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A class of exact solutions of the Landau-Lifshitz equations is obtained for stationary-profile waves (moving 
domain walls and solitons) for the case of a uniaxial two-sublattice weak ferromagnet. Explicit equations are 
obained for the limiting velocities of domain walls and solitons as functions of the structure parameters of the 
weak ferromagnet. Solutions in analytic form, corresponding to moving domain walls, are obtained. It is 
shown that in the moving-domain-wall model of Zvezdin [JETP Lett. 29,553 (1979)l and of Bar'yakhtar et a/.  
[Sov. Tech. Phys. Lett. 5, 351 (1979)l the solution of the boundary-value problem ceases to be unique wth 
increasing magnetic field, and instability sets in. 

PACS numbers: 75.60.Ch 

1. ~ar l i e r " '  investigations of the solutions of the 
Landau- Lifshitz equations have shown that the problem 
of stationary-profile waves (moving domain walls and 
solitons) is completely integrable in the case of a uni- 
axial single-sublattice ferromagnet characterized by 
an anisotropy energy 

U.=-K(mn)2. (1.1 ) 

Here m is the magnetic-moment unit vector, n is the 
anisotropy-axis unit vector, and K is the anisotropy- 
energy constant. The first  two integrals that exist in 
this case (the conservation laws) have made it possible 
to obtain a complete classification of the stationary- 
profile waves, to determine the dependence of the soli- 
ton amplitude on the velocity, and to determine the 
limiting velocities of the "slow" and "fast"  wave^."^ 

It is shown in the present paper that the system of 
Landau- Lif shitz equations for a uniaxial two- sublattice 
weak ferromagnet admits of separation of an important 
class of solutions that lead to completely integrable 
problems dealing with stationary-profile waves (do- 
main walls and solitons). This makes i t  possible to 
present for a selected class of solutions a complete 
classification of the stationary-profile waves, to obtain 
exact expressions for the limiting velocities of domain 
walls and solitons in weak ferromagnets, a s  well as to 

ponding to the problem of the motion of a material point 
over the surface of a sphere in three-dimensional con- 
figuration space. 

The proposed method was realized using a s  an ex- 
ample a uniaxial two-sublattice weak ferromagnet with 
f ree  energy (see, e.g., Ref. 3) 

Here m and 1 a r e  the vectors of the magnetic moment 
and of the antiferromagnetism, and satisfy the condi- 
tions 

m2+P=1 ml=0; (1.3) 

D is the homogeneous exchange constant and d is the 
~ z ~ a l o s h i n s k i r  constant, both referred to a constant 
uniaxial anisotropy energy K, while n and v are  the 
unit vectors of the directions of the anisotropy axis 
and of the ~ z ~ a l o s h i n s k 6  interaction. The primes in 
(1.2) denote differentiation with respect to the inde- 
pendent variable x - ut (the spatial variable is referred 
to the characteristic dimension of the Bloch wall with 
exchange energy constant A and with anisotropy con- 
stant K, while the wave velocity u is referred to the 
characteristic velocity 2 ] Y I (AK) '~/M~,  where Y is the 
gyromagnetic ratio and M o  is the saturation magneti- 
zation of each of the sublattices). 

write down the explicit form of the solutions for moving The main result is that such important classes of 
domain walls. solutions a s  

The method of separating completely integrable prob- 
lems of stationary-profile waves in the case of a uni- 
axial two-sublattice weak ferromagnet is simple. 
Namely, the phase space of the stationary-profile-wave 
problem is four-dimensional in the case of a uniaxial 
single-sublattice ferromagnet, and the solutions of the 
Landau- Lif shitz equations for the anisotropy energy 
(1.1) correspond, in terms of the concepts of mechanics, 
to  the problem of the motion of a charged material point 
over the surface of a unit sphere in electric and mag- 
netic fields. In this case the problem is completely 
integrable for an electric field defined by a homogene- 
ous quadratic potential. The complete phase space of 
the stationary-profile-wave problem for a two-sublat- 
tice weak f erromagnet is eight-dimensional. It is 
therefore necessary to separate the class of exact solu- 
tions of the system of Landau-Lifshitz equations belong- 
ing to a four-dimensional phase subspace and corres- 

