
Sudostroenie, 1966. nates,  Prepr in t ,  Inst. Appl. Math. USSR Acad. Sci., No. 16, 
" ~ a .  B. Zel'dovich and Yu. P. ~ a y z e r .  Fizika udarnykh voln 1977. 

i vysokotemperaturnykh gidrodinamicheskikh yavlenir (Phys- 2 4 ~ .  A. Gasilov, V. M. Goloviznin, V. I?. Tishkin, and A. P. 
i c s  of Shock Waves and High-Temperature Hydrodynamic ~ a v o r s k i y ,  Numerical  Solution of one Model Problem on  Ray- 
Phenomena), Fizmatgiz,  1966 [Academic, Chap. I only]. leigh-Taylor Instability, P r e p r i n t  No. 119, Inst. of Appl. 

2 2 ~ .  I. Zababakhin, Prik. Mekh. Mat. 24, 1129 (1960). Math. USSR Acad. Sci., 1977. 
2 3 ~ .  M. Goloviznin, V. F. Tishkin, and A. P. ~ a v o r s k i r ,  

Variational Approach to the Construct ion of Difference 
Schemes f o r  Hydrodynamic Equations i n  Spherical  Coordi- Trans la ted  by J. G. Adashko 

Propagation of electromagnetic solitons in nonequilibrium 
dispersive media 

I. V. Bachin and V. B. Krasovitskii 

Rostov State University 
(Submitted 31 January 1980) 
Zh. Eksp. Teor. Fiz. 79,472477 (August 1980) 

We establish the possibility of the existence of stationary solitary electromagnetic waves in nonequilibrium 
plasma-beam systems. We show that the propagation of wave packets in resonance with the plasma (the 
retarding medium) or the beam is not accompanied by a dispersive smearing of the plasma. We determine the 
conditions for the existence of solitons, find their characteristics, and give a physical interpretation of the 
solutions obtained. As a concrete example we consider a helicon soliton in a plasma penetrated by an ion 
beam. 

PACS numbers: 52.35.Hr, 52.40.Db, 52.40.Mj 

It is  well known that small  monochromatic electro- 
magnetic perturbations a r e  unstable in plasma-beam 
systems and grow exponentially with time.' The non- 
linear stage of the interaction of mono-energetic beams 
with a plasma (the retarding medium) is  accompanied 
with the appearance of oscillations in time of the field 
amplitude which a r e  caused by the trapping of the beam 
particles by the field of the wave and their periodic 
shift from decelerating to accelerating phases.*-* 

In the present paper we wish to call attention to the 
possibility of the existence of stationary non-linear 
waves in non-equilibrium media, which a r e  retarding 
systems which a r e  penetrated by charged particle 
beams. In comparison with the above cited papers2-' 
which assume the wave number fixed and the initial 
amplitude of the perturbation to be constant along the 
beam, we obtain a solution of a solitary-wave type for 
the field amplitude. Since the carr ier  frequency and 
wave number in this case satisfy resonance conditions, 
the wave energy in each point of space is replenished 
from the translational energy of the beam particles. At 
the same time, however, the energy of each beam par- 
ticle remains unchanged after passing through the re-  
gion where the field is a maximum due to the non-linear 
effect of getting out of phase with the wave which leads 
to a shift of the particle from a decelerating to an ac- 
celerating phase and an increase in its energy up to its 
initial value. This nature of the interaction between the 
beam particles and the field explains the possibility of 
the existence of resonance solitons in non-equilibrium 
plasma-beam systems. 

As an example of an actual model of a non-equilibri- 
um medium we consider an arbitrary dispersive re-  
tarding medium through which a charged particle beam 
propagates along a constant external magnetic field H,. 
Since practically the whole information about the condi- 
tions for the existence of non-linear waves of the kind 

( 5  = x - ut, u is  the group velocity) is contained in the 
linear dispersion equation and allowance for the non- 
linearity only enables one to determine the maximum 
amplitude and to find the shape of the wave pulse, we 
consider f irst  the problem in the linear approximation. 

