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We consider the singularities of spin dynamics of the superhid phase A of liquid 'He under conditions 
when at equilibrium the orbital-anisotropy axis I and the spinquantization axis d make an angle a*. It is 
shown that in this situation parametric excitation of longitudinal spin waves with q#O is made possible by 
homogeneous transverse pumping. The dynamic effects under conditions of pulsed NMR, which are 
characteristic of a spin-orbit configuration with a+, are also considered. 

PACS numbers: 67.50.Fi 

1. INTRODUCTION 

Weak dipole-dipole interaction between the magnetic 
moments of nuclei plays a fundamental role in the prop- 
erties of the superfluid phases A and B of liquid 3He. 
In the superfluid state with triplet Cooper pairing the 
magnetic dipole-dipole interaction leads to establish- 
ment of a coherent "rigidity" between the spin and orbi- 
tal degrees of freedom, and this rigidity influences the 
formation of an equilibrium spin-orbit configuration in 
3He-A and 3He-B. The great variety of properties of 
these superfluid phases i s  the result of the joint action 
of the aforementioned spin-orbit forces andof various 
external factors, such a s  the orienting influence of the 
vessel walls, of the magnetic field, a s  well a s  of the 
superfluid flows. 

When the spin degrees of freedom deviate from the 
equilibrium configuration, the coherent rigidity on the 
part of the orbital part of the order parameter mani- 
fests itself in the form of an additional torque that acts 
on the magnetic dipole moment of the liquid 3He and in- 
fluences by the same token the spectrum of the NMR 
frequencies of the superfluid phases.' Of course, the 
character of this spectrum depends essentially on the 
equilibrium spin-orbit configuration near which oscil- 
lation of the spin degrees of freedom of the condensate 
take place. For example, for the superfluid phase A ,  
which is characterized by an orbital-anisotropy vector 
1 and by a vector d along which the projection of the 
summary spin of the Cooper pair i s  equal to zero, the 
NMR frequencies depend essentially on the equilibrium 
angle between d and I. Far from the vessel walls and in 
the absence of superfluid flows we have I =id, which 
corresponds to the minimum of the dipole-dipole part 
of the free energy. In this situation, a s  is  well known, 
a positive shift of the transverse NMR frequency is  ob- 
served. On the other hand, for 3 ~ e - A  contained in a 
narrow slit between two plane-parallel plates, condi- 
tions can be realized wherein (owing to the orienting in- 
fluence of the walls) d l  1 at equilibrium. In this case 
the dipole-dipole energy i s  maximal and a negative shift 
of the frequency of the transverse resonance is  ob- 

A more complicated situation develops in the 
presence of soliton textures (domain walls), within the 
limits of which a gradual change takes place in the rel- 

ative orientation of the vectors 1 and d. The results a re  
localized vibrational modes observed in the form of sa- 
tellites in the NMR spectra of the superfluid 3EIe-AP 

Violation of the dipole-dipole minimum with 1 =id can 
be realized dynamically when the magnetization (and 
with it also d) is deflected from the equilibrium orienta- 
tion. By examining the frequency precession of the 
magnetization (before the direction of the latter relaxes 
towards the initial equilibrium orientation), we can in- 
vestigate the dependence of the precession frequency 
shift on the deviation angleO5 

The purpose of the present study was a theoretical in- 
vestigation of some new effects involved in the spin dy- 
namics of superfluid 3He-A and coming into play under 
conditions when 1 =id a t  equilibrium. We consider be- 
low the case of a strong magnetic field (H >> 30 G), in 
the presence of which we can assume with certainty that 
d l H  in the entire volume. Directing the z axis along H 
and the y axis along the equilibrium orientation d, we 
consider a configuration in which the orbital vector 1 
lies in the y z  plane and makes an angle a + 0 with the y 
axis. We shall demonstrate below that under these con- 
ditions parametric excitation of the longitudinal spin 
waves with q # 0 becomes impossible under homogeneous 
transverse pumping. This will be lfollowed by an inves- 
tigation of the dependence of the shift of the magnetiza- 
tion precession frequency on the angle (Y under condi- 
tions of pulsed NMR. On the other hand, it will be 
shown that for a jumplike decrease of the intensity of 
the principal magnetic field by an amount AH = H , / 2 ,  
which accompanies the transverse radio-frequency 
pulse, a unique "resonant" situation arises, which is 
typical of the case with a + 0. Finally, we discuss 
briefly the possibility of realization of a sufficiently 
homogeneous phase A with a # 0 in a relatively large 
volume of liquid 3He. 

