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If a superconductor is brought out of the equilibrium state, then dissipative fluxes proportional to the 
supemuid velocity may arise. These fluxes can be regarded as the result of dragging of the normal component 
by the condensate. The heat flux is calculated for a moving condensate when the equilibrium is disturbed by a 
t i n e l  current in an N-S structure. A shift in the chemical potential takes place under the influence of the 
temperature gradient and the supertluid motion. The shift turns out to be proportional to the momentum 
relaxation time. The Onsager relation for the corresponding kinetic coefficients is established. A potential 
difference, the analog of the Nernst effect, is produced in a plate with a magnetic field parallel to the surface. 
The quasielectron distribution function is introduced to describe the nonequilibrium states. A stationary 
kinetic equation is obtained for superconductors with arbitrary impurity concentration and with spatial 
inhomogeneity. A stationary diiusion equation is derived for the "dirty" state. 

PACS numbers: 74.30.Ek, 74.70.Nr 

1. INTRODUCTION a state with a difference between the numbers of elec- 

It is known that a superconductor can be regarded a s  
an aggregate of a superconducting condensate and a 
normal component (a gas of excitations). Under equili- 
brium conditions the motion of the condensate exerts no 
influence on the excitations in the sense that the excita- 
tions retain a Fermi  distribution function, expressed in 
terms of the total energy, and no dissipative flux arises. 
The purpose of the present paper is to show that i f  the 
equilibrium state is disturbed, then the motion of the 
condensate can change the symmetry of the nonequili- 
b r i m  distribution function of the excitations and lead 
to the appearance of the dissipative flux proportional to 
the velocity of the condensate. This flux can be regar- 
ded a s  a result of dragging of the normal component by 
the condensate. The reason for this dragging is scat- 
tering with "intermixing of branches",' wherein exchange 
of particles takes place between the normal component 
and the moving condensate. By way of example we can 
cite the heat flow produced when the condensate moved, 
i f  an external action disturbs the equilibrium between 
the electron-like and hole-like excitations. This heat 
flow is calculated in this paper together with another 
effect having similar physical causes, namely the onset 
of a shift of the chemical potential under the influence 
of the temperature gradient and the superfluid motion. 

The effects can be observed with the aid of the N-S 
film structure shown in the figure. The normal-metal 
film N is separated from the superconducting film S by 
an insulating layer, and serves to generate nonequili- 
brium excitations in S, o r  to measure the shift of the 
chemical potential. '9' A current I with a certain density 
j can be made to flow through the film S and this pro- 
duces superfluid motion with a pair momentum p s = m j /  
eN, (N, is the density of the superconducting electrons). 
If the film thickness S does not exceed the London depth 
of penetration and the film is located over a supercon- 
ducting screen, then the quantity p, is constant over the 
film cross section. 

Let a voltage U be applied to the N-S structure. As 
shown by   ink ham,' this produces in the superconductor 

tron and hole excitations (unbalance). To compensate 
for the excess charge of the excitations, a shift $ of 
the chemical potential is produced. The unbalance is 
proportional to the time rQ of transition of the excita- 
tion from one branch of the spectrum to the other ("in- 
termixing of the branches"). ' 

Let us explain the causes of the appearance of heat 
flow under these conditions. The heat flow is deter- 
mined by the distribution function and by the excitation 
transport velocity. From the kinetic equation (22) i t  
follows that the effective excitation velocity is a2v. The 
physical reason why this velocity differs from the Fer -  
mi velocity v is, in our opinion, the following: because 
of the "intermixing of the branches," the excitation no 
longer belongs to a definite branch of the spectrum, but 
spends some time, which depends on the transition fre- 
quency, also in a "foreign branch". The excitations 
have opposite sign in different branches, and therefore 
the effective transport velocity, which enters in the ki- 
netic equation, should differ from the Fermi  velocity by 
a factor (1 - 2w,), where w, is the relative time that a 
particle with energy 6 stays on the 'Toreign" branch 
(a2 sl - 2w,). If ps ZO, then w, depends on the direction 
of motion of the excitation and the velocity (2v) averaged 
over the angle turns out to differ from zero, while the 
drift velocities (a2v), of the electrons and holes a re  
shown by calculations to have opposite signs. It is the 
directional motion of the nonequilibrium excitation 
which leads to the appearance of a heat flow propor- 
tional to Ups.  The higher the "branch intermixing" 
frequency rQ-', the larger (a2v). At the same time, 
the number of nonequilibrium excitations is propor- 
tional to rQ. AS a result, the heat flux depends very 
weakly both on the "branch intermixing" mechanism 
and on the transition frequency. 

