = n) we obtain 

and for perfectly identical media ( E ,  = E,, p, = p,) 

M.=1Cf,,=='/8k2n2, 

s o  that at 1 = 0 we have 

If, a s  in Ref. 8, we neglect the dispersion (n inde- 
pendent of w), then i t  is easy to integrate with respect 
to w in (61, and we obtain the total energy flux5 at I = 0. 
In the absence of dispersion, the integral with respect 
to w for (14) i s  the same a s  for M at Z = m .  In other 
words, the ratio P(O)/P(m) of the total fluxes is equal to 
ratio M(O)/M(m). According to (10) and (14) 

where 
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FIG. 2. . 
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At small values of n - 1, as follows from (15), 

F ( n )  = I - ( l + n / 2 )  ( n - I ) .  

Figure 2 shows a plot of the function F h ) .  We note that 
the values of the fluxes P(0) and P(-), calculated in ac- 
cordance with our formulas for the same values of the 
temperatures and refractive indices for which a com- 
puter calculation was performed in Ref. 8, agrees with 
the results obtained in that reference. 

4. CASE OF WELL-CONDUCTING METALS 

By a well-conducting metal we mean one whose per-  
mittivity & (w) = -4rriu/o (o is the conductivity) has an 
absolute value much larger than unity. Then, in first- 
order approximation, at any structure of the field out- 
side the metal, the Leontovich boundary condition E 
= fH x n i s  satisfied on the surface of the metal; here 
5 = ( c ( / & ) ~ ~ ~  = ( ~ w c ( / ~ T u ) ~ /  is the surface impedance, 
which is obviously a small quantity ( 1  g(o) I<< 1). The 
entire subsequent calculation of the heat exchange i s  
accurate to first  order in f. 

In this approximation, the values of p,  are  

s o  that the ratios 

a re  likewise independent of X .  As a result we obtain 
for the terms M, and M, in (4), in the considered im- 
pedance approximation 

- 
xdx 

M'nkz f i ' f '~  l p d p l + i k c  chpLI1 mk2fi'f,'1., 

I p l'xdx 
Mrf'f2'  (= lk sh p l - i p j  ch 911 *- k2f,'t2'I#, 

where we have introduced the notation 

The factor 5: 5;  is already present in front of the in- 

tegrals in (16), and we wish to take into account only 
first-order effects in the impedances. It is clear 
therefore that in the integrals IE and I, we are  inter- 
ested only in the singularities-the terms of order 1 / ~ .  
We obtain them separately for the near field (n > k) and 
for the wave field (0 < H. < k). 

Near field. Changing over to an integration variable 
p = ( n 2  -k2)lfz, we have 

As p - 0 (x- k), there i s  no singularity in IyP, and for 
I*:', inasmuch a s  sinhpl.=pl and cosh pl= 1, we obtain 

Wave field. Putting p = i h, we obtain 

A 
h dh h 

,wave = j kZIpn =I h3 dh 
Ihsin hl-ikc cos hllz ' I k sin hl+ihf cos hllP 

' 

As h- 0, the integral I F  has no singularities, and we 
obtain for IWa" 

hdh =-T(T- I n antg7). 5" 
I c e  - 2k16 5 

In addition, IwL" has singularities at the other zeros 
of sin h2, i.e., near the values h, = n?r/l< k (n i s  an in- 
teger). In the vicinity of h,, putting h = h, + h', we 
have s inh le  (-1)"h'l and coshl =(-I)", and the contribu- 
tion made by the integral over the vicinity of hn i s  

i.e., it is independent of n. The number rn of such con- 
tributions is obviously equal to the integer part of the 
quantity y = kl/r (m = [y]), s o  that all h, (with the ex- 
ception of h = 0) make a summary contribution 

It follows from (17)-(19) that 

In the integral I F ,  the contribution from the vicini- 
ty of the point h, i s  

and consequently 

Since IyP has no singularity, we obtain in accord with 
(14) 
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A t y c l  we havef(y)=1/2y, a n d a t y > > l ,  whenwe can 
assume y Zm, we obtain f(y ) =4/3. At each passage of 
y through an integer value, the function f(y) undergoes 
a jump due to the introduction of a new mode6': f(m + 0) 
-f(m -0)=2/m. 

