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The confinement mechanism in the two-dimensional quantum electrodynamics of massless fermions is 
investigated. The confinement occurs because the quarks make a transition to nonlocalized states and 
therefore become unobservable. These states consist of a set of chiral and charged vacuums. The 
delocalization of the quarks has the consequence that the electromagnetic field appears to acquire the ability 
to produce nonvanishing charges. This effect arises for fields that change the two-dimensional topological 
number. The participation of vacuum states in such a "topological effect" means that the charge screening 
processes violate relativistic causality. If the theory is to retain a consistent interpretation, it is necessary that 
the confinement be such that the charge and chirality of the quarks become unobservable. The physical 
picture of hadron production and its connection with the topological effect are also discussed. 

PACS numbers: 12.20.Ds, 12.40.Bb 

1. INTRODUCTION states (i.e., states with vanishing momentum). This 

In this paper, we shall investigate the confinement 
mechanism in two-dimensional quantum electrodynam- 
ics (QEQ) of massless fermions (which we shall call 
quarks).1 It will be shown that electromagnetic fields, 
which change the two-dimensional topological number 
(topological fields) give r ise  here to physical process- 
e s  which lead to screening of the charge and chirality 
of the massless quarks. A feature of processes in- 
volving topological fields is the noncois ervation of the 
number of quarks and their right, R, and left, L, char- 
ges (i. e., chiralities) in the causal space-time regions 
determined by the action of the electromagnetic field. 
Under such conditions, the quarks cease to be physi- 
cally interpretable objects. If the theory is to have a 
physical interpretation, it is necessary to have con- 
finement, which i s  ensured in the model by the exis- 
tence of a system of degenerate vacuum states: The 
charge and chirality which disappear from the causal 
regions go over to these states. The present paper is 
devoted to the study and physical interpretation of 
these phenomena, and also the associated space-time 
picture of the screening and production of hadrons in 
Q E 4 .  

The existence of field configurations that change the 
topological numbers of gauge fields has been noted in a 
number of papers,2d in which phenomena associated 
with these field configurations were studied. Some in- 
teresting properties of systems admitting fields with 
topological number were found, but an understanding 
of the physics of the phenomenon was not achieved. In 
the simplest confinement model-massless QED2-the 
processes that occur in the case of topological fields 
can be studied in detail. 

The charge screening in QEDz has been known since 
the work of ~ c h w i n ~ e r . '  It was shown later7 that the 
excitation spectrum of the model consists of neutral 

means that with the passage of time a local charge must 
be neutralized, becoming compensated by the screening 
charge. The compensating charge can ar ise  only as a 
result of the action of the electromagnetic field of the 
original particle. But one would not expect the elec- 
tromagnetic field to change the right and left charges 
and chirality, since i t  should produce only pairs qRGR 
o r  qLQL of right- o r  left-handed quarks and antiquarks. 

This paradox can be explained in the formulation of 
the problem in which the electromagnetic field is re- 
garded a s  an external field and the back reaction of the 
quarks on the field is ignored. It is then found that 
when quark-antiquark pairs a r e  produced by topological 
fields in the mathematical vacuum of the quarks the 
number of particles with very small momenta p - V" 
(V is the volume of the system) in the produced state 
is necessarily nonzero. Since quarks with such mo- 
menta make a small contribution "v-' to the matrix 
elements of a l l  local quantities (energy-momentum, 
charge, and chirality densities), there is in this prob- 
lem in the limit V-* apparent nonconservation of the 
right and left charges and the chiralities, and this can 
explain the appearance of the screening charges. 

This phenomenon is the physical explanation of the 
nonconservation of the right and left charges in Q E q ,  
which follows already from the existence of the Adler 
anomaly.' In the Schwinger model, the axial current 
$ (x) of the massless quarks satisfies the equation'' 

where EG) = F&) is the intensity of the electromag- 
netic field, g is the dimensional charge of the model, 
and m2 Z g 2 / n .  If, and only if, a topological field is 
present, Eq. (1) leads to nonconservation of the chira- 
lib3 

massive bosons. Charged and chiral systems have al- K = - 1 jo5 (x) dx ,  
ready been studiede: Stationary states with quantum g 

numbers exist in Q E q  only in the form of vacuum since i t  follows from (1) that 
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where AQ, is the change in the two-dimensional topo- 
logical charge. 

In two-dimensional space, the chiral current can, 
because of the properties of the two-dimensional ma- 
trices Y, ( ~ 5 7 ,  = E, ~ 3 ,  be expressed in terms of the 
vector current j, 6 =g -'jb j =g -'jl): 

-. The nonconservation of the cirality (2) is nonconserva- 
tion of the right and left charges and is associated with 
nonconservation of the particle number. 

Of course, it is well known" that the gauge-invariant 
definition of the electromagnetic current and the axial 
current requires further discussion, since products of 
quark operators taken a t  one point a r e  not defined (for 
more detail, see Sec. 2). As a result, the electromag- 
netic current is not directly related to the particle num- 
ber in an arbitrary gauge. However, i t  was shown in 
Ref. 8 that in the Coulomb gauge the chirality 

is equal to the difference between the number of right- 
and left-handed quarks. Then nonconservation of chir- 
ality is indeed nonconservation of the number of quarks 
(minus the number of antiqwks).  The absence of non- 
physical degrees of freedom in the Coulomb gauge 
means that this gauge is also convenient for the physical 
interpretation of the phenomena that occur in the model 
and for the investigation of the physical states and their 
variation in time. Therefore, in this paper we shall 
use the Coulomb gauge. 

These results obtain in the problem with an external 
topological field offer hope that topological fields will 
arise in the self-consistent problem of interacting 
massless quarks when there is screening of the quark 
charges. But the nonconservation of the quantum num- 
bers in processes of screening of local charges is no 
longer explained by the production in topological fields 
of particles with small momentum p - V-'. The role 
of the topological fields is now to produce quarks di- 
rectly in one of the vacuum states with quantum num- 
bers. Again there is an apparent nonconservation of 
the quantum numbers, since the right and left charges 
a re  not localized in the vacuum states. Moreover, the 
interaction of the local and nonlocal states of the sys- 
tem due to the topological fields leads to the existence 
of noncausal effects like the transfer of charge from 
one region to another dynamically independent region. 

Summarizing what we have said above, we can assert  
that the phenomenon of effective nonconservation (V 
-") of the number of quarks in topological fields by it- 
self means that a theory will be physically consistent 
only i f  the charge and other quark characteristics a r e  
in principle unobservable, since their causal conser- 
vation cannot be ensured. Only the complete compen- 
sation of the topological fields that arise with the 
charge prevent the processes in which this charge is 
not conserved. This means that the phenomenon ad- 

mits a consistent interpretation only in a theory with 
confinement. 

The development of the system with time and the 
physical interpretation of the resulting phenomena a r e  
most readily studied in the Hamiltonian formulation. 
This is set forth in Sec. 2, in which we present a con- 
venient computational formalism in which one can read- 
ily find the wave functions of the states at  all  times and 
the expectation values of the quantities in the model in 
these states. In the same section, we investigate the 
spectrum of physical states of the Schwinger model. 
Important here is the huge degeneracy, which already 
exists in the system of free massless fermions.* In 
two-dimensional space, this degeneracy has the con- 
sequence that the states of the free system can be con- 
structed in two representations: quark and boson. Of 
course, only the interaction, which lifts the degeneracy, 
dictates the choice of the boson representation, which 
signifies charge confinement. But the existence of the 
two representations of the free system indicates where 
the charged and chiral states disappear to in a theory 
with confinement. For  massless quarks, all such 
states have vanishing momentum (or rather, p - V-' for 
finite volume V of the system), i. e., in the limit V-m 
they form new vacuum states. The total number of 
states is not changed when the interaction is switched 
on, and the neutral hadrons a r e  augmented to the com- 
plete system by vacuum states with quantum numbers. 
It is these states that a r e  important for understanding 
the processes of charge screening and the vanishing of 
the chirality and other quark characteristics. 