The dispersion equation connecting the frequency w 
and the wave number k of an electromagnetic perturba- 
tion propagating along the magnetic field in a medium 
with refractive index n(w) has the formzv6 

cLki 
-- 

Ub? ( w ~ L . ~ )  
- n2(o) - - 

Id-  (1)- (Q)P~U"A(L),,) ' 

(2) 

where w i =  4 n e Z p , / ~ ,  w, = ~ H , / M C ,  while wb, u,, and M 
a r e  the density, initial velocity, and mass of the beam. 

We look for a solution of (2) in the form w =  w,+A w 
and k = k,+ Ak, assuming that w, and k ,  satisfy the res-  
onance conditions: 

The small corrections to the frequency and wave num- 
ber a r e  then connected by the relation 
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Am-u,A~'c 

(4) 

In the case of a monochromatic wave with a time-de- 
pendent amplitude which i s  excited in a dispersionless 
medium by a low-density beam we have's6 

Taking dispersion into account enables us to find the 
condition for the propagation of finite-width wave pac- 
kets. Putting A w= uhk in ( 4 )  we get 

where 
d -1 dv, k"~'8' u,Z d2 (we?)2.) 

ug=c -(won) ] , u, =- 1 --=-- [ dwo dk, ' r 2cz  do; 

From Eq. (6), which generalizes Eq. (5), it follows 
that aperiodic perturbations corresponding in the non- 
linear approximation to soliton solutions exist when u 
> v,, U >  vo or when u <  v,, u< v,. Relation (7) is  obtained 
in the next approximation in the beam density and is  
the condition that there is  no dispersive spreading of 
the wavepacket. One must note that when there is  no 
beam such stationary solutions a r e  not realized and 
wave packets in the medium with vi+O spread out due 
to dispersion, since Eq. (4) is equivalent to a parabolic 
equat ion.g 

We find from Eqs. (6) and (7) 

We shall look for the solution of the non-linear problem 
in the form of a circularly polarized plane wave with 
an amplitude depending on [ = x  -ut ,  using the presence 
of the small parameter 

The calculations necessary to derive the se t  of slow 
equations a re  then in principle not different from those 
given in Ref. 6 for the amplitudes and phases which de- 
pend only on the time. However, now the equations 
depend on the parameter u  which we can determine by 
retaining in the equation for the field the next terms in 
the expansion in the small parameter (9) as compared 
to the equations in Ref. 6: 

One sees easily that the expression in braces vanishes 
if the group velocity u  satisfies Eqs. (6) and (7). The 
coefficient of v, - u  in the principle term in (10) is  
thereby determined and the correction to unity turns out 
to be small and can be dropped. 

In the dimensionless parameters 

the se t  of non-linear equations takes the form 
da/dE=-be cos 11, db/d6=nzae cos q,  

(11) 
d ~ / d c = - q ~ a  cos q,  dq/dS=l-Qb-tg q(dId6)ln Ea 

and i s  the same a s  the analogous se t  in Ref. 6, if we 
change in the latter to the non-relativistic limit. How- 
ever, this agreement is  formal, a s  we a r e  considering 
a totally different kind of solution. 

Using the integrals of motion of Eqs. (11) 

4- -, ( I -Sb) '  ,L'a?+bz=Q-P, E2-~:=2 -(a - b ) ,  sin q = -.-- 
n2 2aeQnz 

(12) 

and changing to the new variables nSZa = sin$ and f2b 
= cosq, we get the following equation: 

If there is no external field, e,= 0, the solution of (13) 
has the form of a solitary wave: 

In dimensional variables we obtain for the field ampli- 
tude the expression 

IE,I=E,ch-"(2lAklg), (1 5) 

where the parameter bk  which determines the width of 
the pulse is given by Eq. (6) of the linear theory. 

