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The behavior of a two-level atomic system placed in a strong low-frequency electromagnetic field is studied in 
the framework of the adiabatic approximation. The field strength is not assumed to be small in comparison 
with the separation of the atomic levels, as was the case in earlier papers on this subject. The region of many- 
photon resonances is considered, and also the behavior of the populations and quasienergies of the states in 
the intervals between resonances. The results are compared with the available exact solutions of the problem, 
obtained with a computer for particular values of the field parameters. It is found that good agreement 
between the adiabatic approximation and the exact solutions is already attained beginning with the region of 
three-photon resonance. The results of an existing experiment in such fields are discussed. Solutions in the 
adiabatic approximation are constructed both for adiabatic and for instantaneous turning-on of the field. 

PACS numbers: 32.80.Kf 

1. INTRODUCTION 

The adiabatic approximation has previously been ap- 
plied' to the case of a two-level atom placed in a low- 
frequency electromagnetic field with i t s  frequency w in 
the neighborhood of a many-photon resonance. By 
means of an appropriate generalization the same 
method can be applied to an arbitrary case, including 
nonr esonance conditions, since the adiabatic approxi- 
mation requires only that the frequency w be small in 
comparison with the separation w,, between the levels. 
Furthermore the nonresonance condition can be due 

netic field on the basis of the adiabatic approximation. 
In Sec. 3 the probabilities of level populations a r e  de- 
termined both for adiabatic and for sudden turning on 
of the perturbation. The Conclusion gives a compari- 
son of the analytic and exact calculations, and also an 
explanation, on the basis of this theory, of experimen- 
tal data on the populations of levels under the condi- 
tions considered here. 

2. CALCULATIONS OF QUASIENERGIES 
IN THE ADIABATIC APPROXIMATION 

either to an increase of the detuning from resonance 
In the energy-spin representation the wave function 

o r  to an increase of the intensity of the external field, of a two-level atom in a monochromatic field V ( t )  
so that the amplitude of the field can be comparable = V ,  sin(wt + cp) satisfies the equation 
with the distance w,, between the atomic levels in ques- 
tion. Hitherto the approach to  the problem in the non- iau/at=Ru, R=-I/ 2oeoosf V ( t )  IS,. 

(1) 

resonance case has been based exclusively on numeri- Here w,, is the separation between the levels, Vo is the 
cal calculations for particular values of the param- amplitude of the transition matrix element, and u, a r e  
e t e r ~ . ~ "  There is also an analytic solution4 in the the Pauli matrices. 
nonresonance case when the external field is weak and The Hamiltonian f i  is invariant under the " screw" 
turned on adiabatically. transformation 

The adiabatic approximation makes it possible to deal d 
analytically with the effects of antiresonance terms in ~ , = o ,  ~ x p  (n;;;) , . - - .  
the perturbation, which play a very important role fo r  

which is a translation by the amount n in the variable 
strong fields o r  nonresonance frequencies. 

T = wt + cp and a simultaneous rotation through the angle 
It is well known that for numerical reasons the quasi- 

classical approximation gives good agreement even for 
small quantum numbers, including even the ground 
state of the system. Analogously, the adiabatic ap- 
proximation, being an analog of the quasiclassical 
approximation with coordinates replaced by the time 
and momenta by the energy, can be applied even when 
the frequency w of the external field is not much smal- 
l e r  than the level separation w,,, but of the same order 
of magnitude. Important deviations begin to occur only 
when w is larger than w,,. As we shall see, this is 
well confirmed by comparison of the analytic calcula- 
tions in the adiabatic approximation with exact calcula- 
tions made with a computer. 

In Sec. 2 we examine the cluasienergy states of a 

a around the third axis in the energy-spin space. 
Therefore the solutions of Eq. (1) can be chosen so that 
they a r e  eigenfunctions of the operator f,: 

~ . u ( T )  = 0 3 u ( ~ + n ) = e x p  ( i n e / o ) u ( t ) .  (2) 

Since applying the transformation f, twice gives a 
translation by a whole period, these solutions describe 
states with a definite quasienergy c (Ref. 5). 