Section 3 is devoted to studying the topological effect 
which ar ises  in an external tcpological field. We have 
already discussed the results of this section. In Sec. 4, 
we consider a QEQ system in a finite spatial volume 
V. .When the problem is formulated thus, one can veri- 
fy the fulfillment of the conservation laws for the parti- 
cle number, charge, and chirality. If a topological 
effect is present, the conservation laws a re  satisfied 
only in the volume a s  a whole. The conservation laws 
a r e  noncausal in nature, since the charge and chirality 
extend beyond the domains of influence of the field of 
test charges. 

The development in time of the particle screening 
phenomena following qR$ pair production'0 is investi- 
gated in Sec. 5. The topological effect of the field pro- 
duced by the separating particles effectively transforms 
the system already at times t -l/m into a neutral sys- 
tem with vanishing right and left charges. The field 
produces screening particles and limits the growth of 
the topological charge (2). The time a t  which the topo- 
logical charge ceases to grow may be called the con- 
finement time. We investigate the effects that ar ise  
from the interaction of the electromagnetic field of test  
charges with particles of the physical vacuum. 

At larger times, t > l / m ,  there is a rapid growth (pro- 
portional to t2) in the number of quarks with momenta 
P >>m. At times t "#/m2, their distribution goes over 
into the haclron distribution of the parton model (l/p). 
The leading pair of quarks loses energy, and after a 
time t -p,,/m2 participates on an equal footing in the 
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formation of the hadrons. The produced hadrons be- 
come spatially separated from the quarks of the g,?' 
pair. 

The time t - p / m 2  of establishment of the hadron dis- 
tribution can be called the hadron production time. 
The picture of the transition in time of the momentum 
distribution of the quarks into the momentum distribu- 
tion of the hadrons is the same a s  in Refs. 10 and 13, 
namely, the fastest hadrons a r e  the ones which a re  
produced last. 

2. QEDz IN THE HAMILTONIAN FORMULATION 

In this section, we consider and solve QED2 in the 
Hamiltonian formulation, which will give us  a simple 
technique for calculating al l  characteristics of the 
model. It will be convenient to consider a Q E Q  sys- 
tem in a finite volume v=PL(-Ls x s  L). In the Cou- 
lomb gauge, the Hamiltonian of such a system ise 

H=Ho+Hc; 

Here, Jl,(x) and $Z (x) a r e  the operators of the fields of 
the right- and left-handed particles: 

As is explained in Ref. 8, the Hamiltonian (4) describes 
a system with total charge 

L 

4 =s p ( x ) d ~ .  
-L 

The actual form of the volume-dependent terms in (4) 
is determined by the choice of the external compen- 
sating charge (see Ref. 8 and Sec. 4 of the present 
paper) and the choice of the periodic boundary condi- 
tions for  the ~chradinger  operators + L L ( x ) .  

The Hamiltonian (4) contains the charge density op- 
erator p(x ) .  Like the current density operator j ( x ) ,  it 
is not properly defined, since the product of two local 
operators, $J;,~(X) and & & ( x ) ,  taken at  one point is 
singular." As was noted in Ref. 8, this indeterminacy 
can be correctly eliminated if one makes the calcula- 
tions, not with @LeL(x) and @R,Lb), but with the opera- 
tors af,, &) and b',, b) of creation of particles and 
antiparticlesn: 

In reality, the operators a;,, and 62,' are  nonlocal, 
which is reflected in the nonlocal nature of the commu- 
tation relations between them: 

It is the nonlocal nature of the commutation relations 
(7) that makes it possible to eliminate the ambiguity in 

the operators p b )  and j b ) .  One can showa that by the 
operators p(x) and j b )  it is necessary to understand 

[Here, o R b )  and p ~ ( x )  a r e  the operators of the density 
of the right and left charges.] These operators a r e  
gauge invariant and correctly reproduce the well-known 
Sc hwinger anomaly ": 

To derive Eq. '(91, it is sufficient to use Eqs. (7) and 
(8). In such an ap roach, the usually employed sepa- 
ration procedure7*' is superfluous. 

The operator p(x) satisfies the continuity equation 

a p l a t + a j l a ~ = o .  (10) 

To obtain (lo), i t  is sufficient to calculate the commuta- 
tor of p(x)  with the Hamiltonian. But if we find the 
commutator of the current density jb) with the Hamil- 
tonian and use Eq. (91, we arrive at Eq. (11, i. e., the 
Adler anomaly in QEQ. 

In the Coulomb gauge A, =0, which we use throughout 
in what follows, Eqs. (8) reduce to the usual j, = WL 4, 
where f l  is expressed in terms of the creation and anni- 
hilation operators. Therefore, in this gauge the total 
right and left charges a r e  directly related to the number 
of right- and left-handed quarks, N ,  and NL, minus the 
number of antiquarks, N ,  and mL: 

L 

QR - P R  ( z )  d ~ 3 N n - m ~ .  
-L 

We have already mentioned this circumstance in the 
Introduction. 

A complete solution of the QEDz model is achieved by 
its bosonization (our approach is close to th&' of Ref. 
14). We define the operators (P > 0) 

Then i t  follows from the expression (9) for the Schwing- 
e r  anomaly that these operators commute a s  ordinary 
boson creation and annihilation operators: 

[ C R + ( P ~ ) .  en (P"') I = [ c L + ( P ~ ) ,  C L ( P ~ ' )  I = V ~ P ~ P ~ V .  (1 3) 

It i s  readily verified that to accuracy 1 / ~  the Hamil- 
tonian Ho in Eq. (4) can be expressed in terms of the 
operators C; and ci  : 

1 
HO = T ~ ~ n [ ~ ~ , + ( ~ n ) ~ ~ ~ . ) i - c ~ + ( ~ n ) c r . ( ~ . )  I .  (14) 

,,">li 

This is proved in Appendix 1. The complete equiva- 
lence of the expressions (4) and (14) for Ho was not 
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noted in Ref. 14, and therefore the model was not com- 
pletely solved there. The Coulomb energy Hc can also 
be expressed in terms of the operators Restrict- 
ing ourselves to the case Q = 0, we have 

Equations (12)- (15) show that the QEDz model is 
equivalent in the limit to the model of neutral 
massless bosons interacting in accordance with (15). 
The Hamiltonian H = Ho + Hc can be diagonalized by 
going over to the operators C(P) and C'(p): 

where 

Thus, we obtain the well-known result of Ref. 7: The 
physical states of the Schwinger model a re  formed by 
free massive bosons. 

It is obvious from the form of the Hamiltonians (14) 
and (15) that in the vacuum state of the model there is a 
condensate of correlated ci(p)ci (p) pairs of massless 
excitations. The wave function of the vacuum state is 
readily found to be 

is a normalization conatant). In such a vacuum con- 
densate, the boson naturally acquires mass. 

The Hamiltonian (16) of the free massive bosons de- 
scribes the development of the system in time. It is 
extremely simple in terms of the operators C(p) and 
c*(P). The quark structure of the wave functions of the 
physical states can be determined by Eqs. (8), (12), 
and (17) if the quark structure of the vacuum is known. 
In particular, i t  was calculated in Ref. 8 in the infi- 
nite-momentum frame. 

The bosonization of the Schwinger model (14)-(16) 
means that i t  does not contain charged and chiral exci- 
tations, i. e., states with energy and momentum dif- 
ferent from the vacuum values. It is convenient to have 
a representation of the f ermion operators qR= b )  and 
0 in which the boson nature of all the excitations 

with momentum p +  0 (as V - s )  is explicitly taken into 
account. For this, we must separate from the opera- 
tors of the fermion fields the part relating to the states 
with very small momentum (p, = n n / ~ ,  n = 0, i 1, . . . , 

No). In the limit V-W, this part, UR and UL, does 
not depend on the spatial coordinates, since the mo- 
mentum operator does not contain states with P - T'. 