lead, after diagonalization of the matrix that defines 
the potential energy and after renormalization of the 
spatial variable and of -the velocity, to a previously in- 
vestigated fully integrable p r ~ b l e m . " ~  This means that 
for the class of exact solutions (1.4) and (1.5) the clas- 
sification and structure of the self-localized solutions 
(domain walls and solitons) is the same a s  in the case 
of a uniaxial single-sublattice ferromagnet, the dif- 
ference being that the new anisotropy axis does not co- 
incide with the initial anisotropy axis n. 

If v is the renormalized stationary-profile wave (the 
renormalization will be defined below), then the three 
previously obtained characteristic v e l o c i t i e ~ ~ ' ~  a r e  of 
the same form 
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In this case, however, the dependence of the positive 
parameter & on the structure constants of the weak fer- 
romagnet is different for the solutions (1.4) and (1.5), 
but the meaning of the characteristic velocities (1.6) is 
the same a s  in the case of a uniaxial single-sublattice 
fe r r~ma~ne t . ' "  Namely, v-  determines the separation 
boundary of the moving domain walls and solitons, u+ 
the separation boundary of the solitons and the spin 
wave, and uo the characteristic curve on the (v ,  E )  

plane, above which either precession or  nutation about 
the new anisotropy axis can be excited. 

The following inequalities hold for a number of weak 
ferromagnets 

l<d<D. (1.7) 

(We recall that in our notation the constants d and D a r e  
referred to the anisotropy-energy constant K.) Allow- 
ance for relations (1.7) leads a s  D-Oo to the asymptotic 
values of the nonrenormalized (initial) characteristic 
velocities of the stationary-profile waves 

u+-u--D'" (1.8) 

for the classes of exact solutions investigated by us. 
The last expression coincides with the limiting velocity 
of domain walls in the approximate weak-ferromagnet- 
ism However, for arbitrary finite values of 
the structure parameters of the weak ferromagnet, the 
difference 

determines the gap of the soliton states in the station- 
ary-profile wave-velocity spectrum. 

In a reference frame with a polar axis directed along 
the new anisotropy axis, there is a known explicit form 
of the solutions for moving domain walls. The reason 
is that corresponding to the moving domain walls a r e  
solutions with one degree of freedom, namely, with a 
constant value of the azimuthal angle in a spherical 
coordinate system with polar axis along the new aniso- 
tropy axis. The explicit form of these solutions, in the 
representation of the vectors 1 and m will be given be- 
low. The exact solutions singled out in this manner 
a r e  new analogs of the known exact solutions of Akhie- 
zer  and ~ o r o v i k ' ~  for  uniaxial ferromagnets. 

In the last sections a r e  given the results of an ana- 
lysis of a simple model of the motion of a domain wall 
in a weak f e r r ~ m a ~ n e t , ~ "  defined by an equation close 
to the sine-Gordon equation. We note that model q u a -  
tions of similar structure arise, for example, in in- 
vestigations of spin states of the B phase of ~ e '  and of 
the propagation of optical pulses in a degenerate non- 
linear m e d i ~ m . ~  

We present below a number of exact results of an 
analysis of the simple model of Refs. 4 and 5, pointing 
to a distinctly unique behavior of moving domain walls 
in strong magnetic field. We indicate, in particular, 
the solution of the problem of stationary motion of a 
domain wall ceases to be unique, that the solution used 
by ~ v e z d i n ~  and Bar'yakhtar et U Z . ~  is unstable, and 
that solutions of the type of "fast" moving domain walls 

appear when the external magnetic field is increased. 
Even though the critical field that leads to these pheno- 
mena can exceed the fields reached in the experi- 
ments,"' and the metastable phase loses stability, we 
regard the investigation of the simple model of Refs. 
4 and 5 a s  necessary. It is important that, with in- 
creasing external field, the model equation of Refs. 4 
and 5 generates solutions that have no counterparts 
among the solutions of the sine-Gordon equation (for 
example, the dissipative term leads to violation of the 
Lorentz invariance and to a possibility of existence of 
"fast" motions of the domain walls). 

