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Methods are developed for describing kinetically a system of waves with an almost linear dispersion law. 
As has been shown before by Zakharov, L'vov, Gurevich, and Laikhtman [Zh. Prik. Mat. Tekh. Fiz. 4, 
35 (1965); Izv. vuzov Radiofizika 18, 1470 (1975); Ann. Phys. (N.Y.) 106, 444 (1977)], for the 
description of phonon-phonon interaction in such a system by the methods of standard perturbation 
theory it must be required that the ratio of the phonon damping (owing to anharmonicity) to the 
primarily assumed dispersion (i.e., the whtribution to the frequency that is nonlinear in the wave vector) 
be small. The case in which the primary dispersion is small and the ratio in question is large is analyzed. 
It is shown that the anharmonic interaction of the phonons introduces an additional dispersion. It is 
negative and of larger absolute value than the damping. This permits the use of an "improved" 
perturbation theory (which employs a renormalized phonon spectrum) for the calculation of the 
probabilities of phonon-phonon ciollisions. For solids, in particular, this makes it possible to determine 
when the well known assumption of Simons, that the uncertainty in the phonon energies owing to 
collisions makes "almost allowed" processes completely allowed, is justified. Generally speaking it is 
correct if the interaction with phonons of "other" vibrational branches [L. E. Gurevich and B. I. 
Shklovskii, Sov. Phys. Solid State 9, 401 (1967)l predominates, and is not justified if the interaction 
inside a given branch predominates. The "improved" perturbation theory turns out to be always 
applicable for the description of phonon-phonon collisions in helium 11. 

PACS numbers: 63.20.H~ 

In the present paper we wish to analyze the diffi- a damping. Accordingly, we have the problem of con- 
culties that a r i s e  in the description of the kinetics structing a kinetics when the inequality (1) is violated; 
of a quantum wave system with an almost linear dis- th is  i s  the problem we shall solve. 
persion law, and to show ways to  overcome them. The 
difficulties in question a r e  not in general of a specifical- 
ly quantum nature. They have been noted repeatedly 
in the literature, both that devoted to quantum prob- 
lems and that on classical  problems, and a r i s e  in 
attempts to apply perturbation theory to the descrip- 
tion of interactions between such waves. The simplest 
approach is to assume in zeroth approximation that the 
waves a r e  noninteracting and a r e  characterized by a 
certain primary dispersion law. The interaction i s  
dealt with in the lowest order in which it appears, and 
in order to neglect higher-order correct ions i t  is a s -  
sumed that the anharmonicity i s  sufficiently small  in 
comparison with the characterist ic  frequency of the 
waves. 

The situation is much more  complicated, however, 
if the primarily assumed dispersion law w, = c & [ l +  [(k)] 
(k i s  the wave vector and o, i s  the frequency) is 
nearly linear, i.e., if 1 ( ( k ) (  << 1. In th is  case  the 
criterion for  applicability of perturbation theory i s  that 
the anharmonicity be small  in comparison with the 
dispersion. Fo r  5 >  0 we can take a s  a measure of the 
anharmonicity the damping I? associated with three- 
wave interaction, and the cri ter ion takes the form 

l-'lcok111~1. (1) 
If 5 < 0, three-wave processes a r e  forbidden. This  
sor t  of spectrum i s  nondecaying, o r  a spectrum with 
negative dispersion. Fo r  a nondecaying spectrum the 
criterion ( I )  can be  written in the same form, taking 
J? a s  the same combination of the various quantities 
(anharmonicity coefficient, speed of sound, and so on) 
a s  for 5 > 0, but no longer with the physical meaning of 

The physical cause of the  appearance of the param- 
e ter  (1) is that when the dispersion is small, waves 
that propagate in almost  the s ame  direction a r e  in 
resonance. Fo r  clari ty let u s  consider the waves prop- 
agating within a cone of directions with aperture angle 
9<< 1, and change to a reference system in which one 
of the waves is a t  rest .  In th is  reference system the 
wave patterns of the other waves change not in t imes  
of order  o,", a s  would b e  the ca se  for  strong dispersion 
(w is the characterist ic  frequency), but in t imes  of 
order  oi'l @+(I ". The resul t  i s  that the effective 
coupling constant of the waves is proportional to 
182+51-1. 

