
terms with je  in terms of the magnetic field B (with the 
aid of the equation curl B=4rrc-'j), we obtain after 
simple transformations in place of (Al) 

I 1 1 
(afoz+ Pfo4)du +-HoM +- HoV - - HI2V, 

2 8n 8n 

1 hcn 2eZ 
- - - J B , z ~ ~  +-(H,-H,)+~ - A , z ~ : ~ v = o .  

8'n ,.. 8e mcZ (A2) 
v. 

(Obviously, relations (Al)  and (A2) a r e  equivalent to 
the extremum condition on the functional 6 F  = O  (or 6 @ ,  
=O), from which Eqs. (7) and (8) follows. 

It is necessary next to use the expressions for the 
field H, and the moment M of the hollow cylinder in 
terms of Bessel functions (these expressions a re  given 
in  Ref. 71, a s  well as  the expressions for A&) and 
A&) (cf. Ref. 17): 

hcn 
Ae(r)=-f 6 a l l  ce) + b ~ ,  (E) 

2e6f Ko(~,)Io(Et)- Io(Ei)Ko(kz) 

Here & and I ,  a r e  Bessel functions of imaginary argu- 
ment, 5 = r / 6 ,  5,=r,/6, 5,=r2/6,  6=6,/$; # i s  the 
modulus of the order parameter (in relative units, see  
the text). Expanding the Bessel  functions in the small  
parameter d/6 << 1 (d= r2 - r,) and retaining terms of 
order (d/6)3 we arr ive  after cumbersome calculations 
again at relation (11). 

"Actually the destruction of superconductivity by a current takes place in some 
finite region of the value of I near I,,and is due to the appearance of the resistive 
state, i.e., to the gradual restoration of the normal resistance. This process can not 
be described within the simple Ginzberg-Landau thermodynamic theory. 

"Relation (1 1) can be obtained also directly from (7) and (8) by using the explicit 
solutions1' for the potentials A (r) and A,(r). The corresponding calculation is 
given in the Appendix. 

"It can be shown that at this point f j > 0, i.e., we have an inflection point. Since it is 
clear that the inflection point must be located at f> 0, where 
f-@,(Ho, I) - Qn(H0. I) [see (9)], it follows that this point is obviously in the 
region of metastability of the superconducting state. It can be verified that it is 
necessary in this case to put c, > 0 in (9). 
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The general properties of the surface stress tensor, describing elastic properties of crystal surfaces, are 
determined. The boundary conditions are obtained for the bulk stress tensor on the surface of a crystal of 
arbitrary shape. The elastic interaction between point and line defects on crystal surfaces is considered. 

PACS numbers: 68.25. + j, 61.70.Yq 

It i s  well known that the thermodynamic properties of face s t r e s s  tensor. We shall determine the general 
a liquid surface a r e  governed entirely by one quantity properties of this tensor and find the boundary condi- 
which is  the work done in reversible changes of the sur- tions replacing in our case the familiar Laplace formu- 
face area. As pointed out long ago by ~ i b b s , '  in the la for the capillary pressure. 
case of a solid we have to distinguish the work done in 
forming the surface and in deforming it. Thus, in de- In the second section we shall consider the elastic in- 
scribing the properties of crystal surfaces we have to teraction of surface defects over distances which a r e  
introduce not only the surface energy but also the sur- large with the atomic separations. As in the case of 
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bulk defects, the problem can be solved without postu- 
lating any models about the microscopic structure of 
defects. 

1. SURFACE STRESS TENSOR 

We shall consider a plane boundary of a crystal. A 
small elastic deformation ui alters the surface energy 
by 

- j f,l~,~dS,, p=I, 2 (1 

(integration is carried out over an undeformed surface); 
f, a r e  the surface forces which have only tangential (p  
= 1 o r  2) components because the normal surface forces 
vanish simply a s  a consequence of the third law of 
mechanics. As in the case of the bulk forces (see, for 
example, 82 in Ref. 2), the surface force f, can be 
represented by a divergence of a certain symmetric 
vector: 

f,=agda~,, p, V = I ,  2. 

Substituting in Eq. (1) and integrating by parts, we ob- 
tain 

where u,, a re  the tangential components of the usual 
strain tensor. 

In the general case of a crystal of arbitrary shape the 
correction to the surface energy i s  also of the form 
given by Eq. (2), where the indices p and v for each 
point on the surface correspond to a coordinate system 
in a tangential plane. Thus, the surface energy of a de- 
formed crystal is  given by 

[ (a+gp.~,v) dSo; (3 ) 

here, a i s  the surface energy density of an undeformed 
crystal. It is  natural to call P,, the surface s t ress  ten- 
sor. It is important to note that, in general, all the 
components of this tensor differ from zero and have the 
same order of magnitude a s  a. In the case of a surface 
which have a symmetry axis higher than twofold, we 
have P,,= P6,,, where P is the surface tensor coeffi- 
cient. In the case of a liquid, the quantity P is identical 
with the surface energy a (Ref. 1) and Eq. (3) has the 
usual form 