The described mechanism is effective only for suffi- 
ciently "dirty" superconductors. In pure superconduc- 
tors a more important role is played by the change of 
the nonequilibrium distribution function if p,+ 0. When 
the condensate moves, the excitation energy contained 

1186 Sov. Phys. JETP 51(6), June 1980 0038-5646/80/061186-08$02.40 O 1981 American Institute of Physics 1186 



in the conservation law acquires upon collision an in- 
crement v-p,. This circumstance a l ters  the coherence 
factors that determine the relaxation times, and can 
lead to an angular dependence of the latter. It is easy 
to verify [see (33)] that only the time 7, depends on the 
direction of motion of the excitation. At equal total 
energy, the transition probability is larger for mo- 
tion in the direction of p, and smaller in the opposite 
direction. Under these conditions the nonequilibrium 
excitations, which a re  isotropically distrubuted a t  p, 
=0, become redistributed in direction and a heat flow 
is produced. The degree of anisotropy of the distribu- 
tion function is determined by the competition between 
the "branch intermixing7' process and the scattering 
within the branch. As a result, just a s  in "dirtyw su- 
perconductors, the heat flow depends little on the time 
7, and is determined mainly by the momentum relaxa- 
tion time. We have obtained a s  expression for the heat 
flow density (48): 

where D is the diffusion coefficient, d is the thickness 
of the film S, U is the voltage on the contact, R is the 
junction resistance in the normal state per unit area,  
and e i s  the electron charge. The dimensionless coeffi- 
cient [(T) depends on the temperature and to a small 
degree on the 'branch intermixing" mechanism and the 
purity of the sample. At low temperatures [(T) van- 
ishes, a s  does the number of excitations. Near the 
critical temperature, [(T) is of the order of unity, but 
the heat flow is small, since p, by i ts  very nature can- 
not exceed the critical momentum, which is equal to 
zero at the junction point. The value of the flux under 
the conditions listed in Sec. 6 can be q/n - 1K/cm (n is 
the electronic thermal conductivity). 

We examine now the causes of the shift of the chemi- 
cal potential of the condensate @ in the presence of a 
temperature gradient. If the temperature distribution 
in the superconductor is not uniform, then, just a s  in a 
normal metal, a drift of the electron and hole excita- 
tions towards the cooler end is produced. Owing to the 
difference in the signs of the group velocities of the 
electrons and holes along each direction in momentum 
space the difference between the number of electrons 
and holes is not zero and is proportional to a2r,vVT (T, 
is the time of relaxation of a particle with momentum 
p). If there is no preferred direction in the system, 
then the difference averaged over the angles and with i t  
@, is equal to zero. If p,#O, then $7) acquires an an- 
isotropic increment and an unbalance appears and re- 
laxes with a time 7,. One can expect the shift @ to be 
proportional to the time T,, which is large near the 
critical temperature. However, a s  already indicated, 
the deviation of the mean value (a2r,v) from zero is also 
connected with "branch intermixing" processes. As a 
result, @ is determined mainly by the momentum re- 
laxation time, and all  that depends on the rate of '%ranch 
intermixingw is the time of establishment of the sta- 
tionary state. The expression for the potential [see 
(37), (38), (42), and (43)] can be written in the form1' 

where [(T) and D a re  the same quantities a s  in (1). 

Recent experiments by Clarke et a1.2 confirm both 
the very existence of a chemical-potential shift and i ts  
linear dependence on p,. The theoretically predicted 
value of the potential @(2) agrees quite satisfactorily 
with experiment (see Sec. 5). 

Superfluid motion can be produced by a magnetic field 
applied parallel to the surface of the film. In this case 
the momentum p, is of different sign on opposite sur- 
faces of the film, and an effect reminiscent of theNernst 
effect is produced, namely a potential difference 6 @  
appears in the presence of a temperature gradient. This 
effect is discussed in Sec. 5. 

The presence of identical coefficients 5(T)  in relations 
(1) and (2) is not accidental. Both considered effects 
have the same physical nature, and the corresponding 
kinetic coefficients a r e  connected by the Onsager rela- 
tion. In this paper, the shift of the chemical potential 
is calculated, and expression (1) is established, with 
the aid of the principal of symmetry of the kinetic coef- 
ficients (Sec. 6). 

The calculation in the present paper a r e  carried out 
with the aid of kinetic equation that is valid a t  arbitrary 
concentration of the impurities and in the case of spatial 
inhomogeneity. Its derivation is presented in Secs. 2-4 
This equation differs from those obtained by Larkin and 
Ovchinnikov4 and by Schmid and Schiin5 in that another 
method is used to introduce the distribution function. 
Accurate to a replacement off by 1 - f ,  the introduced 
function goes over in pure superconductors into the dis- 
tribution function of the BCS excitations. It turned out 
to be possible to write down a single equation both for 
perturbations of the heating type, which do not disturb 
the equilibrium between the electrons and holes, and 
for perturbations that do disturb the equilibrium. In 
this case, in our opinion, the kinetic equation, and in 
particular the collision integral, take on simpler forms. 

2. DERIVATION OF THE KINETIC EQUATION 

To derive the kinetic equation we use the method of 
Green's functions integrated with respect to the vari- 
able ( P I .  Fo r  nonequilibrium states, this method was 
developed by Larkin and Ovchinnikov. Just a s  in Ref. 
4, we use the Keldysh technique. In this technique is 
formulated a system of equations for three Green's 
functions, which in the case of superconductor a re  
matrices [x  = ( t ,  r)]: 

G,,"(x, 5') =-iO (t-t') ( [$, (x), $x+ (XI) I +), 

G , ~ ~  (2, x') = i ~  (1'-t) ( [$, (x) , I & ~ +  ( x ' )  1 +>, (3) 
Glh(x, x') =pi (  [lp.(x), qk+ (XI) I-). 