We show that the required representation for 
must be written in the form2' 

Equation (19) is written down in such a way that the 
operator uRJ, which it defines commutes with the opera- 
tors c iL (p )  and cR.L(~):  

This can be verified directly by using (12) to establish 
the commutator of csL (p) and C*). By virtue of (201, 
the operators and o also commute with the 
Hamiltonian and with the momentum operator, since in 
accordance with Eqs. (14)-(16) these last can (for Q 
=O) be expressed solely in terms of cR&(p) and C ; . L ( P ) .  

The operators UR,L and ofsL must be normalized in 
accordance with 

if the sums in (19) are taken over all values of the mo- 
mentum A, = M / L  except p, = 0. If the sum begins with 
some number No, then on the right-hand side of (21) we 
must write No. However, these changes are unimpor- 
tant in the calculation of all matrix elements with 
+R'RcCQ- 

Indeed, it is readily verified that under the condition 
(21) the anticommutator of G O L k )  and $JRLh), defined 
in accordance with (19), is 

a s  i t  must be. To calculate the commutator of the ex- 
ponential factors, we use here the formula 

The anticommutators {qRb), $~Cr')),(ll~(x), $ J ~ ( x ' ) } ,  etc., 
vanish a s  ~+m(- l /@) .  

Further, the currents pRs k )  can, when (19) is sub- 
stituted in (8) and a,& and b , ~ ,  a re  calculated in 
terms of by means of (61, be reduced to the form 

which is obviously identical to (12). Finally, subatitu- 
ting (19) in (41, we obtain the expression (14) for Ho. 

The representation (19) is very convenient for cal- 
culating Green's functions and the expectation values of 
local quantities and for investigating the development 
of processes in time. Replacing in (19) the operators 
c(p) and c'(P) of the massless bosons in accordance 
with Eqs. (17), we can solve the same problems in the 
interacting the0 ry . 

For Q = 0, these operators also commute with the The possibility of formulating the model by means of 
Hamiltonians (14) and (151, which are constants of the the representation (19) indicates the existence (as V 
motion. -") of infinite degeneracy of the vacuum with respect 
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to the charge and chirality. Besides the vacuum state 
CJO (18)' one can have states formed by multiplying no 
by an arbitrary number of operators URJ.  or crkL (Ref. 
7): 

Since the operator a does not depend on the coordinates, 
and the Hamiltonian (14)-(16) does not depend on o, 
the states a, are  indeed vacuum states with vanish- 
ing energy and moment~m.~' In the absence of inter- 
action and for finite V, the states 4, would describe 
the possibility of having quarks with very small mo- 
menta p - v". Because of the interaction Hc, their 
quark structure and physical properties a re  nontrivial. 
It is  to these states that the charge and chirality go in 
a model with confinement of the massless charge. 
Their properties can be investigated by the method set 
forth in Ref. 8. 

The computational formalism based on Eqs. (19) and 
(17) enables us to find how the charge and chirality are 
distributed in the vacuums (25). To establish this, it 
is sufficient to calculate the matrix elements which 
describe the overlapping of the charge or  chirality in 
the vacuums a, and in locally organized packets 
&Gc)ao or (Y)BO. Then we obtain 

(no 1 O R + J . ' ~  (x) I Qo)=CL exp {-mVISn), (26) 
sinZ p (x-y ) 

(Q,lo,+o,$R(x)$L+ (y) 1Q0)=C2 exp -m 2j p h g  d p )  (27) 
(v-m). The constant coefficients in these expressions 
do not depend on the volume V. In accordance with 
(26), the charge in the charged vacuums cannot be dis- 
tributedover the whole of space of (p" V - l )  but goes to the 
edge of the volume and is screened (see Sec. 4). The 
chirality corresponding to total charge Q = O  is delo- 
calized. Equation (27) also indicates the existence of a 
chiral condensate, since the factor 1 / ~  is absent. 

Thus, the huge degeneracy of the states of the free 
field of the massless quarks in the limit V-* makes 
possible the existence of the representations a s  dif- 
ferent a s  (4) and (14). But it i s  only the interaction 
that determines the final structure of the theory, i. e., 
the existence o r  absence of charged particles, fer- 
mion excitations, and confinement or  nonconfinement 
of the charge. The interaction lifts the degeneracy and 
selects the combination of states that is described by 
the physical wave function. The existence of the de- 
generate vacuums (25) in the Schwinger model is a di- 
rect consequence of the confinement and augments the 
hadronic states to a complete system. 

3. TOPOLOGICAL EFFECT 

The physical explanation of the nonconservation of 
the particle number in topological fields, which is a 
direct consequence of Eq. (I), must be sought in the 
properties of the process of q,& and qLiL pair pro- 
duction by the electromagnetic field, since it follows 
from this equation that this effect also exists in the 
case of an external field E)RGC, t). Therefore, we con- 
sider a system of free fermions to which an external 
electromagnetic field is applied at the time t = O  and we 
calculate the current j b )  and the charge density pb )  

for t > 0 .  They can be determined on the basis of Eq. 
(1) and the continuity equation (10): 

aj/at+ap/ax=-m'g-'~, ap/at+aj/a+=o. (2 8) 

If the initial state of the system was the vacuum, Eq. 
(28) must be solved with null initial conditions. In this  
case, we obtain from (28) for the densities p,k, t) and 
p~ (X, t) of the right and left charges 

The total charges 

a r e  nonzero if E k ,  t) is a topological field [QT(t) is the 
topological charge of the field at the time t], which sig- 
nifies a change in the chirality, which would appear to 
be impossible when an electromagnetic field acts. 

Let us investigate what state develops under the in- 
fluence of the electromagnetic field from the mathe- 
matical vacuum; to do this, we find its wave function 
*(t). This is most readily found in the boson repre- 
sentation, in which the Hamiltonian of the free fer- 
mions in the external field has the form (Coulomb 
gauge) 

We seek *(t) in the form 

Substituting (32) in the Schrodinger equation with the 
Hamiltonian (31), we find for the functions F and d the 
expressions 

The initial conditions for the functions F and d are 
chosen to make the function Q(t = 0) describe the math- 
ematical vacuum 1 0). 

The function F in (32) ensures that the normalization 
of P(t) is conserved in time. The summation in (32) is 
over all p except p = 0 (see Sec. 2). Separating from 
(33) the volume-dependent part, we obtain 

(p does not depend on the volume), where ~ ~ ( t )  is the 
topological charge defined in (30). The calculation of 
the expectation values of p,,,b, t) in the state @(t) 
leads to Eq. (29). 

From the expression (32) for *(t), we can separate 
the part responsible for the nonconservation of the num- 
ber of right- and left-handed particles: 

Y ( t ) = Y O ( t ) % X ( t )  10); (35) 
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does not change QRL, while x ~ ( t )  changes the 
charges by Q&). This procedure is not unique, but 
%(t) always includes the singular parts of the sums 
with small momenta p in (32). If the separated part 
has the form 

x h  ( t )  =v-~Q.~I)I ex, {- Tz t (--) 2n " ( - i p t ) ~ ~ ( t )  (..+(PI -ct ( P ) )  ) . 
c-0 

(36) 
then, using the representations (19) and the relation 
cR& (p) 10) = 0, we can rewrite this expression in the 
form 

respectively, for &. > 0 and QT < 0. 

This method of separating x ~ ( t )  is fairly arbitrary; 
for example, the field can lead to the appearance of the 
factor 

* . ( ~ O - - t ~ + t ) $ ~ +  (&+to-t) 

at an arbitrary point xo, to where E # 0 and not only at 
the point xo =to = 0, a s  in (37). How ever in any such 
representation the part which changes QR and QL will 
contain the operators on& (ui&),  i.e., quarks of very 
small momenta. 

We consider a simple example that explains the situ- 
ation. Suppose E # 0 only at one point x~ to and that 
this field corresponds to the production of one right- 
handed and one left-handed particle (Q,=-Qt = 1): 

Then apart from an unimportant constant we obtain 

Reversal of the sign of E in (38) would lead to the re- 
placement of particles by antiparticles, a s  in (37). 
Thug the field (38) produces causally (at the point 
where E +  0) a separating qRQL pair of local charges 
and a state containing the corresponding anticharges 
with very small momenta (for finite volume, p -v''). 