The physical reason for the existence of a stationary 
wave in a non-equilibrium medium can be understood 
by considering the process of the interaction of reso- 
nance particles with the wave in the soliton frame of 
reference where the beam moves with the speed v,, -u .  
Since the frequency of the field is  in resonance, a par-  
ticle incident on the trailing edge of the wave will then 
s tar t  to slow down in the longitudinal direction, and its 
transverse energy increases. This process, accom- 
panied by the transformation of the energy of the longi- 
tudinal motion into wave energy, stops when the parti- 
cle reaches the maximum of the wave amplitude, since 
a t  that point the difference in phases between the trans- 
verse velocity and the electrical field vectors, due to 
the detuning of the anomalous Doppler resonance a s  the 
result of the longitudinal retardation, reaches the value 
In I = n/2. After this the particle reaches a retarding 
phase, loses transverse energy, and accelerates along 
the magnetic field to reach its initial velocity. 

We thus find that, on the one hand, the beam con- 
stantly replenishes the energy of the wave, and, on the 
other hand, there is  no exchange of energy of the beam 
particles with the wave over a time which i s  larger 
than the time during which the particle passes through 
the field pulse. As a result, the energy density of a 
resonance wave pulse propagating in a non-equilibrium 
medium remains unchanged. 

We note that the small parameter (9) in the case con- 
sidered differs from the analogous parameter of Ref. 6 
by the factor 1 - u / v ,  in the denominator. The energy 
density of a soliton with a group velocity u  close to the 
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FIG. 2. 

FIG. 1. 

[c,= ~ ~ ( 4 r ~ , ~ ) ' / ~  is  the Alfvek velocity and p, the 
plasma density]. 

group velocity v, of the medium i s  thus appreciably 
larger than the analogous quantity for monochromatic 
field  perturbation^.^ 

The nature of the solution changes, according to Eq. 
(13), when s o #  0; this corresponds to the propagation o r  
wave packets which a r e  extrinsic to the system, where- 
a s  the solutions (14) and (15) a r e  eigenoscillations of 
the non-equilibrium medium. It follows from Fig. 1 
that there is  a modulation of the wave amplitude due to 
the interaction with the beam particles (the ordinates 
represent &/&,,). When the parameter so decreases 
the width o r  each peak increases and, as so- 0 the 
periodic structure is  transformed into a soliton. It is  
interesting to note that Eq. (13) describes only waves 
which a r e  unbounded in space. If, however, the field 
amplitude is given, for instance, in a half-space, there 
occurs a discontinuity or the function c(f )  in the point 
L =  0 (see Fig. 2). Hence it follows that this kind of 
solution can exist only when there a r e  trapped particles 
present. The possibility of the propagation of shock 
waves without discontinuities in a f inite-temperature 
plasmalo is, apparently, caused by the presence of 
resonance particles with velocities close to the group 
velocity of the wave, which smooth out these discontin- 
uities. 

In a strong electrical field we find from Eq. (13) 

The parameters +, and A determine the depth of the 
modulation of the wavepacket and the low-frequency 
period of the change of the field. 

In concluding this paper we consider a helicon soliton 
in a plasma when there is an ion beam present.'' The 
refractive index of the plasma i s  in this case equal to 

(w, is  the plasma frequency, wHi and w,, a r e  the ion 
and electron gyrofrequencies of the plasma). The fre- 
quencies w, satisfying the resonance conditions (3) 

determine two values for the soliton group velocity:'' 

n+=v,+C, (o+/o,,)"', u-=C,(o-lox.) '" (19) 

The maximum values of the magnetic field ampli- 
tude (H,), of each of the waves a r e  equal to 

The characteristic sizes of the pulses a r e  then of the 
same magnitude: 

We note that the ion beam excites in the plasma short- 
wavelength plasma oscillations, if its velocity exceeds 
the thermal velocity v,, of the electrons in the plasma. 
The condition for the applicability of Eqs. (17) to (21) is  
thus the inequality 

vT~>vO>~C.A. (22) 

The results obtained a r e  of interest in connection with 
the possibility to generate electromagnetic pulses in the 
circumterrestrial plasma by solar corpuscular cur- 
rents (plasma of the solar wind), and also for the 
transmission of weakly damped regular electromagnetic 
signals in a plasma along charged particle beams. It 
i s  necessary in the latter case that the time growth 
rate I A  w ( = u I A ~  I exceeds the damping of the wave in 
the plasma. 