2. PARAMETRIC EXCITATION OF LONGITUDINAL 
SPIN WAVES IN 3 ~ e - ~  

The coupled oscillations of the magnetization M and 
of the vector d i s  superfluid 3He-A a re  described by the 
Leggett system of equations 
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~ l a t - y [ M x H l + ~ Q ~ ' ( d l )  [ 4 X l l + r ~ . ~ , ' ~ j , [ d X ( V r V P )  I ,  (2.1) 

adlat-y[d x ( H - M / ~ ' x ~ )  1, (2.2) 
where is the gyromagnetic ratio for the 'He nuclei, X, 
is the spin susceptibility of the normal phase, 61, i s  the 
dipole frequency of the superfluid phase A ,  c,, is the vel- 
ocity of a spin wave with qlll and a,, =.26,, - 1,2,  is the 
anisotropy tensor. At equilibrium., 1. e., at  H =Ho 
=const and M=d=Vd,aO, we have 

Introducing the magnetic-field fluctuation m(t) =M - M,, 
and considering the case of a strong magnetic field, 
when & L H 0  I I  z regardless of the orientation of the orbi- 
tal vector 1 =(0, cosa, sina), we arrive at the following 
system of differential equations for m(t )  and 6d(t) 
=a-$: 

hlat-y[m~H,J+yx.Q~'((ld~) [ I ~ G d l + ( 1 8 d )  [ I  X d l }  

- 7 x . ~ , ~ ' a , [ d x ( V , V , 6 d )  l = y [ M X h l ,  (2.3) 

where h(t) is the alternating part of the external magne- 
tic field. We shall assume henceforth that hLJ3,,. 

In the linear approximation, the natural oscillations 
of the longitudinal magnetization a r e  described by the 
equation 

( ~ l a t 2 - ~ l 1 2 a i , V i V j + ~ , z  cos' a) m.(r, t )  =0, 

which specifies the dispersion of the longitudinal spin 
waves: 

o : ( q )  -QAz cos' a+cl;aijqiqt. 

It must be borne in mind that a t  a # 0 the transverse 
components of the magnetization also oscillate at these 
frequencies, but under strong-field conditions ( y H o  >> 52,) 
their relative magnitude is small. 

We turn now to the exact nonlinear equation that des- 
cribes the dynamics of m,. When the y axis is oriented 
along d,,, this equation takes the form 

It i s  easily seen that if the homogeneous transverse 
magnetic field h(t) = (0, h coswt, 0) is made to build up 
oscillations of 6d,, then a s  a result of the nonlinear 
coupling between 6d, and 6d,, we can realize parametric 
excitation of oscillations of the longitudinal magnetiza- 
tion component with q'+O. A picture of similar charac- 
ter ,  that of parametric generation of spin-wave modes, 
takes place in antiferr~magnets.~ The specific feature 
of the situation considered by us i s  that the excitation 
of the longitudinal oscillations of the magnetization un- 
der conditions of transverse "pumping" i s  possible only 
at a # O .  

It i s  easy to verify that in the approximation linear in 
h the induced homogeneous oscillations 6d, are  given by 

rho0 
6d, ( t )  = , , co s (o t+6 )  = a ( o ) c o s ( o t + 6 ) ,  (2.6) 

[ (Oz-O,ll)a+ ( ~ r , ~ ) = i  

where w:,= d+ 0; C O S ~ ~  is the square of the frequency 

of the transverse NMR (w, =yH,), while T, describes 
the width of the resonance line. Substituting the pres- 
ented expression for 6d,(t) in (2.5) and retaining only 
terms that a re  significant for the development of the 
parametric instability in m,, we arrive at the following 
system of equations 

am,ldt-yx. ( o I 2 ( t )  - c , ~ ~ ~ , , V , V , )  6dx=0, 

i (2.7) % t - m,=O, 
dt Y X "  

where 
o l Z ( t )  = ( 1  +n ( w )  tg a cos ( a t +  8 )  ) 8 , '  cosZa .  