This assertion becomes even more convincing when 
*(t) is expressed in terms of the quark operators 
and b',&. The expression (32) can be disentangled in 
this manner by means of our procedure in Ref. 8 (see 
Appendix 2). For the field (381, this leads to the very 
clear expression 

\Y ( t )  -Aon+(t-tO+z0) bL+ (zO+tl-t) j a'+ ( z ) d z  5 bR+(z)dzlO> 

- Aa.+ (t-t.+zo) bL+ (z.+to-t)a,+(p=O) b.+ (p=O) 10). 
(40) 

An analogous situation, but with more complicated dis- 
tributions of the local charged packets and states of the 
particles with small momenta, arises for other config- 
urations of the topological fields. 

To prove that the states with small momenta of the 
quarks produced by an arbitrary topological field are 
distinguished, we calculate, for example, the number 
of right-handed quarks with momenta in the interval 
from p to p +dp in the state with the wave function (32): 

We can calculate n,(p, t )  by means of the technique of 

Sec. 2 if we make in accordance with (6) the substitu- 
t ion 

Using Eqs. (19) for &(X) and #R(X) and substituting (321, 
we reduce (41) to the expression 

(43) 

The substitution 

enables us to reduce (43) to a form in which one can 
see explicitly that nR(P, t )  is real and positive: 

- dk 
nR(p, t ) -  jz 1 j dx exp[-ikz-Znia(z, t )  1 1% . (45) 

P 

Here 

(46) 
For small p, the main contribution to (45) is made by 

small k, i.e., large 1x1. In the limit of large 1x1, 
the function a(%, t) is transformed into 

[the field E b ,  t) is nonvanishing in a finite region of 
space]. Therefore, a s  p-0 

(48) 
and we obtain a l/p singularity. For integral QT, the 
expression (48) is not defined. The topological effect 
is discussed in this case in Appendix 3. 

Thus, the topological field ensures local nonconser- 
vation of the charge and chirality, since the particles 
produced in this field include a finite fraction of fer- 
mions with very small momenta. The fermions with 
momenta P - V-I make a contribution to any local char- 
acteristic f (x) of the system which is vanishingly small 
in the limit V--. Indeed, suppose that in the finite 
volume V 

i "  
( x )  = C / ( e m )  cxp ( ~ P " x )  

In the limit V - m ,  the contribution of the first term 
tends to zero a s  1/V, and the contribution of the second 
goes over into the corresponding quantity for infinite 
volume: 

Therefore, an arbitrary finite (and even increasing No 
< V ,  where CY < 1) number of fermion states with small 
momenta is not taken into account in the quantity deter- 
mined in infinite space. Therefore, i f f  (O)+ 0, we can 
encounter nonconservation of quantities such a s  the 
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charge, chirality, or  fermion number, since the sum 
in (49) may give a finite contribution a s  a result of in- 
tegration over the whole of space. 

The local charge produced causally by the topological 
field will be the compensating charge that leads to 
complete screening in the Schwinger model. A neces- 
sary condition for this is the existence of degenerate 
charged and chiral vacuum states t o  ensure that the ap- 
pearance in the system of additional particles carrying 
charge and chirality does not change the states of the 
system. For  the Schwinger model, such vacuum states 
play the same part as the states with momenta fi - V-' 
for the problem in an external field. We emphasize 
that because of the interaction the momenta of the 
quarks in these states have the "normal" order of mag- 
nitudefi-m (Sec. 5). 

The states localized in the complete volume of the 
system can be revealed in the theory only by solving 
the problem in finite volume and calculating a l l  quan- 
tities to accuracy 1 / ~ .  This leads to fulfillment of 
the conservation laws but, obviously, is accompanied 
by noncausal effects. We shall see  this in the follow- 
ing section. 

4. CHARGE SCREENING IN  QED, IN  A FINITE 
VOLUME 

Charge screening in the Schwinger model has been 
known since Schwinger's papers in Ref. 1. In a sys- 
tem of infinite volume, Eqs. (28) for the two compo- 
nents of the current and the Maxwell equation that re- 
lates the field intensity E to the charge density for the 
physical states, 

div E ( x ,  t )  + g p  ( x ,  t )  = 0 ,  (51) 

lead to the equations 

Equations (52) describe explicitly screening of the 
charge, whereas for the chirality a uniform distribu- 
tion in space is also possible. 

The Hamiltonian of a two-dimensional charged sys- 
tem (Q+ 0) is not defined in infinite volume. This can 
already be seen on the basis of Eq. (4) for the Hamil- 
tonian that we have chosen in the Coulomb gauge. We 
remove the arbitrariness which exists herea a s  fol- 
lows. A Hamiltonian can be consistently chosen only 
for a two-dimensional system with total charge equal 
to zero. We therefore introduce an external charge 
(-9) at  a large distance from the physical charges (Q). 
The choice 

does not change the properties of the system within the 
interval (-L, L) and cancels the field outside it. 

We shall call the constructed system a two-dimen- 
sional charged system with charge Q. Equation (51) is 
replaced by 

(The left-hand side commutes with the Hamiltonian, 

and therefore p,, does not depend on the time.) Impos- 
ing on the functions periodic boundary conditions, we 
finally determine the QEDz system in finite volume. Its 
Hamiltonian takes the form (41, and the equations for 
p(x) and j(x) and Eq. (54) in the momentum representa- 
tion have the form (n* 0) 

i r ( p = ,  t ) + i p . i ( ~ . ,  t )  =O, 
j ( p . ,  t )  + ~ P , P  (P., t )  = - m a g - ' E ( p , ,  t ) ,  

For  n = 0, 

since the charge and the total chirality commute with 
the Hamiltonian (4). 

We show that our assertion about screening of the 
charge in this model follows from Eqs. (55). To do 
this, we solve these equations for stationary states 

= 0, j = 0). In this case, p(x) has the form 

. .. 

(57) 
Thus, to exponential accuracy p(x) repeats the distri- 
bution of the external charge. 

For  p,,(x) (53), the entire charge i s  concentrated at 
the edges of the region, which explains the exponen- 
tially small overlapping of the charged vacuum and the 
charged local packet (26). In contrast to this, the 
chiral stationary states permit only a uniform distribu- 
tion of the chirality ( j ( x )  = K/V= const). This also 
occurs in the chiral vacuums (25) in accordance with 
Eq. (27). 

For  p,  # 0, the general solution of the system (55)- 
(56) has the form 

sin o , t  . 
P ( P ~ , ~ ) E -  P(P. .  M)+W m9-t [ P ( P - ,  t - ~ ) - ( - i ) ~ _  

UP" 0 9 "  "lQ I 
mz 

+(-1)",Q, 
o9. (58') 

sin wmt . 
f (P., t )  - - f  (P., t - 0 )  +cos 0 9 . t j ( p . ,  t=O)  , 

0 P. 

while for p, = 0 

The expressions (58) enable one to follow in time the 
development of different initial configurations of the 
local charge. For  example, a point charge a t  the point 
Xo, 

leads to the following spatial distribution of the charge 
a t  the time t: 

d a Q sin o..t 
~ ( ~ * t ) = ( ~ - - ) - ~ - e x ~ ( i ~ ~ ( x - x ~ ) )  a x  v -.. 

As we shall now show, the f i rs t  term in the expres- 
sion (60) is nonzero only in the causal region t 3 Ix  - xo I 
(region I), while the second sum is not zero in the cau- 
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sal  region of the external charge t 2 ( L i x  I (region 11). 
The first sum makes a contribution (3 cos mt to the 
charge, the second Q(1- cos mt). To show that the 
charge density p(x,  t) vanishes outside the causal re- 
gions, we represent each of the sums in the expression 
(60) in the form of a contour integral. Thus, we write 
the first sum in (60) in the form 

But outside the causal region Ix - xo I < t the contour in 
(61) can be closed in the lower half-plane, where the in- 
tegrand 'has no singularities and the integral vanishes. 