Finally, notice must be taken of the analogy between 
the situations that ar ise  in the problem of the motion of 
domain walls, on the one hand, and the classical prob- 
lem of Kolmogorov, Petrovskii, and ~ i s k u n o v ~  dealing 
with stationary-profile waves for the nonlinear diffusion 
equation. 

2. The system of Landau-Lifshitz equations for a 
two-sublattice weak ferromagnet with free energy (1.2) 
can be written in the form 

For  stationary-profile waves, with account taken of 
the explicit form (1.2) of the f ree  energy, the system 
(2.1) takes the form 

urn1=-(pr+p,,)'- (In) [ IXII ]  - (mn) [mx n]+d((lv)rn-[rnv)I), 

We have introduced here the following notation for the 
rotatioli vectors: 

~ , = [ ~ X I ' I ,  p , ,= [mxn~~] ,  ~ , . , = [ I x ~ ' I + [ ~ x ~ I ' ~ .  (2.3) 

The system (2.2) is characterized ly four degrees of 
freedom (i. e., by an eight-dimensional phase space). 
To separate the class of exact solutions corresponding 
to two degrees of freedom we call attention to the fact 
that the second relation of (1.3) is identically satisfied 
for any choice of the antiferromagnetism vector 1 with 
one zero projection, and of the magnetic moment m 
with two zero projections, corresponding to nonzero 
projections of the antiferromagnetism vector. In such 
cases the configuration space of the system is the sur- 
face of a unit sphere in the space of three vectors of 
the form 

(L, L, m : ) ,  (Iv, mu, L ) ,  (mx ,  L, L A .  (2.4) 
The diagonal rotation moment p, + p, is here a single- 
component vector, and the nondiagonal rotation mo- 
ment p,, is i ts  complementary two-component vector. 

The next step is to separate mutual orientations of the 
anisotropy axis n and of the ~z~a1oshinsk~-interaction 
vector v such that the system equations (2.2) corres- 
ponding to zero projections of the rotation moments 
p ,  + pm and pl ,,, a r e  satisfied identically. For the first  
triad in (2.4) this is realized by choosing the orthogonal 
pair 
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The system (2.2) then degenerates into the system For  the completely integrable problem of stationary- 

u1.C-p,'- ( I - D )  m,l,+d{(l;-mZ2)v.-Y,v3, profile waves in a uniaxial single-sublattice ferromag- 

ul;=-pi+ (1-D)m,l.+d{(l2-m,2)vv-Ll,v,), net, which was investigated by u s  earlier," the ma- 
tr ix 8 is diagonal 

urn,'=-p,'+d (l=v,+l,v,) m,. 
G=diag ( -1-e;  -1; 0 )  

We have used here for the angular momenta the nota- 
(3.7) 

with a parameter E = 2 ~ M : / K .  Consequently, diagon- 
tion 

alization of the matrices 6 defined by the exact-solu- 
P = = ( P I ~ ) = ,  pu3 (P~rn)~ ,  ~z=(111+Pm)r- (2'7) tion classes distinguished above, and the reduction of 

For  the second triad of (2.4) the exact solutions with 
two degrees of freedom is realized by choosing the 
orthogonal pair 

n ( 0 . 0 , 1 ) ,  v ( 1 , 0 , 0 ) ,  (2.8) 

and the system (2.2 ) leads to the equations 

Similar classes of exact solutions can be distinguished 
in the analysis of other additional pairs of vectors 1 and 
m and mutual orientations of the vectors n and v .  