It is convenient to define the operators I),, &+ as  follows: 

~p,=lp, exp (-ix/2), q,+=lp++ exp (ix/2), 

qz=q++ exp (ix/2), qz+=-$+ cxp (4x12)  ; 
(4) 

where I),, $, are  the electron operators and ~ ( x )  is a 
function that is for the time being arbitrary and has the 
meaning of the phase of the order parameter. 

The Green's functions (3) have a s  diagonal matrix ele- 
ments the symmetry properties 
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G R ( z ,  x') =hGA+(z' ,  z ) ~ ,  G ( z ,  2') = - r rG+(z f ,  5 ) ~ ~ ;  (5) 

here the Hermitian conjugation sign and the Pauli ma- 
trix 7, act on the indices i and k. If there is no pre- 
ferred direction of the electron spin, then the mean 
values ($,I$:) do not depend on a ,  and the mean values 

a r e  antisymmetrical with respect to a! and B (a 
and Bare  the spin indices). Using this circumstance 
and the definition (3) of the Green's functions, we easily 
show that 

GR (x ,  x') (XI, z )  T., G (5 ,  5') =T&(Z', z )  2.. (6) 

The transposition sign and the Pauli matrix T, act  on the 
indices i and k. The property (6) is always satisfied 
for the functions GR'A' if the Hamiltonian is symmetri- 
cal with respect to spin. The function G is determined 
by the excitation distribution function. If, say by means 
of spin injection, the excitations become polarized, 
then the function G does not have the property (6). 

In Ref. 4 was obtained a system of equations for the 
quantities R, A, g, which a r e  connected with the initial 
functions GR, GA, G a s  follows: 

and analogously for the remaining functions. This sys- 
tem is given by 

ivVR+ {HR, R )  =0, ivVA+ (HA,  A )  =0, (8) 

(RR)r,,  r,=(AA) 1 , .  t ,=I6( t i - t~ ) ,  (8a) 
ivVg+HRg-gHA+RZ-ZA=O, (9) 

Rg+gA=O. ( 9 4  

In the multiplication of the matrices there is implied 
here also integration with respect to internal time a r -  
gument: 

XI'- r d t r  X(t. ,  t') Y ( t l ,  t z ) ,  (X, Y)-XY-YX.  
-m 

The quantities H~'") are  given by 

H ~ ( * )  (n, r, t i ,  t z )  =iz.6'(ti-tz) +6(t l - t t )  (rzv~.--irvA--d) 

Here A and cp are  the vector and scalar potentials, and 
the self-energy parts a re  expressed in terms of the 
Green's functions in accordance with the formulas 

dS2' W... w::! 
~ , . . ( n , r , t i , t 2 ) =  ~-[Zi; - -g(nr)+K~z(g(np) ,~z) ] .  4n 

ha d8' 
(11) 

zp , (n ,  r, t , ,  t Z ) c T  j X [ ~ ( p ~ - p f l r .  ti ,  tr) @-A)  n 

The quantities c:$' a re  obtained from Xi,, by the sub- 
stitution g-R(A), and Z z  - Cth is obtained from Zph 
by the subsitution D =(DR -P). The Green's-function 
arguments not written out in (11) coincide with the argu- 
ments of Z in the left-hand side. The following notation 
is introduced in (11): 7 is the free path time without 
spin flip, W,,, is the normalized scattering probability, 
rS is the spin relaxation time, Wi:! is the normalized 
scattering probability (in the case of isotropic scatter- 

ing W,, = WA:'= D, DR'A) a re  the phonon Green's 
 function^,^ and X is the dimensionless electron-phonon 
interaction constant. 

In expression (10) a re  separated the real  phonons 
which a re  described by the term xg - z$, while the 
virtual phonons lead to a renormalization of the Fermi 
velocity into the appearance of a self-consistent poten- 
tial A: 

nhi 
A ( r , t ) = -  s p ~ ~ w ( n . r , t . ~ .  

The self-consistency equation (12) was written with al- 
lowance for the fact that the phase x in (4) can always 
be chosen equal to the phase of the order parameter; 
the potential A is then a real  quantity, while p, and @ 
a r e  gauge-invariant. 

In the expression for the self-energy parts ( l l ) ,  a l l  
the functions have the same coordinate, i. e. , the scat- 
tering is assumed local. The approximations used in 
the derivation of (11) correspond to the following condi- 
tion: the dimension 6 of the scatterer is smaller than 
the length over which the change of the excitation wave 
function takes place. For impurities and virtual pho- 
nons 6 -ii/p,, and this requirement is always satisfied. 
For  real phonons 6 -As/T (s is the speed of sound) and 
the condition for the applicability of expressions (11) 
takes the form 

where c is the characteristic electron energy. 