Formula (20) was derived from the general expres- 
sion (4), which was obtained in turn assuming absence 
of spatial dispersion. But (20) contains only surface 
impedances that describe the ratio of the tangential 
components of the electric and magnetic fields on the 
boundary of the body. The result (20) therefore re- 
mains in force also in the presence of spatial disper- 
sion, provided only that the surface impedance of the 
medium i s  small enough. We would have arrived at 
(20) also if we were to solve from the very beginning 
the auxiliary boundary -value problem of diffraction 
field with impedance conditions on the boundaries of the 
vacuum gap (see Sec. 5). 

Thus, in the impedance approximation, the spectral 
density of the heat flux is described by the simple 
analytic formulas (20) and (21). These formulas make 
i t  possible also to calculate the total flux, if the im- 
pedance approximation i s  valid in the entire region of 
frequencies w in which the Planck function differs no- 
ticeably from zero, i.e., the conditions I f,(w) /<< 1 and 
1f,(w) I<< 1 a re  satisfied in a sufficiently large vicinity 
of the Wien frequency w, = 2rc/kw, where XwT = 0.29 
(Xw i s  in centimeters and T i s  in degrees Kelvin). The 
total flux, according to (6) and (20), then takes the form 

where 

We note that the case (frequently encountered in ex- 
periment) when the impedance of the cold medium i s  
much smaller than the impedance of the hot medium 
(fl<< 5: and T, > T,), we have Z(w) pf;, and the flux P 
depends mainly on the temperature of the hot medium 
and on the impedance of the cold one. 

At not too low temperatures, the impedances of 
metals are  given by the formula for the normal skin 
effect 

and consequently Z (w) mw112 if, of course, there is no 
dispersion of the conductivities u, a s  yet in the Wien 
region of frequencies. At room temperatures, a s  al-  
ready indicated by Rubens and Hagen (see, e.g., Ref. 
17), we can use the static value of o at A > 1.2 x loq3 
cm. The Wien wavelength is A, = cm at T = 290 K. 
It can therefore be assumed that in the cryogenic tem- 
perature region the dispersion of o is negligibly small, 
a s  will in fact be assumed hereafter. Furthermore, in 
this region the Wien frequencies a re  lower, and the 

conductivities higher than a t  room temperature, making 
the accuracy of the impedance approximation higher. 

At very low temperatures T, of the cold metal, the 
anomalous skin-effect regime may set in, and spatial 
dispersion can be produced because the electron mean 
free path becomes comparable with the thickness of the 
normal skin layer, and subsequently also much larger. 
In the latter case18f; cr w2I3 and, if f >> 5: (or if the skin 
effect is anomalous for both metals, i.e., if also 5; 
a w2I3), then Z(w)= wZi3. 

We confine ourselves below only to these two forms 
of the Z(w) frequency dependence, and express this 
quantity in the form 

where ct = 1/2 for the normal skin effect and a = 2/3 for 
the anomalous one. Here w, = kB T,/A = ww,/5, so that 

In the calculation of P,,, introducing the characteris- 
tic length h, = 2nc/w, = 2ncR/k,T, = SAW,, and the di- 
mensionless parameters 

(the argument of the function f in (22) is in this case y 
=wl/nc=xt), we reduce the total flux P,, to the form 

- t3+'f (zt) p - Rm,Lza(wi) W@(X). w=(X)= JT 12 - dt. 
nzcZ 

(27) 
0 

For a thin gap (I<<X,, x<< I), the only region of im- 
portance i s  xt < 1, in which f(xt) p 1/2xt, so that 

(I? is the gamma function and f is the Riemann zeta 
function). Thus, in the case of thin gaps, the total 
heat flux increases with decreasing 1 like 1/1. 

For a wide gap (1 >> X,, x >> I), the main contribution 
to the integral (22) is made by the region t-1, in which 
xt >> 1 and f h t )  -4/3. Therefore at x >> 1, we have 

W, (x) X ' / ~ L ~ .  (30) 

This formula corresponds to an asymptotic flux value 
independent of 1 (the approximation of the classical 
theory of thermal radiation). 