The authors a r e  grateful to V. I. Karpman for a dis- 
cussion of the results of this paper and for a useful 
comment. 

note that the electrical field vector rotates in step with 
the resonance ions in the beam. In contrast to the paper by 
Istomin and ~ a r ~ m a n ' ~  we therefore consider an ion helicon. 
while the electrons in the plasma guarantee the decrease in 
the phase velocity of the wave. 

2 ) ~ o m p a r e d  with the asymptotic Eqs. (4), (6) to (8). which a r e  
accurate LP to terms a A u3, these expressions a r e  exact. 
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Self-pumping of gas in a closed loop by pulsed-periodic energy supply was realized in experiment. Some 
questions involved in the investigation of the possibilities of self-pumping in periodic-action pulsed lasers are 
considered. 

PACS numbers: 42.55. - f 

The feasibility of self-pumping of a gas mixture in a 
closed loop without the use of special pumping devices, 
and i ts  use in periodic-action pulsed lasers  (PAPL), 
was first indicated by Gubarev, Drobyazko and Yak- 
ushev.' The interest in this problem i s  due to the fact 
that by dispensing with the compressor i t  would be 
possible to increase the efficiency of the PAPL, a s  
well as to ensure good hermetic sealing of the loop 
when the laser operates in a closed cycle. 

The energy released in a pulsed discharge leads to 
rapid increase of a pressure in the discharge region and 
to  the onset of shock waves propagating away from the 
discharge zone in the gas channel. The thermodynamic 
cycle that characterizes the operation of the gas in 
such a process is the Lenoir cycle''2 which includes: 
1) isochoric energy input; 2) adiabatic expansion de- 
scribed by the Poisson formula; 3) isobaric cooling 
of the gas. The thermal efficiency of this cycle, 
when the pressure is doubled at the instant of the dis- 
charge, is -10% for air. From the calulation of the 
cycle it follows that to increase i ts  efficiency the 
energy supply must be made rapid and a s  large a s  
possible. The estimated energy of a self-pumping 
system is optimistic. The necessary pumping rate 
can be calculated by specifying the gas temperature 
a t  the input, using the condition that the average power 
input to the discharge is  carried away by the gas 
stream. 

The dominant factor in our case was the thermal 
resistance, and the power loss necessary to surmount 
it is  easy to calculate. In this case the ratio of the 
power needed to ensure the gas flow to the average 
power input into the discharge turns out to be 6 x lo-=. 
Assuming a thermodynamic-cycle efficiency lo-', it 
can be concluded that the only problem is the con- 
version of the work of the waves into the work neces- 
sary to pump the gas mixture. 

aluminum anode 1 and a sectionalized cathode 2 located 
near the closed end of a quarter-wave acoustic resona- 
tor  20 cm long. The length of the input channel was 12 
cm. The inductive decouplings of the cathode sections 
and their small  geometrical dimensions ensured low 
sensitivity of the electrode system to the gas dynamic 
inhomogeneities. The discharge volume was 3.2 cm3 
at  an interelectrode distance 1.5 cm. The energy input 
to the discharge in one pulse was 0.55 J. 

The choice of the construction of the input channel 4 
is governed by the desire to effectively absorb and 
scatter the waves that enter the input channel from the 
acoustic resonator. The ratio of the cross  section 
a reas  of the acoustic resonator and of the exit valve 
was chosen equal to three. The stream velocity in the 
acoustic resonator was determined from the deflection 
of a test body secured with the aid of a cathetometer. 
The chamber was placed in a Mach-Zahnder interfero- 
meter; the displacement of the interference fringes at 
a chosen point of the channel was registered with a 
photomultiplier. The signal from the photomultiplier 
was used to monitor the resonant excitation of the 
natural frequencies of the quarter-wave resonator. 

In our experiments, self-pumping of the gas was 
realized by using a system with an aerodynamic valve FIG. 1. Diagram of discharge chamber. 1-Anode, 2- 
(Fig. 1). The electrode system consisted of a solid cathode. 3-discharge region, 4-input channel. 
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