Hereafter we shall consider the case of a low-fre- 
quency field, w << w,,, for which we can use the adia- 
batic solution of Eq. (1) 

-- 
two-level atom in a low-frequency strong electromag- Here the notation is 
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oh 2 v, 
tg O=q sin T ,  '2- -- ( l+qZ sinz T )  ", q = --- . 

2 0  0 b. 

The function has the complex branch points 
~.==nn*i arsh ( l l q )  . 

Let u s  write the general solution in the interval (0, n) 
a s  a superposition of the linearly independent basic 
solutions shown in Eq. (3): 

u ( 7 )  =ciui  ( 7 )  +CZUZ(T) .  (4) 

We continue this solution analytically along the real  
axis into the next interval (r, 2n), avoiding the branch 
points 'rl (for the function ul) and rf (for %). Then, 
using the conditions (2) we get the following equations 
for the coefficients Cl and C2: 

Here the new notation is 

A= exp {2ioj  Q ~ T }  

and E and D a r e  the complete elliptic integrals of the 
second and third kinds, respectively. 

The quantity S is a quasiclassical phase taken on the 
interval (0, n), and R is analogous to the quasiclassical 
coefficient of above-barrier reflection! In the low- 
frequency range considered (w << wed the phase S is 
large, and R << 1 (with q << w,,/w, but either q 2 1). 

Equating the determinant of the system (5) to zero, 
we get the following equation for the quasienergy: 

sin ( n e l o )  = (I-R"'"" sin S, (7) 

which has two solutions, c and c' = w - E .  F a r  from 
resonance (i.e., when S is not close to an odd multiple 
of n/2) we can neglect the small quantity R, and the 
quasienergy is given by7 

In a weak field (q << 1) the f i rs t  terms of the expansion in 
powers of q a r e  identical with the result given by Meli- 
kyan8 (see also Ref. 9) 

In the neighborhood of a many-photon resonance the 
phase is 

S='12n(2K+1)+AS, AS+O 

and the quasienergy is of the form1 

The dependence of the quasienergy on the field, which is 
determined by the expression (7), is shown in Fig. 1. 
The solid lines show the branch of the spectrum cor- 
responding to the state that ar ises  from the lower state 
of the atom when the field is turned on adiabatically. 
The breaks in this curve a t  certain values of the ampli- 
tude q of the external field correspond to many-photon 
resonances. 

FIG. 1. The quasienergy as a function of the amplitude of the 
field for the case w / w k =  0.244. The five-photon resonance is 
shown for q = 1, and the seven-photon resonance, for q = 2.1. 

3. CALCULATION OF POPULATIONS OF THE LEVELS 

Corresponding to the two values of the quasienergy, 
c and c', there a re  two sets  of coefficients C1 and C2: 

C,*=[ ' / , { i* [ ( l -R ' )  ( l + R a  tg2S) - l ] " ) ] " ,  

CZi=*sign eos S e i ' ~ [ ' / , ( l r [ ( l - R f )  (1+R2 tgPS)- '1")  I? 
(10) 

with the choices of signs corresponding to Eq. (7). 

When the interaction is turned off adiabatically (q-O, 
R - 0, - wbJ2w) the solution u' = C f u ~  + C;% goes over 
into the wave function 

which describes an atom which is in the lower state. 

It suffices to define the wave function of a quasienergy 
state on the interval (0, n) only, since i t  can be con- 
structed easily on other intervals by means of the con- 
dition (2). 

The probability of transition from the lower state to 
the upper one during adiabatic turning on of the pertur- 
bation is determined by the square of the lower compo- 
nent of the spinor ~ ' (7 )  and is a periodic function of 7 

with period n: 

R - sin ---- cos ( S 
( I+RZ tg2S)"' cos $ 

The last term describes rapid oscillations with fre- 
quency -w,,, with small amplitude except in the neigh- 
borhood of a many-photon resonance, where these os- 
cillations a r e  simply modulated by the function sinO(7). 
The time appears in the transition probabilities (11) 
only in combination with the phase constant of the field 
(7 = wt + p) SO that averaging over the phase constant of 
the field (which is equivalent to averaging over time 
with a fixed phase constant) leads to a transition proba- 
bility which is independent of the time: 

W='/2(1-91,  (12) 

where f is given by the expression 

Here K is the complete elliptic integral of the first  kind. 
At a resonance point f = 0 and W = *. That the popula- 
tions a r e  equal a t  the resonance point is a fact not re- 
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lated to the adiabatic approximation, and is true also 
for the exact solution of the problem. 