Replacing the frequency w, by i ts  expression in terms 
of the temperature (w, = kBT,/E) and denoting by S, 
the quantity 

we can rewrite (27) in the form 
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The universal (independent of the parameters of the 
metal) function w,(x) takes at x<< 1 (thin gap), accord- 
ing to (28) and (29), the form 

with All, = 0.1450 and A,/, = 0.1082. It can be shown 
that in the opposite case at x>> 1 (wide gap) 

Ba=- 36 (3i-a) (1+a) na 
sin-, (2n)"Y (4+a)u(2+a) (3+a) 2 

s o  that B1,,=0.00125 and B2,,=0.00083. It i s  clear 
from (34) that w,(x) approaches i t s  unity asymptotic 
value from below, i.e., w, ( x )  has a minimum. 

The solid line 1 of Fig. 3 is the computer -calculated 
plot of wll,(x). The dashed plots a re  the asymptotic 
dependences (33) and (34) for a= 1/2. The curve for 
the anomalous skin effect ( a =  2/3) is similar in form. 
The values of w,(x) in the vicinity of the minimum are  
given in the table for a! = 1/2 and cu = 2/3. The mini- 
mum of w,(x) a t  a = 1/2 occurs at x =  0.180 and is equal 
to  0.8960, while at a = 2/3 i t  occurs a t  x = 0.1680 and 
amounts to 0.8840. 

Thus, according to (321, the total heat flux is given 
by 

In the cases considered by us, the frequency depen- 
dence of Z,(w) was taken in the form (25), i.e., 

where G, is independent of the frequency w .  Recogniz- 
ing that w,= k,T,/h, we can rewrite (35) in the form 

FIG. 3. 

TABLE I. Values of the functions w,(x). 

I Y 1  (=, I w.(" 1 I 1 wx,:(=, 1 uz,*w, 

*The asymptotic formula (33) yields at x = 0.10 
the values w,/,-1.1450 and ~ 2 / 3 " l .  028. 
**The asymptotic formula (34)at x=  0.39 yields 
w, /z - 0.9663 and wtI3 0.9737. 

For a wide gap, when w, (xl) = w, (x,) = 1, we have 

and for a thin gap, when expression (33) i s  valid, i.e., 
w,(x) =A,/% =IT tic~,/k,Tl, we obtain 

Thus, the exponents of T in the curly brackets are  
smaller by unity in the case of a thin gap than in the 
case of a wide one. In the anomalous skin effect, G,/, 
does not depend on temperature," so  that the entire 
temperature dependence of the total flux is given by the 
curly brackets in (36)-(38). In the case of the normal 
skin effect on the other hand, according to (23) and 
(24), 

G,,,= [ (&a, (T,) )"'+ (8na~(T,) )'!'I-' 

and i t  i s  necessary generally speaking to take into ac- 
count the temperature dependences of the conductivi- 
ties. 

For comparison with experiment i t  is more conven- 
ient to use the normalized flux-the ratio P/P,,,, 
which according to (36) and (37) is given by 

It i s  seen therefore that i f  T, is as little as double T,, 
the ratio P/P,,, is practically equal to the universal 
function w,Cr,). 

At small temperature differences, formula (36) 
changes into a differential equation 

The universal function u,,,(x) i s  represented by curve 
2 of Fig. 3. The circles show the mean values of 
Hargreaves' experimental  result^.'^ 

Both the asymptotic behavior of curve 2 with decreas- 
ing I and the position of the maximum agree well with 
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experiment. The difference in the depth of the mini- 
mum can be due either to the fact that the experiment 
was carried out with thin cm) chromium films o r  
to the possible influence of the dispersion of o at room 
temperatures (T, = 323 K, T, = 306 K). We note that in 
the experiments of Refs. 12 and 20 the growth of the 
heat flux P(1) begins a t  gap widths larger by one order 
of magnitude than expected from the theory. We have 
therefore doubts concerning the results of these ex- 
periments. 

5. CASE OF ARBITRARY MEDIA 

We turn to the solution of the problem of heat ex- 
change under more general assumptions with respect 
to the media 1 and 2 than in Sec. 2 above, where our 
purpose was to demonstrate the usefulness and con- 
venience of using the generalized Kirchhoff's law. 