The nonconservation of the charge in the regions I 
and I1 is due to the existence of a noncausal current 
which transmits charge from region I to region II and 
vice versa instantaneously: 

The first term in (62) is nonzero in the noncausal re-  
g ions t<)x-xo l  a n d t <  I L * x ~ .  I n thezero thorder in  
V, the current in these regions is equal to the contri- 
bution from the pole in the integral corresponding to 
the first sum: 

Qm 
jnoncauisl =-sin #[0(t-z*-t) -0 (to--Z-t) 1. 

2 
(63) 

Therefore, in the causal regions the chirality is not 
conserved. Conservation of chirality occurs in (62) 
only because of the 1/V terms. These results indicate 
that nonlocalized objects (i. e., objects with momentum 
1/V) do indeed play a part in screening processes in 
Q E 4 .  

A similar treatment can be given for other initial 
charge distributions. For  example, for a q,& quark 
pair at  different points of space, 

we again find that the charges a r e  concentrated and 
change in the causal regions around the points xo and 
yo. The total charges of each region a r e  not conserved 
and a r e  equal to *cos mt. The change in the charges 
begins instantaneously, since a current of the type (63) 
arises instantaneously in the noncausal region between 
xo and Y O  (for t <  1x0-YO]). 

The charge oscillations o6served in both processes 
mean that the charge of each causal region is on the 
average zero, i. e., it is screened. The local charged 
packets go over completely into hadrons; a s  we shall 
see, their chirality goes over to nonlocalized vacuum 
states of the type (25). It is the capacity of such states 
to acquire chirality that ensures the confinement phe- 
nomenon in the Schwinger model. 

At the same time, the different behavior of the charge 
and the chirality should be noted. Charge conservation 
is limited to the causal regions, and there is transfer 
of charge only from one region to another. Therefore, 
the change in the charge in dynamically independent 

regions occurs synchronously (for example, i cos  mt). 
This is due to the circumstance that Q E q  in reality 
does not have a genuine charged vacuum state, since 
otherwise the topological effect would make the changes 
of the charge in the different regions independent. But 
a charge cannot exist in QEG that is not compensated 
by some other nearby charge [see Eq. (57)], and there- 
fore it is not distributed in the whole of space but is 
transferred synchronously from one region to the other. 
The situation with regard to the chirality is different, 
and the model contains genuine chiral vacuums, in 
which the chirality is  delocalized. 

This significant difference between the vacuum states 
is an important circumstance which enables u s  to  un- 
derstand how the conservation of the various charac- 
teristics of the system can be ensured in more com- 
plicated cases despite the loss through the topological 
effect of particles carrying fermion number and other 
quantum numbers. Like the charge in our model, they 
can be localhed always only in causal regions because 
of the absence of corresponding vacuum states. 

5. PHYSICAL PROPERTIES OF THE PROCESS OF 
PRODUCTION OF R AND L QUARKS 

The production of qdL (tRqL) pairs by an external 
sourcelo can serve a s  an analog of the process of e'e- 
annihilation into hadrons in the Schwinger model. We 
wish to establish a consistent space-time picture of the 
process, and for this purpose we place a source at  a 
definite point xo, to (to=O). We a r e  interested in phe- 
nomena such a s  the occurrence of an electromagnetic 
topological field when the quarks separate and the ap- 
pearance of screening charge a s  a result of the topo- 
logical effect, the complete screening of the initial 
"test" quarks, the accumulation of hadronic quarks, 
and the transition of the process to the hadron stage. 
Bearing in mind now that we shall be dealing with non- 
causal nonconservation of chirality, we consider the 
problem in infinite volume. 

The simplest way of solving the problem is to use the 
representation (19) and the Hamiltonian (16) to find the 
exact wave function of the process a t  any time: 

In Eqs. (191, we replace c i L  and cRL in accordance 
with Eqs. (17). When the operator exp(- iHt) is applied, 
the hadron operators in &(x) and h(x) go over into 
C(p) exp(iw,t) and C'(p) exp(- iwpt). Bearing in mind 
that C(p)n0=0, and that u, and u~ commute with the 
Hamiltonian for Q = 0, we find 

In the limit V-w, the value of A(t) does not depend on 
the volume. 
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The expression (66) gives a hadronic representation 
of the wave function, and the factor aiuL $20 indicates 
that the transition to hadrons is accompanied by distri- 
bution of the local chirality (65) (for t = 0) over the com- 
plete volume of the system with the participation of the 
chiral vacuums (25). The expression (66) enables us to  
calculate the R and L currents in this state a t  any time 
t and a t  an arbitrary point x h  - xoex). We use Eqs. 
(241, replacing cRL (p) in them by C(p). The expecta- 
tion value of p,,&) in the state (66) is 

(X) dp %lt-P 
pn,r (2 ,  t)=* J G - c ~ s ( ~ p t - ~ 2 ) .  

U P  (67) 

In (67), we have divided by the normalization I*'"(t) 1'. 
We calculate the integral (67) and represent &!LC?c, t) 
in the explicit form 

m t f x  
h ( 1 F x ) -  -- I, ("L It'-x') ) 0 ( la-x2)  ] (68) 2 (1:-x-)' 

o r  

Exactly the same answer is obtained from the solution 
of the problem (64) of the previous section if xo = y o  and 
v-°o. 

The two terms in Eq. (68) a r e  the leading charge (the 
6 function) and the screening charge, which steadily 
increases near the light cone. In the limit Ix 1 -t, the 
second term is equal to -$m2t, and for t >>l/m there is 
accumulated in a small region -l/m2t a charge suffi- 
cient for complete local screening, i. e., compensation 
of the field of the particle. 

However, the calculation of the total charges in the 
causal region a t  the time t shows that the description 
of the situation given here is somewhat simplified. In 
accordance with (68) and (601, the integral (67) over 
the causal region gives a nonvanishing contribution to 
QRL a s  tdm, and an oscillating 

t 

Q~(:' ( t )  = 1 d5 ( 2 ,  t )  = lt- cos m t  
- 1  

We know from Secs. 3 and 4 that the nonconsenration 
of the charges in the causal regions is due to the speci- 
fic production of quark pairs in topological fields. In 
the self-consistent problem of interacting particles, a 
topological field forms a certain number of particles in 
one of the chiral vacuum states (251, and they do not 
contribute to  the quantities calculated in the limit V--. 
The oscillating charges in Eq. (70) and Sec. 4 a re  due 
to this phenomenon. We calculate the field E h ,  t) that 
ar ises  in the system when the q,q, charges separate. 
From the expression (67), we find 

+r dk sin o,t (71) 
E ( K '  (5 ,  t )  = g j  -- el*~=gJo(m(tz-xz) 'h) 0 ( t2-?) .  

-- I1 0 

The sign of the field (71) is such that i t s  action forces 
the leading particles to give up energy, which goes over 
to the hadrons being produced. At short times t -l /m, 
the energy is constant (Ezg) and sufficient for produc- 
ing by means of the topological effect the charge which 

compensates in magnitude the charge of the leading 
quark and which moves in the same direction a s  it . 
But local compensation does not occur, and the topo- 
logical effect continues to change the charges (70). We 
show that this phenomenon affects only quarks of small 
momenta p -m, which cannot in fact be separated from 

the quarks of the physical vacuum (18). For  t > l/m, 
the fraction of quarks of large momenta p >>m, which 
participate in the phenomena of local screening of the 
leading particle and in the production of hadrons, be- 
comes appreciable. The charge oscillation effect has 
here the nature of vacuum fluctuations. It has no rela- 
tion to the physical processes, which occur already in 
neutral systems. The time t -  l /m should be regarded 
a s  the screeningtime. The value of cos m t  can be av- 
eraged over A€ > l /m,  indicating that there is no charge 
in the system for  t >>l/m. 