Considering oscillations of the type mz(r, t) = m,(q, t )  
exp(iq.r) and bd,(r, t) = 6d,(q, t) exp(iq sr), we verify 
that 6d,(q, t) satisfies the Mathieu equation 

{a2/at'+ ( l + b ( q o )  cos ( o t + 8 )  )orZ(q)}6dx(q,  1) -0, (2.8) 

while the depth of modulation is given by 

b ( q o )  =' lza(w)  [ Q , / o , ( q )  I' sin 2a. (2.9) 

The threshold value b = b,, above which parametric 
instability sets in, can be estimated by a known method 
from the formula 

where T, determines the damping of the longitudinal spin 
waves of the corresponding frequency. Under conditions 
of transverse resonant pumping we have w = w t r =  wo and 
parametric excitation will take place of the high-fre- 
quency longitudinal spin waves with w,(q) = wt,/2 and 
q =  wO/2c,,= (wo/dl,){-,' >> {:(tO =c,,/S2,) is the character- 
istic dipole length).. In the case under consideration we 
obtain for the threshold value h, of the transverse pump 
field amplitude the estimate 

hc=2110 (V, , r l<2A-' ) /s i~l  ?a. (2.11) 

Noting that under strong-field condition (w, >> S2,) the 
width of the transverse resonance is rtr= (51,/~,)~T,,  
with TI/% = 0.1 (see, e. g., Ref. 7), we arrive at the 
estimate 

Thus, even at small values of the angle a the thres- 
hold amplitude of the transverse pump field i s  h,<< H, 
(conditions with h,=0.1 G a r e  fully realistic). 

On the other hand, for parametric excitation of longi- 
tudinal spin waves with q <  5; we must use nonresonant 
frequencies w z 2w,(0) << w ., and then 

hc%21fo (r,Q ,-')/.qi11 0.%0.2If~/si11 a. (2.13) 

We see that in this case the conditions for the devel- 
opment of parametric instability a re  much more strin- 
gent. 

3. SPIN DYNAMICS OF 3 ~ e - ~  AT a# 0 UNDER 
PULSED CONDITIONS 

In this section we continue the investigation of certain 
characteristic features of the spin dynamics of the su- 
perfluid phase A of liquid 3 ~ e  in the case when I t  4 at 
equilibrium, i. e., at a #O.  It will be convenient here- 
after to use the system of Hamilton's equations consid- 
ered inRefs. 8 and 9 and modified to separate effective- 
ly the "slow" motions of the spin degrees of freedom 
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(due to the action of the dipole-dipole forces) from 
their "fast" motions. 

The starting point is the Leggett adiabatic Hamiltonian 

%=Sz/2X,-ySH-'/z~.s.'(dl)2, (3.1) 

where S is the summary spin of the system of the 3He 
nuclei. We assume that initially the spin system was 
in equilibrium in an external magnetic field Ho Il z and 
measure the magnetization in units of Y ~ P , ,  i. e., we 
put M =S/X,wo. Measuring next the energy in units 
xs4, we have 

% = l / 2 u z - ~ ~ ~ / ~ , + u ( d ) .  (3.2) 

where the dimensionless dipole-dipole potential is 
U(d) =-$(a,, / ~ , ) ~ ( d  -1)'. 

We consider first the situation wherein the action of 
the transverse radiofrequency pulse causes the orienta- 
tion of M to deviate from z by a certain angle 9, and the 
principal field remains unchanged (H =H,,). This case 
with a = O  was already investigated in experiment5 and 
considered theoretically .lo The evolution of the spin 
system is  described by the Hamiltonian 

i%='/:MZ-Mz+U(d) , (3.3) 
where the instantaneous orientation of the vector d i s  
conveniently specified by the Euler angles cp, 9, and $: 

d ( t )  =fi (cp, 6 ,  $ ) d ( O ) ,  

where 2 is the matrix of three-dimensional rotations 
(q and 9 can be regarded a s  the aximuthal and polar 
angles of the vector M). Following Ref. 9, we start with 
the system of canonical equations (the time is measured 
in units of w;'): 

$=- i+au/anr,, q = M + a u / a u ,  (3.4) 
AT.=-au~acp, ~ r = - a u l a * ,  

with 

U=-' /r(OA/oo)'{cos'ad~+ sin2ad,'+sin 2a&d.), 

where 

d,=-sincp sin t+cos cp  cos 6 cos tp, d,=-cos cp  sin 6 .  