3. Equations (2.6) or (2.9) can be written in the form 
of the system of dynamics of a material point 

Here q is a unit ~ector~def ined,  for example, by one 
of the triads of (2.4), G is the matrix corresponding to 
the potential energy represented by the homogeneous 
quadratic form 

The explicit form of the matrix G is determined by 
comparing the system (3.1) with the system (2.6) o r  
(2.9). 

We compare now Eqs. (3.1) with the equations of 
motion of a charged material point in an electric field 
E and in a magnetic field H, and located on the surface 
of a unit sphere 

The system (3.3) can be written in the form 

Comparison of (3.4) and (3.1 ) points to an analogy be- 
tween the stationary-profile-wave problem for the 
Landau-Lifshitz equations and the problem of the mo- 
tion of a charged material point in an electric field 
defined by the gradient of the potential energy (3.21, 

and in a magnetic field of a monopole defined by the 
relation 

e 
-rH=-u. 
m c  

(3.6) 

According to (3.61, the magnetic field is normal to the 
surface of the sphere a t  each of i t s  points, and is de- 
termined by the velocity of the stationary-profile wave. 

the diagonal matrices to the form (3.7) enables us  to 
reduce completely the problem of stationary-profile 
waves in a uniaxial two- sublattice weak ferromagnet to 
the previously investigated problem."2 Diagonalization 
of the matrix 6 calls for rotations of the reference 
frame, and determines the orientation of the new aniso- 
t r o w  axis, while the reduction of the diagonal matrices 
to the canonical form (3.7) corresponds to renormaliza- 
tion of the independent variable and of the stationary- 
profileiwave velocity. These transformations deter- 
mine the explicit dependence of the parameter c on the 
structural parameters of the weak ferromagnet. We 
note that the direction of the new anisotropy axis coin- 
cides with the direction of a vector defined by one of the 
tr iads of (2.4) for the corresponding homogeneous solu- 
tions of the Landau- Lif shitz equations. 

For  the class of solutions (1.4) the position of the new 
anisotropy axis and accordingly of the polar axis of the 
spherical coordinate system is determined by the rota- 
tion of the vector n around the direction of the vector 
v through the angle 

1  1-D 
= - arccos 

2 [ ( 1 - D ) ~ + 4 d ~ ] " : '  

The characteristic parameter of the weak ferromagnet 
is then 

[ (1-D)' + 4dZ]"' - (1 -D)  
e =  

[ ( 1 - D ) 2 + 4 d ' ] ' " + ( 1 - D )  ' 
(3.9) 

For  the class of solutions (1.51, the direction of the 
new anisotropy axis is determined by rotation of the 
vector n around the vector v through the angle 

1 
g = - arccos 

l+D 
2 [ (1+D) '  +4dZ] '"  

In this case the characteristic weak-ferromagnetism 
parameter is 

[ ( 1 + D ) 2 + 4 d Z ] " + ( D - 1 )  . e=- 
[ (1+D) '+4dz ] '"  - ( D - 1 )  (3.11) 

The renormalized velocity v is connected with the sta- 
tionary-profile wave velocity u by the relation 

Here 
2Nz=[ (1 -D)2+46]"+1-D (3.13) 

for  the solutions of class (1.4) and 
2Nz=l (l+D)'+4d"]'"+1-D (3.14) 

for  solutions of class (1.5). 

Relations (1.6) and (3.12) together with the expres- 
sions given above for c and N determine the explicit 
dependence of the characteristic velocities u, and uo 
on the structure parameters of the weak ferromagnet 
for the distinguished classes of the exact solutions. 
In a spherical reference frame with polar axis direc- 
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ted along the new anisotropy axis, the classification 
and structure of the self-localized solutions (domain 
walls and solitons) in a weak f erromagnet coincide ex- 
actly with the classification and structure of the self- 
localized solutions in a uniaxial ferromagnet a t  c 
= &(D, d) .  The same remark holds also for the explicit 
form of the two first  integrals (the conservation laws) 
obtained previously .2 

Moreover, the two previously obtained f i rs t  integrals 
correspond in the general case to two divergent forms 

(3.15b) 
Here 

and the unit vector q(x, t )  coincides with the magnetic- 
moment unit vector m for the case of a single-sublat- 
t ice ferromagnets o r  with one of the tr iads of (2.4) for 
the case of a two-sublattice weak ferromagnet. The 
derivation of the second divergent form is based on a 
generalization of a method proposed by Lakshman 
et al. ,lo who confined themselves, however, to the case 
6 s  0. 