Equations (8) and (8a) make i t  possible to obtain the 
effective wave functions of the electron in the super- 
conductor, while the equation for g serves to determine 
the occupation numbers of these states, i.e., the dis- 
tribution function. The evolution of the function g is 
determined both by the behavior of the wave functions 
and by the dependence of the distribution function on the 
energy, coordinates, and the time. To obtain the ki- 
netic equation it is necessary to separate the dependence 
on the wave functions. 

As noted in Ref. 4, condition (9) makes i t  possible to 
express two matrix elements of the matrix g in terms 
of two others. To separate independent component of 
matrix elements, we introduce the "distribution func- 
tions" F,(n, r,t,, t,), F,(n, r, t,, t,) and express g in the 
form 

certain arguments of the functions have been left out for  
brevity. Comparing (14) with the corresponding expres- 
sion for a pure superconductor o r  a normal metal, we 
note that the functions F,(F,) a re  connected with the dis- 
tribution function of quasielectrons with up (down) spin. 

Taking the properties (8a) into account, i t  is easy to 
show that the matrix g in the form (14) satisfies identi- 
cally Eq. (9a) a t  all F, and F,. The quantities Pf'A' 
have the following properties which follow from (8a): 
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(16) 3. STATIONARY NONEQUl LlBRlUM STATE 

These properties make i t  possible to obtain from (9) 
separate equations for F, and F,. For  this purpose we 
need multiply Eq. (9) by P ; ( P ~ )  from the left and by 
P:(P$) from the right and taking (8), (14), and (16) into 
account. As a result we obtain 

Sp PIR(ivVF,+HRF,-FIHA+Z) P,A=O, (17) 
Sp PZR(ivVF,+HRF2-F,HA-Z)PiA=O. (174 

Each of the matrix equations obtained by the additional 
multiplication of (9) has, by virtue of (16), only one in- 
dependent component. It is this which explains the ap- 
pearance of the trace operation in Eq. (17) and (17a). 

From the symmetry relations (5) and (6) a s  well a s  
from (14) we get 

R(n ,  t i ,  t J=-r ,A+(n ,  t,, t , ) r , ,  R ( n ,  t l ,  t z )=s,K(-n,  t,, ti)?=, (18) 
g(n, ti, tz) = r.g+(n, t ~ ,  t r ) ~ z ,  Fr,z(n, ti ,  tz)= ~ , : , ( n ,  t ~ ,  t d ,  (19) 

A n ,  t l ,  t , )  = r Z ( - n ,  t2, t i )  T., Fz(n,  t l ,  t z )  =Pi ( -n ,  t,, t,). (20) 
We recall that relations (20) denote that states that 
differ only in the spin orientation a r e  equally populated. 
This is the only case considered hereafter. The func- 
tions F, and , a r e  then connected by relation (20) and i t  
suffices to find only one of them. 

Equation (17) [or (17a)l is a convenient starting point 
for the derivation of the kinetic equation. It is appa- 
rently impossible to obtain a simple and universal ki- 
netic equation for a superconductor, unlike a normal 
metal, because of the fact that the spectrum is com- 
plicated and different in the different problems. If the 
relaxation times a re  long, s o  that the scattering has 
little effect on the spectrum, and the potentials vary 
slowly in space and time, then we can obtain from (17) 
the classical Boltzmann equation derived for a super- 
conductor by Aronov and G u r e ~ i c h , ~  and Eq. (17) can be 
useful in this case for  the determination of the quantum 
corrections. 

We use hepeafter (17) to obtain a kinetic equation for 
two cases: nonequilibrium stationary state, without 
any limitations (except T E ~  >>ti, RV <<pF) on the impurity 
concentration and on the magnitudes of the spatial 
gradients, and a dirty superconductor (TA << R) in a field 
that varies slowly with time. A kinetic equation was 
derived under the same assumptions in Refs. 4 and 5. 
The two distribution functions introduced in these 
references a r e  certain linear combinations of the func- 
tions F, and F2. The coefficients in these combinations 
a re  quantities made up of R and A matrix elements (the con- 
nection is given below for the stationary case). These two 
functions donot goover into eachother by the symmetry 
transformation (20), therefore even in the absence of 
spin polarization the equations for each of them a re  in- 
dependent. The property (20) of the matrix g leads to 
symmetry of the distribution functions q(n, t,, t,), 
ql(n, t,, t,) introduced in Ref. 4: 

cp(n, t , ,  t,)=-cp(-n, tz, t , ) ,  cpi(n, ti, t2)=cpl(--n, tz, t , ) .  

For  this reason, the two equations for q and q ,  a re  
equivalent to one equation for  F, o r  F,, which do not 
have this symmetry. The main advantage of introducing 
distribution of functions defined by (14) is the simpler 
form of the collision integral. 

Nonequilibrium stationary states ar ise  in many phy- 
sical situations: in thermal perturbations, when cur- 
rent flows in the boundary between normal and super- 
conducting metals, in microwave pumping, or  in tunnel 
injection of excitations. In many cases the kinetic 
equation obtained below should be supplemented by an 
excitation source whose form is determined by the 
specifics of the problem. 