As already mentioned, to calculate the heat flux in 
the gap i t  is necessary to calculate the Joule losses 
produced in each of the media by certain auxiliary (dif- 
fraction) fields. These fields (Green's functions) had 
to be known only in the gap, where the point sources of 
these fields (dipoles) were also placed. In this situa- 
tion, it was convenient to use the concept of generalized 
surface impedance (see, e.g., Ref. 21). The boundary 
value of interest to us then splits into two: 

a) Determination of the dipole field in the gap between 
the media, which a re  described by their surface im- 
pedances. By the same token, the final expression for 
the energy flux of the thermal field contains these im- 
pedances. 

b) Calculation of the general impedances of the two 
media themselves, which i s  a separate problem. 

We recall the definition of the generalized surface 
impedance, bearing in mind the case of flat boundary 
of interest to us. Assume that we a re  dealing with 
medium 1, which fills the half space z <0,  and locate 
on i ts  boundary z = 0 the axes X, = x and x, = y . The pos - 
sibility of introducing a general impedance is based on 
the fact that the solution of the boundary-value electro- 
dynamic problem inside a linear medium, when the 
tangential components of only the electric field (or only 
the magnetic field) a re  specified on i ts  boundary, i s  
unique and determines the linear connection between 
the values of the components of both fields on the bound- 
ary of the medium. Denoting by E(t, x) and H(t,x) the 
tangential components of the fields on the boundary (x 
={xl,x,) is the two-dimensional radius-vector in the 
plane z = O), we write down the indicated connection in 
the form 

where n i s  the unit inward normal vector to the bound- 
ary of the medium z = 0, the spatial integration i s  over 
the entire plane z = 0, the indices n and B take on val- 
ues 1 and 2, and summation i s  carried out a s  usual over 
the repeated index B. The matrix g a 6 ( ~ , p )  i s in  fact 
called the generalized impedance tensor of the medium. 

A connection of the form (40) between .E and H covers 
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the case when the medium i s  anisotropic and is spatial- 
ly nonlocal, but i s  homogeneous in the planes z = const; 
this, of course, does not exclude a dependence of its 
properties on z .  

Changing over in (40) to the Fourier transforms 

and analogously for H, we obtain 

where 

is the impedance tensor in the w u representation. 

Of course, the concrete expression for the impedance 
(42) depends essentially on the structure of the medium. 
If, for example, the medium is isotropic in the planes 
z = const (we call this a z -uniaxial medium), then 
5,,(w, x takes the form 

where 5, and t;, are  the transverse and longitudinal 
(relative to  n )  impedances and depend only on the mod- 
ulus of x ,  i.e., on X. = (uf + u We note that the 
inverse tensor tag= 5 2 is similar'in form, with t;, = 1/ 
5* and 5 ,  = 1 /5,. In the particular case of a completely 
isotropic and homogeneous semi-infinite medium with 
material constants E,(w) and pl(w), the internal bound- 
ary-value problem (problem b) is very simple and 
yields for 5, and c, the expressions 

The sign of the root should be chosen such that Rep, 
> 0 (the waves attenuate in the interior of the medium), 
and in the case of a transparent medium, when p, i s  
either real  o r  imaginary, it is necessary to choose for 
imaginary p, = ih, the value of the root with h, > 0 
(waves traveling away from the boundary). Putting 6, 

= 1 and p, =1, we obtain from (44) the vacuum im- 
pedance gho,', for which 

If we can neglect x in (44) compared with k 1 zrp I, 
then 

s o  that the tensor 5 a6(w, u ) =g(w)6,, does not depend on 
H and formula (41) takes the form 

This is precisely the case dealt with in Sec. 4, i.e., the 
case of well-conducting metals with 1 ~ ( w )  /<< 1. 



We emphasize that in the present section we make no 
assumptions whatever concerning the smallness of 
grd)(w, X ), SO that the results pertain to any spatially 
nonlocal and anisotropic medium that i s  inhomogeneous 
in z .  