In the case IJI  - 1 I<< 1, the dipole-dipole potential aver- 
aged over the fast variables cp and J ,  is 
U = - ' l . ( Q , l 1 ~ , ) ~ { ( 1 - 3  sinZa)cos' U+'/, cos'a(l+cos 6) 'cos  2 8 ) ,  (3 -5) 

where the slow variable is @ =g + J,. By introducing the 
adiabatic invariant P =,\I, - JI(-2 G P 0) and by virtue 
of the fact that COS9 =i\lz/i\l = 1 +P/hl , the effective 
Hamiltonian of our problem acquires the form 

%='/: (.&f-l)2-P+17(8, P/.tl),  (3.6) 
where 

o(8, P l M )  =-'la(QAloa)'{(l-3sinZ a )  (I+Plhf)' 

+'/, cos' a (2+P/M)' cos 2 8 ) .  (3.7) 
The last expression is a generalization of the result 

of Ref. 9 to the case a #0. From the pair of the Hamil- 
tonian equations 

@=hI-l ,  

~ i = - ~ / / d O = - ' / . ( Q ~ / o ~ ) '  cos2a(2+P/M)' sin 2 8 ,  (3.8) 

it follows that the phase iP satisfies the equation 

c ~ +  (ol/oO)z sin 2@=0, (3.9) 
where the square of the frequency of the longitudinal 
resonance i s  w: =!a; cos2a(l + cos9)'. On the other 

hand, from the equation 
ip=-i+ati/ap (3.10) 

it follows that the dipole shift of the magnetization- 
precession frequency is 
.601.=ol,-oo='/,(QA2/00) { ( I - 3  sin'a) cos 6+' / ,  cos2a(l+cos 6 ) ) .  

(3.11) 

It is k n o d 1  that in the absence of a strong magnetic 
field and sufficiently close to the temperature of the 
transition to the normal phase it is necessary to take 
into account the fact that the amplitudes of the quasi- 
particle pairings in the spin states (++) and (++) a re  not 
equal to each other (A + # A + ) . Taking this circumstance 
into account, we can easily show that 

dor,='/' (QA2/00)  ( ( 1 - 3  s in2a)  cos6+'/,8 c o s 2 a ( l + c o s 6 ) ) ,  (3.12) 

where p = A  + A ,  /A2, with A2 = $ ( A ~ ~ +  A?. It is curious that 
that at a = n/2, i. e., in the case when 1 11 H,,, the dipole 
frequency shift b w,, =-(522, /wo)  cos9 and does not depend 
on p (a weak dependence on P appears only in the higher 
order in the small parameter (62,/w0)'; (see Ref. 12). 

We turn now to a more interesting situation, which 
also pertains to the case a # 0. We assume that follow- 
ing the radio-frequency pulse, which takes M out of the 
equilibrium orientation, the principal magnetic field 
decreased jumpwise to a value H =H0/2. It will become 
obvious subsequently that the actual requirement is 
y I H ,  - 2H (< 51,. It is clear that the evolution of the spin 
system is now described by the effective Hamiltonian 

~ = ' / 2 M z - ' h M . + U ( d ) ,  (3.13) 

and the canonical equations for the angles cp and $ take 
the form 

In the situation considered and at (M - 1 I << 1 the var- 
iable @ = 2cp + $ is slow and therefore 

- - 
d,l='/, (l+cos2 6 ) .  d.'='lz sin'6, 

- 
a&.=-'/, sin 6 ( I f c o s  6 )  cos Q). 