In the stationary state, the Green's function depends 
only on the difference between its time arguments. We 
take the Fourier transform with respect to the dif- 
ference t ,  - t, in Eq. (17), express g, R,A in terms of 
(lo), ( l l ) ,  (141, and (20), and put 

F,(e,  n, r ) = I - 2 f e ( r ) ,  F2(e,  n, r ) = l - 2 f - ~ ( r ) ,  e=(e ,  n ) .  (21) 

As a result we obtain 

1 an' 
l i m p  =t_S ~ W n n *  [KI  (8, 8') ( f e - f e , )  t Kz (8, 8') ( f e  + I-.,- 1)I 1.,,. 

n, (e ,  e', a )  = I f .  (1  -fen) (No + 1)  - (1  - f e )  f~ ,NolS  ( 8 -  e' - 4 
+ [ f e ( 1 - f e * ) N m - ( I - f e ) f e * ( f i ~ +  1)18(e-e'+ a), 

II, (e ,  - E', O) = I f e f e ,  (No + 1) - (1 - f e )  (1 -fe,)NwlS ( 8  + 8'- (0) 

+ [ f j e , h ; -  (1 - f e )  (1 -fe,) (No+ 1)16 (e + e' +a)* 
where v=nvF, N, is the phonon distribution function, 
and 2 and the coherence factors K,, K,, K,, and K, are 
expressed in terms of the matrices R and A: 

Kl  ( e ,  8') ='/,.Sp P,RP,R'P,A'PIA='/,  (aZaZ'+a,aZI), 

KZ ( E ,  E') P1RPzR'PzA'PiA='/z(a,a1'-aza2'), 

KS(E, E') ='/,eSp P,R~.{PiR'P,*' ,  ~ ~ ) P , ~ = a , . a ~ ~ ' - a ~ a I I (  
(23) 

K , ( e ,  e') =-'/,,Sp P I R ~ . { P ~ R ' P ~ A ' .  t ,)P,A=al,a,/-ata,'.  

Here a ,  a,, and a, a r e  Gvectors" [the primes in the 
right-hand sides of (23) pertain to the argument], which 
a re  connected with the Green's functions R and A ex- 
panded in terms of Pauli matrices in the following man- 
ners): 

R=rR, A=rA, a= (R-A) 12, b= (R+A)  12, 

n2=aa, bz=bb, a ,=a+i[ab] ,  a ,=a- i [ab] ,  az+bz=l ,  ab=O. (24) 

The connection between the vectors a and b follows 
from the normalization conditions (6a). The coherence 
factors K, to K, can be represented in the form of the 
squared modulus of the matrix element of the corre- 
sponding transition, and a re  therefore negative. The 
quantity f, is real by virtue of (19). 

Account was taken in the expression for the phonon 
collision operator that a t  low temperatures the phonon 
momentum is small compared with the Fermi  momen- 
tum, s o  that the change of the electron momentum in 
the collision can be disregarded. If the phonon distri- 
bution function depends on the direction, then the colli- 
sion integral (22) contains the phonon function averaged 
over the directions perpendicular to the direction of 
the electron momentum. 
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As seen from (22) the scattering processes with co- 
herence factors K, and K, leads to establishment of an 
isotropic Fermi  distribution function with an arbitrary 
chemical potential, whereas processes with coherence 
factors K, and K ,  establish a zero chemical potential, 
i. e . ,  describe the process of "branch intermixing. " 

The quantities a and b a re  obtained with the aid of 
stationary equations (8). In the case of infrequent 
collisions and slowly varying potentials we get 

Then (22) goes over into the classical Boltzmann equa- 
tion7 if we change over from the independent variable c 
to the momentum p using the formula 

@ + v ~ ( p - p ~ )  =be, p=pn sign e .  

In addition, i t  must be recognized that f, corresponds 
to the quasielectron description, and the distribution 
function of the BCS quasiparticles is equal to f a t  c>O 
and to 1 - f a t  & < 0. However, the obtained equations 
do not contain certain effects that a re  usually smalI, 
namely the increment p,/m to the group velocity of 
the excitations, and the twisting of the trajectories by 
the magnetic field. The accuracy of the initial equa- 
tions (8) and (9), which a re  valid only in the principal 
approximation in A/&,, is insufficient for the descrip- 
tion of these phenomena. 

The expressions for the density and the current, and 
the self -consistency equation, take the form 

The phase of the order parameter is determined from 
the continuity equation, which coincides with the ima- 
ginary part  of the self-consistency equation. 