F a r  from resonances the quantity R can be neglected 
and 

For  small q this expression goes over into the pertur- 
bation-theory result,' a s  could be expected. 

As is well known, by differentiating the quasienergy 
with respect to parameters one can obtain the average 
values of various physical quantities? For  example, 
the average over a period of the probability of finding 
the system in the upper state is given by 

which, when Eqs. (6) and (7) a r e  used, leads to the ex- 
pression (l2), a s  it should. 

Let us  now turn to  the case of instantaneous turning- 
on of the perturbation. In this case the solution is a 
superposition of the quasienergy states u' and u-. The 
coefficients of this superposition a r e  found from the 
condition that a t  a certain initial time the system is in 
the lower state. 

Omitting the intermediate steps, we find that the av- 
erage, taken over the phase constant q and the time 
the observation is made, of the probability that the up- 
per level is occupied is 

w='/z(l-92), (14) 
where the value of 9' is given by Eq. (13). 

Figures 2 and 3 show the probability that the upper 
level is occupied, calculated by means of Eqs. (14) and 
(13) (solid curve) and the results of calculations with 
a computer (from Ref. 2) (dashed curve). Figure 2 
corresponds to a field of moderate intensity, with q 
=0.5, while Fig. 3 corresponds to a rather strong 
field, with q = 1.54. 

At points where the condition 

FIG. 2. Probability of occupation of the upper level, averaged 
over the phase of the field and the time of observation, a s  a 
function of w / q ,  for a relatively weak field, q = 0 .5 .  The 
solid curve shows the analytic solution found according to Eqs. 
(13) and (14) in the adiabatic approximation, while the dashed 
curve represents the exact solution obtained with a computer 
in Ref. 2. The peaks correspond to the one-photon resonance, 
the three-photon resonance, and so on. 

FIG. 3. The same a s  in Fig. 2, but for a very strong field, 
q=1.54. 

holds (with k an integer), the probability of occupation 
for each level is 4. The condition (15) gives the posi- 
tions of many-photon resonances in the case of a strong 
field and does not depend on the way the external field is 
turned on. 

4. DISCUSSION OF THE RESULTS 

Comparing the numerical and analytic solutions in 
Figs. 2 and 3, we see  that beginning with even the 
three-photon resonance the adiabatic approximation 
agr6es very well with the exact solution. Furthermore 
i t  is hard to continue the exact solution into the range of 
very small frequencies because of the strong oscilla- 
tions of the probability a s  a function of the time. 

We note that in the resonance region the agreement 
between the approximate and exact solutions is better 
than in the nonresonance region. As could be expected, 
the agreement becomes worse with increasing frequen- 
cy w. It is not bad, however, even in the neighborhood 
of the fundamental harmonic k = 0, especially when the 
strength q of the perturbation is not too large. At 
small frequencies, i. e., actually behond the region of 
three-photon resonance, the analytical formulas (14), 
(13) agree well with the exact solution over the entire 
range of frequencies, including the nonresonance inter- 
vals, in which the transitions between the upper and 
lower states a r e  given not by the many-photon matrix 
elements, a s  in the neighborhoods of resonances, but 
by the ordinary nonresonance matrix elements, which 
do not require that there be energy conservation with 
the number of absorbed photons taken into account. For  
example, in the case of weak fields, the populations 
in the nonresonance intervals a r e  determined by the 
perturbation-theory term of f i rs t  order in q. It cor- 
responds to.the expansion of the elliptic integral K in 
powers of q with q << 1. 

As can be seen from Figs. 2 and 3, with increasing 
multiplicity the resonances rapidly become extremely 
narrow, if only the perturbation q is not too large. As 
q increases, there is a gradual raising of the curve of 
W toward the horizontal asymptotic line W =  $, a s  could 
be expected. 