Since the charge fluctuation effect is explained by the 
participation of quarks of momenta p -m in transitions 
between the vacuums (25), energy differences AE-m 
of the states whose superposition forms the initial 
packet a re  already sufficient for the effect (70) to be 
manifested. Of course, the amplitude of the oscilla- 
tions decreases when the accuracy with which the ener- 
gy is specified increases. Accurate specification of 
the energy (packet formation time A€--) leads to van- 
ishing of the oscillations. But then the picture of the 
development of the process in time is lost. 

To prove the above assertions about the parts played 
by the quarks with different momenta, we investigate 
the time dependence of the number of quarks produced 
by the field (71) in the considered process. These cal- 
culations a r e  given in Appendix 4. The density (in a 
momentum cell dp/2r) of the right-handed quarks i s  

1 d z d y  
nn(p,  t)=-j- 2nl y z LO f ( z - ~ )  {exp 2 n i [ a ( z ,  t ) - a ( y ,  t )  ]-l)e'p"-Y'. 

(72) 
Here, the function 

' d k  W-k ' k ( z - y )  
f ( x - y )  = e x p { - j  sin'-} 2 

a 

determines the mean density of the quarks in the vacu- 
um no (see Appendix 4). We can express oh, t) in 
terms of the field intensity E ( x ,  t) (71) by means of Eqs. 
(46). 

The results of the calculations show that oscillations 
in the particle number do indeed occur only with quarks 
of small momenta p s m  [Eq. (A4.1811. As regards 
quarks with large momenta, study of (72) shows that 
there is a rapid increase in their number a t  times t 
< p/m2 : 

n mzt  ' 1 
nn(p , t )=-  - , pwm, t < & ,  

B (  p ):' m- (74) 

the quarks of the hadrons produced later being prepared 
during these times. At times t >p/m2, a stationary 
distribution ar ises  from (72): 

2n d~ d~ 
n,(p,t)=-,  n,(p,l j--=-.  

P 2n 11 
(75) 

The absence of oscillations in Eqs. (74) and (75) indi- 
cates that quarks with large momenta no longer parti- 
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cipate in the transitions to the chiral vacuums induced 
by the field (71). The system of physical quarks p > m 
becomes neutral for t -l/m, and this time must be re- 
garded a s  the screening time (l/m i s  the confinement 
radius). 

We now show that the stationary distribution (75) is 
the distribution of the quarks grouped into hadrons. In 
the parton model, the density of the quarks, which is 
related to their distribution over the hadrons, must be 
CP, P >>m) 

Here, N,F, t)d9/2n is the number of hadrons with mo- 
mentum P. For the wave function (66), this is obvi- 
ously equal to 

where n,@, p, t )  is the distribution of the R quarks with 
respect to the momentum p within a hadron with mo- 
mentum P. 

The parton wave function C'(P)SE~ of such a hadron in  
the quark representation can be readily constructed by 
means of Eqs. (81, (12), and (16) (P> 0): 

In accordance with (181, the vacuum no contains basi- 
cally quarks with momentap s m ,  and therefore for 
large P > 0 we can, when Eqs. (8) a r e  substituted in 
(781, retain only the terms with two creation operators. 
The parton wave function of the hadron has the form 
CP >>m) 

The distribution of the R quarks in the hadron (79) is 

Substitution of (77) and (80) in Eq. (76) leads to the 
distribution (75). Therefore, the formation of the had- 
rons terminates after the hadron formation time 

when the distributions (74) and (75) a re  comparable in 
magnitude. Our treatment leads to the picture of the 
development in time in the rapidity space of the quark 
process of e'e- annihilation that has already been fre- 
quently discussed in the literature,'O"g namely, it is the 
most energetic hadrons which are  formed last. 

The leading particles carry infinite energy and mo- 
mentum in the packet (65) that we have formed. The 
process of their transition into hadrons "for ever," and 
there is never a time a t  which the distribution (75) of 
the produced quarks, which determines the screening 
charge in (681 can exactly compensate the 6 function in 
Eq. (68). However, it is completely clear that the lead- 
ing particles must lose energy, giving it up to the had- 
rons. If their initial momentum (Pi,,) were finite, then 
after a time t-pi,,/mz they would merge with the pro- 
duced quarks (741, participating on an equal footing in 
the final formation of the hadron spectrum. The prob- 

lem of the neutralization of their charges would already 
have been solved a t  times t -l/m. 

The picture of the loss of energy by the leading quark 
can be clearly deduced from a calculation of the energy 
density in the state (66). If this density is defined a s  
the corresponding component of the symmetric energy- 
momentum tensor (this definition agrees with the phy- 
sical definition of energy density adopted in the general 
theory of relativityi5), then a standard calculation by 
means of the representations (191, the expression for 
Hob)  from (4), and the operator of the energy density 
of the electromagnetic field 

leads to the result 

(Hem(?, t )  )='I2 1 EtK' ( x ,  t )  1'. 
Here, p,,,(x, t )  and E(x, t) a r e  given by Eqs. (67)-(69) 
and (71). 

The integration of (83) over the whole of space is 
readily performed by means of the Fourier represen- 
tations (67) and (71) and gives conservation of the en- 
ergy in the causal region: 

+- dk sin' o h t  
dk ,  

- 1  

sin' o k t  )! (Hem(x, t )  >dZ=rn2 7- dk;  
- 1  - - (I)!, 

(H) = ( H J  + (Hem)  does not depend on I .  The total en- 
ergy of the packet (65) is infinite and equal to the en- 
ergy of the hadron distribution (77). The electmmag- 
netic energy remains finite (4nm) in the limit t -a, and 
makes possible vacuum fluctuation transitions with 
particles with p 5 m. 

Equation (83) indicates a decrease in the kinetic en- 
ergy of the leading particle just a s  Eq. (68) indicates 
a decrease in its charge. The energy Ho(x, t) decreases 
near the light cone with increasing t. 

To conclude this section, we discuss the correspon- 
dence between the calculations made here of p,~, (67)- 
(69) and the usual calculations of quantities in the S- 
matrix formalism: the Green's functions, Feynman 
diagrams, etc. The correspondenc e is readily estab- 
lished by recalling that our expectation value for the 
state (65) can be written in the form 

( Y  ( t )  lpn,L(x)  IY ( t f ) =  lim ( R o ( t z ) J s ( ~ z ,  t , )  
11-12 

xS' (1, L,)pn.L(x, 1 ) S ( t ,  t , ) J , ( x s ,  t , )  i Q o ( t t ) ) .  

Here, J,b) = h )  and p,, h, t) are ,  respectively, 
the scalar and vector currents in the interaction rep- 
resentation, and S(t, ti) is the operator of the S matrix 
a t  a finite time. Using no8(tl)= S(tl, -a )no  and the uni- 
tarity of the operator S: Si(ti, tz) = S(tz, ti), we reduce 
the calculation of the matrix element (85) to the vacuum 
Green's function 
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PIG. 1. The two diagrams that determine the currentp,, &). 

(x is the Wo-dimensional coordinate), which must be 
taken under the conditions t 2  > t > tb  and we then set  
xz = X I .  The expectation value of the current is obtain- 
ed by dividing (85) by the square of the modulus, i. e . ,  
lNt )  1 2 .  

The .complexity of such a problem is due to the sepa- 
ration from (86) of the square of the modulus of the 
wave function: 

l Y r ( t )  1 2 =  lim (OIT(Js (x2)Js (x , ) )  10). 
I , - .  l k l ,  

(87) 

This can be done in general form if G is calculated a s  
a functional integral. Let us  obtain Eq. (68). The cal- 
culation of (86) associates Feynman diagrams with each 
of the terms of Eq. (68). For  example, the 6 function 
in (68) is obtained from the diagrams in which the cur- 
rent OR& b) is included in the line of the charge that 
directly connects the points x i  and xz [Fig. l(a)]. The 
second term in (68), which describes the screening 
charge, appears here in the form of the two-dimen- 
sional invariant integral 

It ar ises  from the contribution of the diagrams in 
which the inclusion of p , ~  (x) occurs necessarily 
through a quark loop [Fig. l(b)]. Since this unique 
divergent diagram of the model leads to an Adler anom- 
aly in the model, this diagram describes the occur- 
rence of the screening charge. The Adler anomaly 
played the same role in Secs. 3 and 4. However, the 
physics of the topological effect which ar ises  here is 
revealed clearly only in the Hamiltonian formalism. 