When account is taken of the explicit expressions for 
the rotation angles J ,  and the renormalization coeffici- 
ents N, it is easy to obtain solutions for m and 1. We 
demonstrate this using a s  an example the solutions cor- 
responding to the motion of domain walls. For  the 
class of solutions (1.4) we find that 

m.=cos 9 th b+sin $ cos cp, ch-' E, 
l.= (v. sin cp.-v, cos rp cos cp.) ch-' E-v, sin 9 th e, (3.17) 

I,= (-v, sin cp.f v,cos 9 cos cp.) ch-' &-\..sin $ th &. 

Here 

and the angle qc is determined from the equation 

ez cos' cp, sin2 cp. 
u"W 

1+ecos2q. ' 
(3.19) 

The parameters E and N a r e  defined here  by (3.9) and 
(3. f 3), and the angle J1 by (3.8). 

For the class of solutions (1.5), the solution corres- 
ponding to a moving domain wall is 

m,=-sin 9 th z-cos I$ cos cp, ch-' e, 
I,--sin (F, ch-' 5, 

l,=-sin 9 cos rp, ch-' E-cos 9 th E. 

The independent variable ( and the angle cp a r e  defined 
here as before by relations (3.18) and (3.19). The pa- 
rameters c and N and the angle $, however, a r e  deter- 
mined by expressions (3.11), (3.14), and (3.10). 

The obtained exact solutions a r e  in essence the ana- 
logs of the well-known solutions of the Landau-Lifshitz 
equations with one degree of freedom, corresponding 
to the motion of Bloch o r  NBel domain walls in a uniaxi- 
a l  ferromagnet? 

We note in conclusion that the results  can be general- 
ized to include the case of non-uniaxial anisotropy de- 
fined by a more general homogeneous quadratic form 
compared with that used before,'" a s  well a s  to the 
case when account is taken of internal magnetic fields. 

4. As shown in Refs. 4 and 5, the Landau-Lifshitz 
equations for a two-sublattice weak ferromagnet lead 
under certain conditions, in the limit a s  D to a 
simple model equation in the form 

@,,-@,,+sin @=-2h sin (@/2)-a@,, (4.1) 

where $J is the angle variable that characterizes the do- 
main wall, h is the external magnetic field, a is the 
damping parameter, and the characteristic velocity 
-D1/2 is . normalized to unity. 

As h -0 and a-0, Eq. (4.1) degenerates to the known 
sine-Gordon equation. It was that one of the 
main solutions of the sine-Gordon equation 

x-vt 
@=4 arctg exp- (l-uz)ol* ' 

which corresponds to a domain wall moving with veio- 
city v ,  is also the exact solution of (4.1) provided that 
the following constraint is imposed on the parameters 
v, h, and a: 

According to Refs. 4 and 5, relation (2.4) determines 
correctly qualitatively the dependence of the domain- 
wall velocity on the external field until the region of 
limiting velocities (v2 - 1) i s  reached. Relation (4.3), 
however, hardly leads to a qualitatively correct de- 
scription of the motion of the domain wall in sufficient- 
ly strong magnetic fields. 