We shall regard a s  undeformed such a homogeneous 
state of a crystal which corresponds to an external 
pressure p in the absence of the capillary effects. 
Thus, the strains in a crystal a r e  governed entirely by 
the surface s t ress  tensor. The conditions for a mechan- 
ical equilibrium on the surface reduce to vanishing of 
the sum of the bulk and surface forces: 

~.,fB,,/Ri+BzzlR~+p=O, 

where a, is the s t ress  tensor; n i s  the index of the nor- 
mal to the surface; R, and R, a r e  the principal radii of 
curvature; (pi and (p, a r e  the angles measured in the 
planes of the principal normal cross sections. It i s  
interesting to note that the pressure in an isotropic 

solid can be higher o r  lower than the external pressure, 

It follows from the system (4) that there a r e  always 
inhomogeneous s t resses  in a crystal which is in me- 
chanical equilibrium with a liquid. This is also true of 
a phase equilibrium. The corresponding condition1 (see 
also Ref. 3) is now 

where Fo is the f ree  energy per  unit volume of an un- 
deformed crystal; v,  is the atomic volume of such a 
crystal; p is the chemical potential of the liquid. The 
s t resses  given by Eq. (4) should strictly occur also in 
the condition for a phase equilibrium but only in the next 
approximation with respect to 1/R. In this connection 
it is essential to s t r ess  that all  the relationships given 
above represent essentially only the principal terms of 
an expansion in a small parameter a/R, where a i s  the 
interatomic distance. 

2. ELASTIC INTERACTION OF SURFACE DEFECTS 

It is known (see, for example, Ref. 4) that the field of 
elastic strains fa r  from a bulk point defect (which may 
be a vacancy, an interstice, o r  an impurity) can be cal- 
culated by introducing the point distribution of forces of 
the type 

a 
F,=A,,-G(r),  i, k=1 ,2 ,3 ;  

a X,  

where r i s  a three-dimensional radius vector (it i s  as-  
sumed that the defect i s  located a t  the coordinate ori- 
gin); A,, is some symmetric tensor; the total force and 
the moment of forces of such a distribution vanish. It 
is clear that similar defects on a crystal surface should 
be described by the point distribution of the surface 
forces: 

where p is a two-dimensional radius vector in the plane 
of the boundary; the defect i s  located a t  a point p=O; 
A,, =A,,. If we know the field of elastic strains caused 
by the forces of Eq. (6) (see 88 in Ref. 2), we can easily 
calculate the elastic interaction energy of such defects. 
It i s  found that in the case of an isotropic solid the "iso- 
tropic" defects (A,,=A6,,) repel in accordance with the 
law 

where E i s  the Young modulus and o i s  the Poisson 
ratio, The same result was obtained by Lau and ~ o h n ~  
in a microscopic theory. In the general case of an arbi- 
trary symmetric tensor A,, we can expect repulsion o r  
attraction governed by the same law U =  p-', 

Surface defects need not have zero total moment. We 
shall consider an elementary step (Fig. 1). We shall 
select a certain large- radius region around the step. 
At the points 1 and 2 this region is acted upon by capil- 
lary forces equal to, per unit length of the step, to the 
surface tension coefficient P (for simplicity, we shall 
assume that P u p =  @6,,). These forces create a moment 
Pa directed along the line of the step. The quantity a is 
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FIG. 1. 

the interatomic distance in the direction along the nor- 
mal to the surface, whereas the height of the step a t  
large distances is equal to a irrespective of its short- 
range structure and of the structure of the surface it- 
self. 

Internal s t resses  should compensate this moment. We 
can describe them macroscopically by introducing the 
following linear distribution of the force normal to the 
surface: 

d 
fm=Ba-S(x). 

d x  (7 

The x axis lies in the plane of the boundary and it i s  
directed at right-angles to the line of the step. In addi- 
tion to the distribution (7), the step-like any other line 
defect-has also certain linear distribution of forces of 
the (6) type with zero total moment: 

Using (7) and (7a), we find that the interaction of two 
identical steps should be repulsion in accordance with 
the law 

Z(i-oZ) u ( x )  = ---- I 
nE  

[f 

(per unit length of the step), where x is  the distance be- 
tween the steps, Steps of different sign differ by the 
direction of the moment and, therefore, the energy of 
the interaction between them is 

i.e., we can have attraction o r  repulsion. 

Kinks in steps a r e  point defects which have to be de- 
scribed by introducing a moment, in addition to the 
distribution (6). In this case the moment has two com- 
ponents in a plane perpendicular to the line of the step. 
The tangential component i s  of the same origin a s  the 
moment of the step itself, whereas the component nor- 
mal to the surface is created by the forces of linear 
tension. The interaction energy of the kinks depends on 
the distance in accordance with the law P - ~ ,  and we can 
have both attraction and repulsion. This should be al- 
lowed for investigations of the equilibrium shape of a 
crystal because attraction between identical kinks 
makes the surface unstable in a certain range of its 
orientation (compare with Ref. 6). 

The authors a r e  grateful to A. F. Andreev and A. A. 
Chernov for valuable discussions. 
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