There is a relatively simple expression for the prob- 
ability W(t) of the upper level being occupied, averaged 
over the phase a t  which the field is turned on and over 
small-scale fluctuations a s  a function of the time of ob- 
servation t (of the order l/w), a t  an  exact resonance of 
arbitrary multiplicity: 
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From this i t  can be seen that for instantaneous turning 
on the probability undergoes large-scale fluctuations, 
which a r e  the analog of the Rabi fluctuations for  the 
case of a strong field. The amplitude of these oscilla- 
tions is given by 

For example, for q = 1.54 we find that the amplitude of 
the oscillations is$ =0.26. We note that in the adia- 
batic approximation the amplitude of the oscillations 
does not depend on the mulitplicity of the resonance, 
i. e., on the frequency cu. Their frequency is given by 

It does, of course, depend strongly on the mulitiplicity 
of the resonance. In particular, for  q = 1.54 and a five- 
photon resonance i t  is i2 = 0 .115~ .  We see  that i t  is 
small compared with w, and still smaller compared 
with wba = 5w, a s  it should be. 

Table I shows the values of the Stark shifts calculated 
from Eq. (15); these a r e  the shifts of the positions of 
the maximum values W =  $ relative to the unperturbed 
positions w = wba/k (k an odd integer). They a r e  com- 
pared with the exact values of the Stark shifts a s  found 
in Ref. 2 by means of a computer. The results given 
a r e  for the case of a strong field, with q = 1.54. In 
this case, by calculating the elliptic integral we get 
from Eq. ( I  5) a simple formula for determining the 
Stark shift of a resonance of arbitrary multiplicity k: 
AW = 0.44wbdk. We see  that, except for the case k = 1, 
all  the other Stark shifts agree well with the exact val- 
ues calculated with the computer. The differences be- 
tween the approximate and the exact values of the Stark 
shift a r e  proportional to 1/k2, which is quite natural, 
since the phases of the adiabatic functions a r e  deter- 
mined with fractional accuracy -l/k = w/w,,. We em- 
phasize that in the case in question the Stark shifts a r e  
comparable with the distance between the unperturbed 
levels. 

An experiment relating to  our present subject is de- 
scribed in Ref. 10. An excited level of the sodium 
atom was split with a constant magnetic field (the Zee- 
man effect). A state with definite magnetic quantum 
number m was populated by the absorption of polarized 
light of optical frequency. An alternating magnetic 
field of the radio frequency between the states m and 
m + 1 was applied. It played the part of the strong 
monochromatic field of our present case. Measure- 
ments were made on the spontaneous emission of light 
of definite polarization, corresponding to transition 
from the state m + 1. The constant magnetic field was 
varied, so a s  to have various values of the distance 
w,, between the levels of the two-level system in ques- 
tion. The resulting curves for the intensity. of the spon- 
taneous radiation a s  a function of the constant magnetic 
field a r e  very similar to the curves shown in Figs. 2 
and 3. A quantitative comparison between theory and 
experiment is not possible, however, since in this ex- 
periment the steady magnetic field was only approxi- 
mately constant, and the alternating field produced res- 

TABLE I. Stark shifts of many-photon resonances in the 
strong-field case (q = 1.54). 

Multiplicity .Adiabatic 
o e c e  1 p o t i o n  

onances of the even harmonics. 

Accordingly, we can conclude that the adiabatic ap- 
proximation correctly describes the behavior of a two- 
level system in a strong electromagnetic field, with 
high quantitative accuracy achieved already in the 
neighborhood of the three-photon resonance. 

We have given the adiabatic solutions both for the 
case of adiabatic turning on of the perturbation and for 
instantaneous turning on. What a r e  the criteria for the 
instantaneous or  adiabatic nature of the turning on? In 
the case of the ordinary Rabi problem for fields small 
in comparison with the distance between the levels, the 
cri teria are": AT<< 1 or  AT>> 1, where T is the dura- 
tion of the turning on, and A is the detuning of the reso- 
nance. Therefore, in the immediate neighborhood of a 
resonance the turning on is instantaneous, and far from 
al l  resonances i t  is of course adiabatic. In the case of 
a strong field the same criteria hold, but the resonance 
detuning must be considered with the Stark shift inclu- 
ded, because in a very strong field this shift is large 
and decidedly alters the position of the resonance. This 
follows from the general statement that the turning on 
is adiabatic when the quasienergy levels do not approach 
each other too closely in their quasienergies, so that 
they do not become intermixed during the turning on of 
the perturbation. 