4. THE DIFFUSION EQUATION 

As shown in many papers, in the case of a small mean 
free path (7h <<If)  it is possible to determine the angular 
dependence of the Green's functions, and for their iso- 
tropic part i t  is possible to obtain the diffusion equa- 
tion. These equations take the form4 

- iD[F,  ~ l f ,  R ] l + ( H R ,  R)-0,  (29) 
- i D ( [ Y  R ~ V ,  g ] ] + [ ? ,  g [ k ,  A ]  ])+Hug-gHA+RZ-ZA=O, (30) 
[k, XI--VX(r,  t i ,  t r )+ipa(t t ,  r ) . t ,X(r ,  t r ,  t z ) - - ip . ( t l ,  r ) X ( r ,  ti ,  t r ) ~ z ,  ' 

where D is the diffusion coefficient, and the self-energy 
parts no longer contain scattering by nonmagnetic im- 
purities, and that part n .  g' of the Green's function g 
which depends on the direction n is given by 

g ' l z u a = - ~ [ ? ,  g l - ~ [ k .  A l .  (31) 

Using the representation (14) and Eqs. (29) and (30), 
we obtain an equation for the distribution function F,: 

We take the Fourier transforms with respect to the 
time difference t, - t, in Eqs. (29) and (32). If the fields 
vary sufficiently slowly, then the dependence of the 
functions R and A on the time t = (t, + t,)/2 is determined 
mainly by the instantaneous value of the potentials. 
The nonadiabatic corrections a r e  small  if the frequency 
of the external field is small compared with the char- 
acteristic electron energy. In this case the matrix 
R(&, r ,  t) can be obtained from the static equation (29). 
Taking into account the normalization condition (8a) and 
(29), we write down the equation for R in the form [the 
equations for the function A(&, r ,  t) a re  similar] 

From (32), taking into account only the terms pro- 
portional to the f i rs t  power of the external-field fre- 
quency, we obtain (F, = 1 - 2f,) 

4 D 
d = -Dp.b,az - - 8 Sp(R, A )  V ( R - A ) ,  (34) 

and the integral of the collisions with the phonons is 
defined by (22) and (23). In the coefficients of the 
terms containing time derivatives we have discarded 
terms proportional to [axb],,,, which a r e  usually 
small: i t  can be concluded from (33) that they a r e  of 
the order of D(~,VA)/ ( tRI2. For  the case of a spatially 
homogeneous gap and small P,, equations of type (34) 
were obtained by Ivlev and Bulyzhenkov. 

The potential A and the density a re  defined by (26) and 
(28), in which the integration with respect to the angles 
can be left out. The expression for the current has in 
the general case a rather complicated form and will not 
be needed here, but can be calculated with the aid of the 
relation 

where the current part of the Green's function g' is de- 
termined by (14), (20), and (31). 

5. SHIFT OF CHEMICAL POTENTIAL 

We proceed now to calculate the shift produced in the 
chemical potential under the influence of the tempera- 
ture gradient when the condensate moves. We note 
f i rs t  certain papers in which the Boltzmann equation7 
was solved under these conditions (p, # 0, V T  +O). 

The correction to the distribution function was cal- 
culated in connection with the problem of the thermo- 
electric current in Refs. 10 and 11, and was found to 
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be proportional to the energy relaxation time T,, and to 
the quasiparticle velocity averaged over the equal-en- 
ergy surface 

At first  glance this mean value is equal to p,/m. The 
small corrections to the velocity, of the order of p,/m 
- U ~ A / & ~ ,  a re  beyond the limits of the accuracy of Eq. 
(22), but might be substantial, since the associated de- 
viation from equilibrium is determined by the slow pro- 
cesses of energy relaxation. However, allowance for 
the dependence of Ipl on the position on the equal-en- 
ergy surface leads to a zero average velocity, and with 
i t  to corrections proportional to the long time4) T for 

Fh the distribution function and for the thermoelectric cur- 
rent. 

The shift of the chemical potential @ calculated in 
Refs. 13 and 14 is proportional to the "branch inter- 
mixing" time. It seems to us  that the expansion in 
terms of p, in these papers is not correct enough, 
namely, no due account was taken of the terms linear 
in pa contained in the integral of the collisions with the 
impurities. The change produced in the result by al- 
lowance for these terms is exceedingly significant: the 
time 7, is replaced by the momentum relaxation time. 

The correction to the distribution function, due to the 
temperature gradient, can be obtained from the kinetic 
equation (22). As will be shown below, the cause of the 
appearance of the potential 4 is the angular dependence 
of the '%ranch mixing" t i e ,  and the effect is not sensi- 
tive to the form of the mechanism that leads to the 
"branch mixing. For  this reason we confine ourselves 
to elastic relaxation processes. Then the solution of 
the kinetic equation (22) can be obtained a t  arbitrary 
impurity concentration. The formula for the obtained 
solution is most cumbersome, and we confine our- 
selves therefore to two limiting cases relative to the 
mean free path. 