Recognizing furthermore that the adiabatic invariant 
is now the quantity P = $M, - hl(-4 P c i), we obtain the 
following dipole-dipole potential averaged over the 
"fast" motions [cos9 =2(1 +P /~ I ) ] :  

V ( 8 ,  PIM) =-' l , (Q, lo , ) ' { ( i -3  sinz a )  (I+PIM)z 

-'I,[ 1-4(l+PIM)'l"(3+2PIM)sin 2a  cos 8 ) .  (3.16) 

It i s  important that the dependence of on the slow 
variable @ =2cp + $ appears only at a + (0, n/2). This 
constitutes the specific feature of the considered res- 
onant case. The system of canonical equations for @ 
and M takes the form 

8 = M - I ,  (3.17) 

1 &-- (~A/~O)'[I-~(I+P/M)~]"(~+~PIM)S~~~~ sin 8 ,  (3.18) 
8 

and the stable stationary point is (M, = 1, @, = n). It is 
easy to verify that the variable x = n + @ satisfies the 
equation 

X+ (ol /o , ) '  sin x=O, (3.19) 
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where 
I O ~ - ' / ~ P ~ ~  sin 2a sin 6 (l+cos 6). 

It follows from (3.18) that the values of the adiabatic 
invariant P, namely - 1 /2 and -3 /2, a re  singular. Us- 
ing the equation 

ip=-'l,+avla~, (3.20) 

we easily verify that far from the singular point P =-i 
the magnetization-precession shift (relative to the 
Larmor value w0/2) is given by 

6m,,='/,(Qr2/mo) {(I-3sinz  a) cos 8 

+'I, sin 2a(sin 6- (l+cos 6 )c tg  B)) .  (3.21) 

4. CONCLUSION 

We have discussed in this article some new effects 
involved in the spin dynamics of the superfluid phase A 
of liquid 3He and typical of the case when the equilibri- 
um axis 1 of the orbital anisotropy does not coincide in 
direction with the quantization axis d of the Cooper-pair 
spin. We shall deal briefly below with the possibility 
of experimentally realizing conditions under which the 
angle between 1 and d, differs from zero in a sufficiently 
large volume of liquid 3He-A. In the presence of a 
strong field H(yH >> ) we can assume that d, 1 H in the 
entire volume. On the other hand, near the walls of the 
container of the liquid helium, the vector 1 prefers to 
assume an orientation normal to the wall. If the mag- 
netic field i s  oriented perpendicular to the flat wall of a 
vessel with 3H-A, then at a distance on the order of the 
dipole length 5, from the wall the orbital vector 1 ro- 
tates through an angle r/2 and settles along d,, (bearing 
in mind the fact that the distance to the opposite wall in 
a plane-parallel geometry greatly exceeds f,= cm). 
Thus, for this configuration the region where a * 0 is 
concentrated near the vessel wall and has a thickness 
of the order of 5,. On the other hand if  the magnetic 
field has an oblique orientation relative to the plane 
wall, making with the latter an angle 6 << 1, then the 
distance over which a + 0 greatly exceeds 5,. This case 
was recently considered in detail in Ref. 13. The de- 
pendence of the angle ar on the distance d to the contain- 

e r  wall can be described with good accuracy by the re- 
lation 

sin (6-a)  =sin 6 t h  (d/E ( 6 )  ) , 

and, a s  already noted, for small values of the "glanc- 
ing" angle 6 the characteristic length 5(6)>> {,. Conse- 
quently, in this geometry, at distances d <  [(P) from the 
vessel wall the angle cl. - 6. It must be emphasized that, 
in the considered example, an almost homogeneous 
state with a * 0 can be established in a large volume 
[5(6) >> 5,] for small values of a ,  but this circumstance 
should not hinder the observation of parametric instab- 
ility (see Sec. 2). Indeed, a s  follows from the estimate 
(2.12), the threshold amplitude i s  small enough even at 
a very small value of the angle a. 

Note added in proof (mailed to translation editor 23 
March 1980). The resonant situation considered in 
Sec. 3 and realized as  a result of the jumplike change 
of the magnetic field pertains to the case H =  2H0 (and 
not to the case H =  H0/2 as  stated in the article). 
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