Since the correlators of the fluctuation field a re  de- 
termined by the Joule losses of the diffraction fields, 
we present an expression fo r  these losses in the medi- 
um in terms of i ts  generalized impedance and the tan- 
gential components of the electric field at the boundary. 
The losses a re  expressed by the flux of the Poynting 
vector through the boundary z = 0: 

for fields that vary harmonically with time 

the averaging of (46) over the period 21r/w and the use 
of (41) yields for the averaged flux Q=(q( t ) )  the ex- 
pression 

where we have used the surface-admittance tensor 
td(w, x ) = 5$(w, X )  and introduced the Fourier trans- 
forms of the components E(w, n ). 

We can now turn to the principal problem of heat ex- 
change between two media separated by a vacuum gap 
of width I ,  assuming that the surface-impedance ten- 
so r s  of both media g, and g, a r e  kno,wn [problem a]. 
Finding the mixed heat losses of the diffraction fields, 
produced by suitable oriented dipoles with moments 
p and m, located in the gap (we omit here the straight- 
forward but rather cumbersome derivations), we a r -  
rive a t  the following final expression for the resultant 
heat flux: 

where to denotes the matrix inverse to the vacuum im- 
pedance, I i s  a unit matrix, and the cross marks the 
Hermitian-conjugation operation. 

We note certain properties of the quantity N(w,.u ). 
Although expression (48) does not reveal explicitly the 
symmetry of N(w, x )  with respect to permutation of the 
media 1 = 2, it can be verified that N(w, x )  does pos- 
sess  this symmetry. Further, if we replace in (48) all 
the matrices by their inverses (6, - go, 5, - 5,, 5,- E,), 
then N ( w ,  x ) remains unchanged. Nor does N (w, x ) 
change in the case when g, and g , are  replaced by the 
matrices i, and 5 ,  obtained with the aid of the transfor- 
mat ion 

In this case there i s  no need to transform the vacuum 
impedance, since it is invariant to this transformation 
(it is easy to verify that to= - &go&). It follows from 
the foregoing that the heat exchange between media with 
impedance matrices g, and 5, is the same as between 
media with impedances 6, and g,. This property r e -  
flects the principle of duality of the fields E and H. 

We consider now the value of N(w, x) for z -uniaxial 
media. In this case the surface-impedance tensors a re  
given by (43) and the trace in (48) can be easily cal- 
culated by directing the x ,  axis along the vector u (in 
this case the matrices f; ,, g,, and 5, become diagonal). 
As a result we have 

Since all the quantities in (50) depend only on x = ( x i  
+ x ;)l1', we can integrate in (47) over the polar angle. 
If we substitute in (50) and (51) the impedances (44) 
corresponding to fully isotropic media, then we arrive 
a t  formulas (4) and (5). 

The results presented a r e  applicable only to nongyro- 
tropic media, but can be readily extended also to the 
case when gyrotropy i s  present. As shown earlier,' 
in this case i t  is necessary to calculate the heat losses 
of the diffraction fields with the external magnetizing 
field Bo inverted. Thus, the formulas obtained will 
apply also for gyrotropic media, if we substitute in 
(48) and (49) surface impedances calculated with the 
field B, inverted. It should be noted that the homogen- 
eity assumed above for the media in the planes z 
= const means that the magnetizing field can be oriented 
arbitrarily but must be uniform. 

We take pleasure in thanking S. V. Biryukov and E. A .  
Galst'yan for the computer calculations. 

 his circumstance is ignored in Caren's paper,* in which the 
calculation of the energy density in an equilibrium rectangular 
resonator and of the energy flux in i ts  walls, performed with 
account taken of only discrete wave modes, was extended also 
to those cases when all o r  some of the dimensions of the re- 
sonator decrease without limit. 

2 ) ~ u c h  later, but from the same point of view of observing the 
near field, a purely radiotechnical (spectrally selective) 
method of its variation was proposed,' but a t  the present time 
the realization of this method entails apparently great diffi- 
culties. 

S ) ~ h e  generalized Kirchhoff's law contains the average energy of 
the oscillator 8 ( w ,  t ) ,  but the zero-point oscillations make 
under no condition any contribution to the energy flux and a r e  
therefore discarded here: n, =@(w, TI) - R w / 2 .  

')AS stated earlier, the generalization of (4) and (5) to aniso- 
tropic media and to the presence of spatial dispersion is given 
in Sec. 5. 