We consider f i rs t  the case of a pure superconductor. 
The solution of the kinetic equation is sought in the 
form 

Here f, is the Fermi distribution. The function fl  turns 
out to be even in E ,  and Eq. (22) for fl takes the form 
(we assume for simplicity that the scattering is iso- 
tropic, Woo. = 1) 

1 dP' f i  

a4Vfo+- jzazaz'(f ,- j i ')+-PO, To 

1 dB' 1 1 
(35) 

-= J ~ [ ~ K , ( ~ , S ' ) + - K . ( ~ . . . ) ]  I , 
2% T. .'-. 1 dB' 1 1 
-= J ~ [ ~ K , ( ~ , S ' ) + - K . ( ~ . . . ) ]  I , 
2% T. .'-. 

where the quantities a2, K,, and K ,  are  defined by re- 
lations (23)-(25). Solving Eq. (35) and using (26) and 
the neutrality condition bN=O, we get 

~n the region J E l  > A  +vp,, which is decisive near the 

critical temperature, the quantity a2 is independent of 
angle. For  this reason the first  factor in (36), which 
contains averaging over the angles, differs from zero 
only because of the angular dependence of rQ, which is 
due to the shifts of the energies by an amount v.  p, (25). 
This factor is proportional to rvp ,a~ , -~ /a~( r<<  7,). The 
second factor is approximately equal to 7,. Thus, the 
potential @ is proportional to the momentum relaxation 
time, and not to the 'branch mixingt time. In elastic 
scattering, the energy dependence of 7, is usually a 
power function, therefore, apart from a numerical 
factor, the effect is independent of the '%ranch mixingw 
mechariism. 

Using (36) for the calculation, we obtain near the 
critical temperature 

where 5 is a numerical coefficient that depends on the 
relaxation mechanism. If the momentum p, is small 
and the "branch mixing" is due, e. g. ,  to scattering by 
magnetic impurities, then 5 = 1. If (up,) >T(T/T,)"~, 
then the 'branch mixing1' takes place in scattering by 
nonmagnetic impurities and =4/5. 

At low temperatures, (T << A) and sufficiently large 
currents (up, >> T) we obtain from (36) for superconduc- 
tors without magnetic impurities 

where I is the mean free path. 

If the free path time is short, then i t  is more con- 
venient to use the diffusion equation (34): 

where in this case d=4Dp,b,a2/i, and the inelastic 
scattering is disregarded a s  before. 

If p, and VT a r e  uniformly distributed, we get from 
(39) and (26) 

If the temperature is close to critical, then an im- 
portant role is played in the integral (40) by energies 
E-T. Let the concentration of the magnetic impurities 
and Dp; be not too large, then the quantity b, = i Im R, 
can be obtained from Eqs. (33) by iterating with respect 
to the parameter r/ER << 1, r =26)P: + T,-'. The time 7, 

is given by (34). Calculations in the principal approxi- 
mation in T/ tR yield 

and the potential 4 turns out to be 

If I? >> A, then the superconductor is in the gapless 
state. The suppression of the gap can be due to a suf- 
ficiently strong magnetic field o r  by current through the 
film and by frequent scattering by magnetic impurities 
or  phonons. We then obtain in the entire region of exis- 
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tence of the gapless superconductivity, from (33) and 
(381, 

The experiment of Clarke et al. confirms the linear 
dependence of the potential on p, and VT. In Ref. 2 
is given the experimental value of 

where j is the density of the current flowing through the 
film. The measurements were made with dirty tin 
(1 -6 x 10% cm). If p, is expressed in terms of the cur- 
rents using the formulas for a 6ddirty'p s u p e r c o n d ~ c t o r , ~ ~  
then (42) and (43) yield (assuming that r << T) 

where p is the resistivity and 5, =KvF/nA(0) is the co- 
herence length. This formula contains no adjustment 
parameters a n d y  is determined only by the chemical 
composition of the sample. For  tin, pl= 1.5. 10'11 
S2. cm" to= 2.3 . cm15, A(O)/TC=1.76, and y turns 
out to equal 0.8 x 10-16Q cm3. The experimental value 
of y for different samples fluctuates between 0.8 and 
3.8 x 10-160 cm3. The reason for this spread is not 
quite clear, since almost all the samples had very 
close parameters. Under these conditions the quan- 
titative agreement between the theory and experiment 
can be regarded a s  perfectly satisfactory. 

Let us dwell finally on the effect reminiscent to the 
Nernst effect. If a superconducting plate is situated in 
a magnetic field parallel to i t s  surface, then the Meis- 
sner screening results in a superconducting current 
near the surface of the plate. If the temperature is not 
uniform along the plate, then a transverse potential 
difference 64  = 4, - 4, is produced, where 4, and 4, a re  
the nonequilibrium potentials on the opposite surfaces of 
the plate. 

We calculate this potential difference under conditions 
when relations (41) are  valid. The distribution func- 
tions satisfies the equation (39). The source of the 
disequilibrium dVfo is concentrated a t  low energies, a t  
which the diffusion length (0r0)'I2, and the term with 
the second derivatives can be neglected in Eq. (39). At 
high energies, a t  the same time, the effective diffu- 
sion mechanism of relaxation comes into play, and the 
distribution function is close to equilibrium. For this 
reason the potentials 4, and 4, can be obtained from 
Eq. (40), in which the integration limits a re  deter- 
mined from the condition ( D T ~ ) ~ ~ ~  = A, A =min(A, d), 
where X is the London depth of penetration and d is the 
thickness of the plate. Simple calculations yield 

The superfluid momentum p, is expressed here in 
terms of the applied magnetic field H with the aid of 
the Londons' equations, and n is the normal to the sur-  
face of the plate. If d - A, T - T,, then N differs by a 

factor (c,/T,)~ from the Nernst constant in the normal 
metal. 