In fact, Eq. (2.11, for solutions of the type 

@ (5, t) = a x - - u t )  (4.4) 

with the boundary conditions 

corresponding to the moving domain wall, has a unique 
solution (4.2), (4.3) only subject to the additional condi- 
tion 

h c i .  (4.6) 

On going to strong external magnetic fields (h -z 1) the 
solution (4.2), (4.3) ceases to be unique and the boun- 
dary value problem (2.6) acquires a continuous se t  of 
solutions characterized by a continuous velocity spec- 
trum 

0<uZ<1. (4.7) 

In fact, Eq. (1) for the stationary-profile waves (4.4) 
takes the form 

(u2-1) @"- (au) @'+sin @+2h sin (@I21 =O. (4.8) 

where 4' denotes differentiation with respect to the in- 
dependent variable (x - vt). At h < 1, the singular 
points 

on the (I$', @) phase plane correspond to singular points 
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of the saddle type, while the solution of the boundary- 
value problem (2.6) corresponds to a unique common 
separatrix. The third singular point Eq. (2.9) cor- 
responds a t  h < 1 to a singular point 

@'=0, @=2 arccos (-h) (4.11) 

of the type of node o r  focus. 

With increasing external field h, the singular point 
(4.11) moves towards the singular saddle point (4.10) 
and reaches the latter a t  h = 1. The coalescence of the 
singular points a t  h a  1 leads to the onset of a singular 
point of the node o r  focus type, and to  the advent of a 
continuous velocity spectrum for the moving domain 
walls. The situation a t  h > 1 is analogous to  that in- 
vestigated by Kolmogorov et al.' Moreover, if we im- 
pose on the angle variable $J that characterizes the 
domain wall the condition 

0 ~ @ < 2 n ,  (4.12) 

then the continuous spectrum of the velocities of the 
moving domain walls is bounded from below a t  k 1, 
namely, 

One of the characteristic features of Eq. (4.8) is that 
when dissipation is taken into account ( a *  0) and a t  h 
> 1 there exist solutions that satisfy the boundary con- 
ditions (4.5) a t  v2 > 1. 

In other words, the model in  question admits of the 
existence of "fast" motions of the domain walls in 
strong magnetic fields. In particular, a t  h 2 1 a do- 
main wall can move with the limiting velocity (v2 = 1 ). 
This motion is characterized by a finite width of the 
front a t  a# 0. We note that as v2 -1 solutions of the 
type of moving domain walls go over continuously into 
the limiting solution v2 = 1. 

At h > 1 there exists a moving domain wall that propa- 
gates with velocity v = 1. According to (4.8) we have in 
this case 

a@'=sin @+2h sin (#/2). (4.14) 

Integrating the last equation, we find that 

We note that the characteristic dimension of the tran- 
sition layer (of the domain wall) is of the order of ah/ 
(k2 - 1). As h -1 from above, the solution acquires a 
peculiar asymptotic behavior. Namely, a s  4-0  the 
exponential approach to the homogeneous state with a 
characteristic length of the order of ct is preserved, 
whereas a s  $I -2s the asymptotic behavior is algebraic 

The implicit solution a t  h = 1 is given by 

'IL tgz (4514) +In tg2 ( ~ 1 4 )  = (x-t) Ia+const. (4.16) 

5. We investigate now the stability of those solutions 
of (4.8) which correspond to stationary motion of do- 
main walls. Upon the following transformation of the 
space and time variables 

x-Vt x - E = ------ t-ux 
( )  t-T=- (l-u2)'!2 ' 

we find that in the reference f rame moving with the do- 
main wall the initial equation (4.1) takes the form 

Assuming 

~ ( 5 ,  .) = @ ~ ( e , + v ( ~ ,  .,, (5.3) 

where Q o ( 5 )  is one of the solutions of the boundary value 
problem (4.5) for the equation (4.8), we find that in the 
linear approximation *(5, t) satisfies the equation 

The latter has solutions of the type 

Y (E, T) = Y  (E, r )  e-'. 

and leads to the problem of the eigenvalues of the pa- 
rameter r 

lim Y (g, r ) = o  as g+*m (5.6) 

for the non- self-adjoint equation 

We note that a zero eigenvalue of the parameter 
corresponds to the eigenfunction 

Yp=,=d@old~.  (5.8) 
For  the previously ~ o n s i d e r e d ~ ' ~  solution (4.2), (4.3) 

the equation (5.7) leads following the substitution 

Y =echt/'f.D (g) (5.9) 

to the self-adjoint equation 

Q~~+{E-U(~)}~.D=O. (5.10) 