If the levels have finite width, in particular the natu- 
r a l  width, the minimum detuning will be determined by 
their width, so that in the stated criteria we must re- 
place A with the level width. For  radiofrequency fields 
a t  resonance the turning on is instantaneous. This 
statement is confirmed by the observation of the well 
known Autler-Townes effect in the radiofrequency 
range.12 F a r  from resonance, however, a s  A increases 
the turning on becomes adiabatic. Although the level 
width can vary widely, for example if we consider tran- 
sitions between hfs sublevels o r  the Zeeman sublevels 
of the ground state of an atom, from both the experi- 
mental and the theoretical points of view we can con- 
clude rather generally that the turning on of the pertur- 
bation is instantaneous a t  resonances and adiabatic 
away from them. 
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Stimulated photon echo in a resonant gaseous medium is investigated theoretically. It is found that the echo 
intensity and the polarization depend markedly on the relaxation characteristics repsonsible for the relaxation 
of the population, magneto-dipole (orientation relaxation) moment, and quadmpole (alignment relaxation) 
moment of the resonance levels. These dependences make it possible to carry out experimental measurements 
of these relaxation times by the photon echo method. The observed effect should stimulate the setting up of 
new experiments on the photon echo in gases with the aim of measurement of the above-mentioned 
characteristics of the resonance levels. 

PACS numbers: 5 1.70. + f 

A photon echo is formed in  a medium after  passage of 
two exciting light pulses separated by a time interval 
7,, and represents spontaneous coherent radiation from 
a superradiant state created by the f i rs t  exciting pulse.1 
By increasing 7, and observing experimentally the at- 
tenuation of the intensity of the photon echo, we can 
effectively measure the relaxation characteristics of the 
resonance transition by the photon echo method. Thus, 
in experiments on the photon echo in  gases (see, for 
example, Refs. 2-5), this method was used success- 
fully to find relaxation characteristic fl' responsible 
for the damping of the component of the optical coher- 
ence matrix, which is proportional to the polarization 
of the medium. There a r e  a lso  theoretical  work^,^" 
showing the possibility of measurement by the photon 
echo method of other relaxational characteristics +q'(x 
+ 1) of the optical coherence matrix. 

In the present work, it is shown that we can also mea- 
sure  the relaxation characteristics of the resonance 
levels themselves by the photon echo method: the re-  
laxation of the population, orientation, and alignment. 
F o r  this purpose, it is proposed to observe not the or- 
dinary but the so-called stimulated photon echo. 

The stimulated echo was predicted and observed by 
~ a h n '  in the radiofrequency range. This echo is cre- 

ated a t  an  instant of time approximately equal to 271 
+ ~ 2  upon successive passage through the medium of 
three exciting pulses, separated by the respective t ime 
intervals 71 and 7 2 .  We note that the three-pulse meth- 
od of excitation of resonant media has already progres- 
sed a t  the present time f rom the radiofrequency to the 
optical range (see, fo r  example, Trgd. 9-11). In par- 
ticular, stimulated photon echo in ruby has been ob- 
served in the work of Samatsev et a1.l' Thus, the fact 
of the possibility of observation of a stimulated echo in 
the optical range ra ises  no doubts whatever. 

In the present work, we have carried out a calcula- 
tion of the intensity and polarization of the stimulated 
photon echo produced in a gaseous medium. In this 
case we have taken into account the degeneracy of the 
resonance levels of the considered transition and the 
effect of elastic depolarizing atomic (molecular) colli- 
sions on the interaction of the atoms (molecules) of the 
gas with the resonance electromagnetic field. The cal- 
culations that have been carr ied  out show that it is pos- 
sible to select such experimental conditions under 
which the damping of the components of the maximum 
of intensity of the stimulated photon echo in the direc- 
tion of polarization of the third exciting pulse and in the 
perpendicular direction will be determined either only 
by the relaxation t imes of the population of the resonan- 
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