6. CONCLUSIONS 
Usually, the hopes for explaining confinement a r e  

based on establishing particular physical properties of 
the vacuum state that prevent the existence of charged 
particles in it. We draw attention here to a different 
aspect of the question, namely, the topological fields 
themselves have the consequence that a theory without 
confinement is physically inconsistent, this being due 
to the noncausal nonconservation of the charge associ- 
ated with the topological fields. The Adler anomaly in 
the expression for the divergence of the axial quark 
current can be taken a s  an indication of the existence 
of an analogous phenomenon in four-dimensional quan- 
tum chromodynamics. The properties of the vacuum 
must adjust to the topological effect in such a way that 
the degeneracy of the vacuums with respect to the quan- 
tum numbers makes it possible to interpret the theory 
with "confinement" of these numbers. The physical 
properties of the vacuums in the given model that en- 
sure this possibility will be described elsewhere. 

We a r e  grateful to V.  N. Gribov and L. L. Frankfurt 
for numerous helpful discussions. The discussions with 
Gribov led to  the consideration of the problem in an ex- 
ternal field. 

APPENDIX 1 

To prove the equivalence of the representations (4) 
and (14) for Ho, we express ci(p) and cR(p)  in t e rms  
of the quark creation and annihilation operators &(x) 
and b i b )  in accordance with (8) and (12) and substitute 
the result in Eq. (14): 

H - dp d z  dye'n('-"[an+(x)an(z)-b,+ ( z )  b R ( z )  +ant (2) bR+(z )  
O- , j  I 

+bR(z)aR(z) I [aRt(y)aR(y, -bR+(y)b~(y)+aRt(~)bn+(y)+bn(~)~n(~)  1. 
(Al.l)  

When the expressions in the square brackets in ( ~ 1 . 1 )  
a r e  multiplied, we obtain 16 terms containing products 
of four creation and annihilation operators. It will be 
clear from the following calculations (which a r e  car- 
ried out similarly for all  the terms) that a contribution 
to  H, is made by only two of them: - 

H,= J d p  J dz  dye'p"-~)[aR+ ( x ) a , ( z )  a,+ ( y ) a .  (y) 

(A1.2) 
+b,+(z) bn(z )bn+(y )  M Y )  I .  

We represent Ho as the half-sum of the integral h1.2) 
and the same integral with the substitution x'y: 

We have here commuted all the operators to bring the 
two operators a, (and bR) next to each other [the com- 
mutator is given in (7)]. In the f i rs t  term, we now 
take the integral over p .  The integral gives 6b - y), 
and the f i rs t  term in (A1.3) goes over into 

which vanishes by virtue of the Pauli principle. We 
now take the integral over p in the remaining two terms 
in (A1.3). As a result of the integration, a pole of 
second order a r i ses  a t  y = x +  i O .  Bearing in mind now 
that aR(y) [b,(y)] is analytic in the upper half-plane, 
and [bk(y)] in the lower, we can also integrate 
with respect to y, closing the integral around the pole. 
Finally, we obtain 

da, ( 2 )  aa,+ ( x )  d b , ( ~ )  ab.+(x) 
~ ~ d z [ a ~ * ( z ) ~ -  - a, ( z )  +b,+ (2) -  - - az as az & ( I ) ] ,  

(A1.5) 

which is the term associated with the R quarks in Eq. 
(4) for ?Io. 

APPENDIX 2 

To derive the expression (40), we use the expression 
for the evolution operator S( t )  a t  finite time for a sys- 
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tem of two-dimensional fermions in an external field. 
Equations (36) and (37) of Ref. 8 give us an expression 
for 

where i= R, L, and summation over p and p' i s  under- 
stood. 111 (A2.1), we have used the notation of Ref. 8, 
D(A) is the determinant of the Dirac equation in an ex- 
ternal field, the form of which is unimportant for us, 
and G,,. etc., a re  the parts of the Green's function of 
the same equation corresponding to different signs of 
the frequency (+, -) of the time arguments. The values 
of the Green's functions are taken at the times 0 and t, 
as is indicated in the arguments. The expression 
(A2.1) is an "untangled" operator form, i. e. , all the 
annihilation operators commute with the creation op- 
erators. 

In the wave function S(t) 1 o), where 1 0) is the mathe- 
matical vacuum of the free quarks, only one term in 
the exponential of (A2.1) is nonzero: 

Y (t )= D(A)erp(-a,+ (p)G:(!.(pt, p't) b,+ (p ' ) )  10). (A2.2) 

The Green's function G'" is equal to 

The formula for G"' is obtained from (A2.3) by replac- 
ing x  and x' by -x and - x l .  In the Coulomb gauge, for 
the field intensity (38) we have 

A,=-2ng-'6 (t-t.) 6(t,-z), A,-0, (A2.4) 

Substituting (A2.4) in (~2.3)' we obtain 
dz d d  e - t p  e-lp'z' t - ~ ' - t ~ + Z ,  

G'n' ( p t  plt).= - j - 
2ni z-2'-iO t-z-t,+z,-i0 

Therefore, using (61, we obtain 

Making similar calculations for the L particles, we 
arrive at the expression (40). A reversal of the sign 
of the field obviously interchanges particles and anti- 
particles. 

APPENDIX 3 

The indeterminate form ip Eq. (48) can be correctly 
evaluated in the case of integral topological charge QT 
only if  we calculate n,(p, t )  in a finite volume. For this, 
it is  sufficient to use Eqs. (321, (331, and (19) written 
down for finite V. Making the calculations, we obtain 
instead of (43) 

The expression (A3.1) gives tde particle density in the 
momentum space. To obtain the number of particles 
N(p, t) with momentump, =nlr/L, we must divide 

n(pm t) by the volume V. We separate from (A3.1) the 
contribution associated with the topological effect, for 
which we replace @,Ck,, t) by i ts  value at p,=O (QT). 
Summing further the series in the argument of the ex- 
ponential by means of Eq. (23), we obtain 

d x d y  
N"(P.. t ) = j l _ w p ( ~ . ( x - Y ) )  

-I 

(A3.2) 
The further calculation is easy. For positive inte- 

gral QT, the number of particles NR is 

I n=O, I , .  . . , Qr-I 
N . (P . ,~ ) -  (; 

, n>Qr 

i. e., because of the topological effect there are pro- 
duced QT quarks with momenta 0, T/L. . . (Qr - l ) n / ~ ,  
which tend to zero a s  V-m. In the special case of the 
field (38), we arrive at the result already discussed in 
Sec. 3. 

For integral Qr < 0 (or, which is the same thing, for 
antiquarks when Q, > O), NR(& t )  =O. Thus, for inte- 
gral QT only particles with corresponding sign of the 
charge carry small momenta. 

APPENDIX 4 

To calculate 

in the state with the wave function (661, we express 
a',(p) and a,(#) in accordance with Eqs. (42) by analogy 
with the derivation of Eq. (43). We replace &(x) and 
JIRG) by their representation (19), replacing c;(fi) and 
cR(p) in them by the exact hadron operators C'(p) and 
~ ( p ) ,  using the relation (17) for this. Disentangling the 
obtained expression, we arrive at the formula 

1 d z d y  
n . i ~ , t ) = - j -  h i  y-z-i0 e @ ( x - y ) ~  (z-  ) 

In calculating (A4.2), we used Eqs. (20) and (21). The 
function f ([I is defined by (73). 

Each term in the argument of the second exponential 
in (A4.2) can be transformed by means of the readily 
verified relation 

Here, it must be borne in mind that g2/n = m2 = (o - k)(w 
+ k ) .  We obtain the field $(a, ti) from the field (71) by 
expressing sin ot in the form of a difference of the ex- 
ponential~ expG i d ) :  E k ,  t) = I(x,t) + $*b, t). 