5)Integration with respect to w yields P = o ,  (T! - ~ ; ) n ' ,  where 
a, is the Stefan-Boltzmann constant. 

6)~umps,  of the same origin, in the average spectral charac- 
teristics of the thermal field a r e  encountered also in other 
waveguide problems (see, e. g.. Ref. 6. P9). 
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Redistribution of the vibrational energy in the course of 
laser excitation of high vibrational levels of polyatornic 
molecules 

V. M. Akulin and N. V. Karlov 
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Zh. Eksp. Teor. Fiz. 79,2104-2118 (December 1980) 

An analysis is made of a method for calculating the rate coefficients of transitions in a laser field between 
vicinities of resonances in the band structure of the vibrational quasicontinuum of polyatomic molecules. It is 
shown that the dependences of the rate coefficients on the molecular energy and on the laser frequency are 
governed by the type of the strongest anharmonic interaction which locks the excited mode and by the nature 
of the redistribution of the vibrational energy of the molecules between the degrees of freedom. A study is 
made of the possibility of using the model of complete stochastization of vibrations in the description of the 
excitation of a molecule by infrared laser radiation. A model for the increase in the vibrational energy of the 
directly excited mode is proposed and this model gives the best agreement with the experimental frequency 
and energy characteristics of the SF, and SiF, molecules. The available spectroscopic data on the SF, 
molecule are used to find the dependence of the threshold energy of stochastization on the laser interaction 
frequency. 

PACS numbers: 33.80. - b, 33.10.Gx, 33.M.Ea 

T h e  p r o c e s s  of i sotopical ly  selective collisionless 
in f ra red  d i s soc ia t ion  of molecules in a laser f i e ld  is 
attracting attenti~nl '~ and t h i s  a p p l i e s  pa r t i cu la r ly  to 
the  n a t u r e  of t h e  exci ta t ion of high v ib ra t iona l  states of 
polyatomic  molecules.4~9 T h i s  includes de te rmina t ion  
of t h e  c h a r a c t e r i s t i c s  gove rn ing  t h e  exci ta t ion d y n a m i c s  
and of t h e  f requency and  e n e r g y  dependences  of t he  ef -  
f iciency of the  laser interact ion,  s t u d i e s  of t h e  methods 
and m e c h a n i s m s  of t h e  r ed i s t r ibu t ion  of t h e  v ib ra t iona l  
energy of t h e  molecules between t h e  d e g r e e s  of f r e e -  
dom,  etc. In contrast to e a r l y  s t u d i e s  of t h e  interaction 
of laser rad ia t ion  wi th  t h e  v ib ra t iona l  degrees of f r e e -  
dom of  molecule^,'^^" recent w o r k  on t h e  exci ta t ion of 
polybtomic molecu les  h a s  l e d  t h e  m a j o r i t y  of a u t h o r s  to 
t h e  conclus ion of t h e  need to s e p a r a t e  t h e  p r o b l e m  into 

two parts: s p e c t r o s c o p i c  a n d  kinet ic .  The spectro- 
s c o p i c  p r o b l e m  involves  investigation of the internal 
interactions and f o r m a t i o n  of t h e  spectra, w h e r e a s  t h e  
k ine t i c  p r o b l e m  involves  t h e  d y n a m i c s  of excitation of 
such spec t roscop ica l ly  complex s y s t e m s .  

An a p p r o a c h  to the solution of t h e  p r o b l e m  of the  ex- 
c i t a t ion  of a po lya tomic  molecu le  in two stages i s  sug- 
g e s t e d  in Ref. 6.   he f i r s t  s t a g e  is a cons ide ra t ion  of 
t h e  m o d e l  p r o b l e m  of exci ta t ion of a complex  mul t i level  
quantum s y s t e m  in a laser f ie ld  a n d  de te rmina t ion  of 
t h o s e  c h a r a c t e r i s t i c s  of t h e  s p e c t r u m  and  o p e r a t o r  of 
the in t e rac t ion  wi th  t h e  f i e ld  which govern the d y n a m i c s  
of t h e  populations.  T h e  nex t  s t a g e  should  b e  d e t e r m i n a -  
t i on  of t h e  c h a r a c t e r i s t i c s  of Ref. 6 f o r  real molecu les  
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