The unbalance in the potential in the presence of 
VT is due to the drift term d Vf in (39). This equation 
can be derived directly from (22) by the Chapman- 
Enskog procedure. In the course of the derivation it 
can be verified that the vector d in (34) and (39) is none 
other than the average, over the equal-energy surface, 
of the effective excitation velocity d = ($17). The physi- 
cal interpretation of the difference between the effective 
velocity d v  and the Fermi  velocity v was discussed in 
the introduction. The value of the vector d, a s  ex- 
pected, is determined by the 'branch mixing. " This 
can be verified from relations (34) and (41). The pres- 
ence of the drift term is not confined to dirty supercon- 
ductors. A diffusion equation of the type (39) can be ob- 
tained also for pure superconductors and for perturba- 
tions that a re  weakly inhomogeneous in space. The 
corrections connected with the angular dependence of 8 
are  in this case small in terms of the parameter 
( V ~ ~ / A ) ( T T , A ~ ) - ' ~ ~ ,  and the term do Vf stems from the 
angular dependence of the time ro (35). 

A drift of excitations with a velocity proportional to 
ps means in a certain sense drgagging of the excitations 
by the condensate, and leads under nonequilibrium con- 
ditions to the onset of dissipative currents. 

6. HEAT FLUX 

Assume that a voltage U is applied to an N- S junction 
(see the figure). An injection of excitations leads to a 
deviation from equilibrium in the superconductor and to 
the appearance of a potential 4. If we pass a current 
through S, then the dragging of the nonequilibrium ex- 
citations by the condensate leads to the appearance of 
the heat flux for the reasons indicated in Sec. 1. Un- 
derstandably, this effect and the appearance of the po- 
tential 4 under the influence of the temperature grad- 
ient and the superfluid motion a r e  closely connected. 
This connection can be established with the aid of the 
Onsager relation. It is important that a current smal- 
l e r  than critical does not take the superconductor out 
of the equilibrium state, and the principle of symmetry 
of the kinetic coefficients is applicable in this case. 

Using the expressions for the entropy production (see, 
e. g., Ref. 7) and the tunnel source of  excitation^,^*'^ 
a s  well a s  the kinetic equation (22), we obtain 

where 6 is the density of the entropy production due to 
the "branch mixing" processes in the superconductor, 
and 4 is the value of the nonequilibrium potential a t  a 

FIG. 1. 
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voltage U on the contact. This relation can be verified 
for elastic 'branch mixing" mechanisms a t  any temper- 
ature, and for scattering by phonons a t  least near the 
critical temperature. 

The expressions obtained in the preceding section for 
the potential 6 can be written in the form (2). The 
quantity 5(T) is obtained by comparing (2) with formulas 
(37), (38), (42) and (43). From the Onsager principle, 
(47), and from the fact that p, reverses sign when time 
is reversed, we obtain an expression for the heat flux 
'I : 

where u is the electronic thermal conductivity. To 
estimate the effect, we represent (48) in the form 
q= -u[vT - (VT)'], where (VT)' has the meaning of the 
temperature gradient established in the sample under 
adiabatic conditions (q = 0) if only the electrons of the 
film S take part in the heat-conduction process. We 
express (vT)' in the form 

6(T) x(T.) eU vrp, pl T. (VT)' ------- 
n b ( T )  T. T, A d ' 

As expected, the quantity (vT)' vanishes both a s  T- 0 
and a t  the transition point T,. In the former case this 
is due to the behavior of t ( T )  and x(T) a t  low tempera- 
tures, and in the latter to the vanishing of the critical 
momentum. The maximum value of (vT)' takes place 
a t  T -T,. In this case all the dimensionless factors in 
(49), except for the last one, can be of the order of 
unity. If R - 10-sS2.cm2,pl- lo-" cm2, andd- 10-5cm, then 
(PT)'-  1 ~ / c m .  Naturally, it is extremely difficult 
to obtain such a temperature gradient in a real situa- 
tion, for example because of the heat fluxes in the sub- 
strate. 

We note in conclusion that the described mechanism 
should contribute to the Ettingshausen effect for super- 
conductors in the intermediate or  in the mixed state. 
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')After this work was completed, an article by Schrnid and 
Schan appearedS3 in which a similar relation was obtained. 

2 ) ~ h e  part of connected with scattering by magnetic im- 
purities was written down for the case when there is no spin 
polarization. 

3 ) ~ h e  distribution functions cp and cpl introduced in Ref. 4 a re  
connected with f by the relations 

4 ' ~ h i s  circumstance is indicated in the review by A. G. Aro- 
nov, Yu. M. Gal'perin and V. L. Gurevich and V. I. Kozub 
(in press). The author thanks Aronov and Kozub for a dis- 
cussion of this question. 
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