Here 

V(g) =-1-h th g+2 th2 5, (5.11) 

and the parameter E is connected with the sought eigen- 
value by the relation 

E=-r'+(a2+h2) '"r-'/,hZ. (5.12) 

The asymptotic boundary conditions (3.6) take in this 
case the form 

lim e-"/W(t) =O as e-t* m. (5.13) 

An investigation of the asymptotic behavior of the 
solutions of the boundary-value problem (5.10), (5.13) 
shows that, a t  least for h 1, the moving domain wall 
(4.2), (4.3) is unstable, since the eigenvalues of the 
parameter E that belong to the band 

lead to negative values of I?. More accurately speak- 
ing, a t  any value of the parameter E from the band de- 
fined by (5.14) the following three conditions a r e  simul- 
taneously satisfied: 

(a) there is at  least one solution of (5.10) satisfying 
the asymptotic boundary condition (5.13) a s  5--m; 

(b) a l l  the solutions of (5.10) satisfy the asymptotic 
boundary condition as [ - + m ;  

(c) the equation (5.12), which is quadratic in r, has 
one negative root. 

It can be shown analogously for the solutions of (4.8) 
a t  h > 1, which correspond to domain walls moving with 
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arbitrary velocity v < 1, that the band defined by rela- 
tions (5.14) takes the form 

l-h-(au)'/4(1-u')=E~<E<E+=-(av)2/4(1-v~). (5.1 5) 

This leads again to negative I?, i. e., points to instabi- 
lity of these solutions. The continuous se t  of negative 
eigenvalues is contained in  the band 

r-<r<o, 
where I? = r ( E - )  is the negative root of (5.10). 

One of us1' has shown that a similar situation ar ises  
in an analysis (in the linear approximation) of the stabi- 
lity of the stationary-profile waves of the problem of 
Kolmogorov et al? 

6. A consequence of the initial equation (4.1) is the 
relation 

which degenerates a s  0-0 and h-0 into one of the 
known divergent forms of the sine-Gordon equation. 
Under the boundary conditions 

relation (6.1) leads to the differential equation 

dI/dt+aI+8h=O (6.3) 

for the functional 

The obvious solution of (6.3) 

I ( t )  =-8hla+ ( I  ( 0 )  +8hla} e-"' (6.5) 

shows that a t  any initial distribution of $J&, t = 0) that 
satisfies the boundary conditions (6.2 ), a stationary 
value of the functional (6.4) is established a s  t -rn: 

lim I ( t )  =-8hla as t+m. (6.6) 

A consequence of the initial equation (4.1), besides 
relation (6.11, is the relation 

which leads a t  Q = O  to a differential form of energy 
conservation. At a +  0 and under the boundary condition 
(6.21, the integral form of (6.7) is 

Here 
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is the functionad. of the energy. 

We note that for solutions satisfying the condition 

lim @ ( x ,  t )  =@(x-ut) as t-m, (6 .lo) 

where r$(x - vt )  is one of the solutions of (4.8) with the 
boundary conditions (4.5), the energy functional (6.9) 
becomes unlimited a t  t -  m. Moreover, it can be shown 
that 

Consequently, relations (6.11) and (6.6) coincide for the 
solutions that satisfy the condition (6.10). 

Unfortunately, in contrast to the classical problem,s 
for which i t  is known that the time evolution of the ini- 
tial distribution (under boundary conditions that a r e  
natural for a solitary stationary-profile wave) leads to 
formation of a solitary stationary-profile wave that 
propagates with a velocity equal to the lower boundary 
of the continuous velocity spectrum [the counterpart of 
v,,,,(h, a), defined by (4.13)], there is a t  present no 
known solution for the problem considered by us. 

In conclusion, the authors thank M. V. Chetkin, 
A. K. Zvezdin, and A. S. Kovalev for helpful discus- 
sions. 
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