Substituting (A4.3) in (~4.2),  we represent nR(p, t )  in 
the form 
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1 e'","'' n ~ ( ~ . t ) = ~ j  ,, f(x-y) {exp(2ni[a(x,t)-a(y,t)I)- 11, 

(A4.4) 
where ah, t) is defined by (46) with the field E b ,  t) 
given by the expression (71). In deriving (A4.3), we 
assumed that the field (71) has been applied since t 
= --. It is readily verified that application of the field 
at  a certain time t = O  would lead to the appearance in 
(A4.4) of the additional factor 

Therefore, the integration over ti in the integral (46) 
for a(x, t) is over only the interval in which the field 
(71) is nonvanishing (t 2 O), 

The first  exponential in (~4.4) ,  i. e., f (F), which is 
given by the expression (73), determines the density of 
quarks in the vacuum no [-I in the square brackets in 
(4.2)]. It leads to a contribution proportional to the 
volume V of the system. For  p >> my we have Ix - y ( 
<< l/m and f ([I = f (0) = 1, which means that there a r e  
no quarks with large momenta in the vacuum no (18). 
The formula for n , ( ~ ,  t) can then be represented in the 
form (45): 

In this case, the integration over tl and x l  in the ex- 
pression for 

g2 a(E. f )= -_ Jdt ,  dx, ~,(m(t,'-x,~)'~)B(t,~-x,~)0(~-t,+x,) (A4.7) 
L 11 

is restricted to the region near the light cone 

therefore d -  x! =2t1t1 and 

,P ' 
a ( & , t ) = - T l d t , l d & , h ( m ( 2 t i t , ) y ) = [ J o ( m ( 2 & t ) " ) - ~ .  (A4.9) 

0 0 

For t <<p/m2, we obtain from 

a ( L  t)---mBtt0(E)/2, (A4.10) 

and substitution in (A4.6) leads to the formula 

In the other limiting case, t >>p/m2 and the argument 
of the Bessel function satisfies m2[t >> 1 in the main re- 
gion, and therefore the exponential in (~4 .6)  can be ex- 
panded'': 

Substituting (A4.12) in (A4.61, we obtain a distribution 
that does not depend on the time, 

and a number of particles in the interval dp equal to the 
hadron distribution (77): 

Finally, for p << m we must use the exact expression 
( ~ 4 . 4 )  for nR(p, t). The function f ([I - ~ 2 )  (t -x  = £1, t 

-y =[,) restricts the difference [ = 6,- t2, but these 
quantities themselves a r e  now large. Therefore, the 
integration over t1 and x l  in the expression for ah, t) 
is in practice over a l l  possible values of t l  and XI, 

i. e. ,I6 
gz ' a ( x ,  t )  = - - J dt, dx, I ,  ( m ( t , ' - ~ , ~ )  ' 'I) 0 (t,z-x,2)0 (t-z)  
2n 0 

=(cos mt-1)0(t-x). (A4.15) 

We again use (44) i n  (A4.4) and integrate with respect 
to the variables 5 = El - 52  and 6 2 .  Then we obtain from 
(A4.2) 

Here, F(E) is given by the expression 

F ( E ) =  dE~{exp[2niQ=(t) (O(E+jz)- B ( E , ) )  I -  1) (A4.17) 
= 2i exp[irrQ,(t) ]sin nQ,(t) . 

We substitute (A4.17) and (A4.16) and obtain 

nR(p, 1)  -A (p)sin2 n Q ~ ( t ) + B ( p )  sin 2nQT(t) ,  (A4.18) 

where 

Equation (A4.18) clearly demonstrates the oscillating 
nature of the density of the quarks produced with small 
momenta. The value of (A4.1) can also be negative, 
which corresponds to stripping of quarks from the phy- 
sical vacuum no. For f (6) = exp(- 6£), 6-0, we ob- 
tain the previous result (48). 

In finite volume, the integrals J'dp/2r are replaced by the 
sums (1/v)Zql over the discrete values f i ,=n~r/L of the 
momentum. We normalize the creation and annihilation 
operators in accordance with 

{ a t d p * ) ,  ~ R , L @ " ' ) ) -  V69,,nn*. 

Cur expression for #R, &(Z) differs from the one given in 
Ref. 7, where the operators uR, were introduced formally 
for the first time. In contrast to the operators #(x) defined 
in the Ref. 7, our operators $k) have the correct commuta- 
tion properties for different times. 

3, Strictly speaking. the case Q # O  ([Q,u* 1 = *uf) requires 
more careful study. We defer this to another place (see also 
sec. 4).  
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Kinetic equation for atoms interacting with laser radiation 
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The motion of atoms in a resonant light wave that excites the atoms in a transition from the ground state to 
an excited state is considered. A kinetic equation of the Fokker-Planck type is obtained to describe the motion 
of the atoms due to the recoil of the induced and spontaneous transitions. The equation is used to analyze 
velocity monochromatization and focusing of an atomic beam in a laser beam. 

PACS numbers: 79.20.Rf, 42.60.He 

1. INTRODUCTION. FORMULATION OF PROBLEM 

The recent calculations and the results  of the f i r s t  
experiments ( see  the reviewst4) have demonstrated 
convincingly the effectiveness of using laser-radiation 
pressure to act on the spatial motion of neutral parti- 
cles. Thus, by using the pressure  of l a se r  light i t  be- 
comes possible to deflecthe5 focus: and slow down' atom 
beams. 

On the theoretical level, the investigations of light 
pressure were based s o  f a r  on the study of the motion 
of atoms either in plane light waves o r  in light waves of 
constant bounded c r o s s  section. These approaches have 
revealed the role played by the main processes respon- 
sible for  the existence of light pressure,  and the char- 
acter  of the motion of the atoms in the simplest field 
configurations. At the s ame  time, the use of these 
models is insufficient for  the analysis of experimental 
situations in which an essential role is played by the 
laser-beam divergence. This, in one of the mostprom- 
ising applications, that of radiative cooling and dragging 
of atoms,3 i t  is expedient to use  light beams both with 
bounded c r o s s  section and with definite angle diver- 
gence.'*' The need for  analyzing such problems cal ls  
for knowledge of the laws of motion of atoms in rea l  
laser  beams. 

by a two-level scheme. Part icular  attention in the an- 
alysis is paid to the conditions under which the equation 
is valid. Velocity monochromatization of an atomic 
beam in a plane light wave ar,d the focusing of an atom- 
ic beam in a light wave with an inhomogeneous trans- 
verse  distribution of the field are considered by way of 
examples of the derived equation. 

2. INITIAL EQUATIONS 

To obtain the equation of motion of an ensemble of 
atoms in a l a se r  beam, we start from the equation 

.. - ̂  ia( ,  = (81-8".)j;- irp 

at (1 1 
For the density matrix b(r', r', t )  that describes the 
interaction of the atom with a classical  light field E. In 
this equation, the Hamiltonian of the interaction consists 
of three terms:  

A=Ba- (h2/2M) VZ+V. (2) 

The f i r s t  determines the internal s ta tes  of the atom, 
the second the translational s tate of the atom, and the 
third the dipole interaction of the atom with the field: 

f7=-h- * d ~ .  (3 
The relaxation operator f describes the change of the 
state of the atom on account of spontaneous decays. 

We specify the l a se r  radiation in the form of a funda- 
The present paper presents a derivation of a kinetic mental TEMOo, mode (Fig. 1). The corresponding field 

equation that describes the evolution of the distribution takes a cylindrical coordinate system with axis 
function of atoms interacting with diverging o r  converg- along the beam axis the fo rmlo  
ing laser  beams. The equation is derived for  laser  ra-  
diation of the fundamental TE.Wo0, mode and for  atoms ~ ( r ,  I) = e~ohelp (-5) coa [Cut - ( I <  +$-) z ]  , 
whose interaction with the laser  field can be described rl 

(4) 
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