It i s  well known that an analogous parameter ,  the 
rat io of the anharmonicity to the dispersion, appears  
in the theory of the propagation of a monochromatic 

In a medium with strong dispersion the ampli- 
tudes of the higher harmonics in such a wave remain 
small  in proportion to the parameter  (1). On the other 
hand, in a medium with weak dispersion the amplitudes 
of higher harmonics increase during the propagation 
(which with z e r o  dispersion leads a t  last  to the forma- 
tion of shock waves). However, the problem of the 
propagation of a monochromatic wave admits an exact 
solution in a number of cases.  In studying systems of 
large numbers of waves, practically the only method 
a t  our disposal is perturbation theory.') A s  Kadomtsev 
and Petviashvili have s h o ~ n , ~  the evolution of such a 
system in the classical  case  can lead to  the formation 
of a large number of shocks. 

In the quantum system the situation is very dif- 
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ferent. Let u s  consider a wave excited in a system 
with small dispersion. It would seem that during i ts  
propagation anharmonic effects must lead to an in- 
crease of the higher harmonics. However, a s  is known 
from quantum mechanics, to excite a wave with fre- 
quency S1 an energy not smaller than RS1 must be ex- 
pended. But in a wave with energy of the order of Ri2 
there is not enough energy to form higher harmonics 
of appreciable amplitude. This means that spontaneous 
processes with formation of higher harmonics a r e  
forbidden. 

Decay processes, however, a re  allowed in both the 
quantum system and the classical system. Let u s  con- 
sider a quantum system in which a phonon with wave 
number k can decay, owing to interaction with the zero- 
point vibrations, into phonons with wave vectors k' 
and k - kt. We a r e  thinking of virtual processes, in 
which these phonons again merge into a phonon with 
wave number k, which can decay again, and so on. 
The succession of such processes leads to a renor- 
malization of the dispersion law, which a s  a result 
takes the form 

Here A, characterizes the total dispersion, which i s  
the sum of the primary dispersion c,,kE(k) and a cor- 
rection A, which i s  due to the interaction; c =c, + 6c 
is the renormalized speed of sound; A, is proportional 
to  the square of the effective coupling constant, which, 
in turn, is proportional to (19~+A)'l. In calculating it 
one must take into account all  possible directions of 
the intermediate phonons, i.e., integrate over 9. The 
result i s  that A, is proportional to the large logarithm 
ln(l/J ~ 1 ) .  As for the damping I', in the case of a 
decaying spectrum it differs from A by the absence of 
the large logarithm, since it is due to real processes 
only. The result is that the ratio of the anharmonicity 
to the renormalized dispersion is always small. 

The main contents of this paper reduce to the proof 
of two assertions. First, we can "improve" perturba- 
tion theory so that it will be constructed not in terms 
of the parameter (I), but in terms of the ratio of the 
anharmonicity (of which I' i s  a measure) to the re- 
normalized dispersion Ak. Second, the ratio of I' to 
A, i s  logarithmically small, and this conclusion i s  not 
altered by including higher approximations of per- 
turbation theory. 

We conduct the analysis with the example of a spe- 
cific system, namely a system of phonons in super- 
fluid helium (at such low temperatures that rotons a r e  
not excited). We at  once note that our results can also 
bear on elastic vibrations in solids. The main compli- 
cation that ar ises  in this case in comparison with 
helium I1 is by no means due to anisotropy of the 
phonon spectrum-along directions of sufficiently high 
symmetry the problem of phonon-phonon collisions is 
formulated almost exactly a s  for an isotropic medium- 
it is due to the presence of three vibrational branches 
instead of one. 

It is well known that a t  normal pressure there is a 
decay region 0 < k < k(") in the phonon spectrum of 

FIG. 1. Initial section of the spectrum of excitations in helium 
II. The deviations from linearity are exaggerated in the fig- 
ure. According to ~ a r i s '  at normal pressure ti3(')=7.9 K, 
~ 9 ( ~ ' = 8 . 7  K, tif2(4"=9.1 K, and tid6("'=9.9 K. 

helium I1 (see Fig. In this range decay of a phonon 
with wave vector k into a number of phonons with 
smaller wave vectors is allowed. The vector kt") is 
determined by the condition 51(k(")) = ckt"), where Q(k) 
is the frequency of a phonon with wave vector k, 9 
and c = (851/ak),.,. In the range O <  k < k(2) < k(") the decay 
of a phonon with wave number k into two phonons is 
a~lowed.~)  Experiment shows that with increasing pres- 
sure the value of k(') decreases and goes to zero at 
about 17 atm. This means that the dispersion A k ,  
which is positive at low pressures, decreases with in- 
creasing pressure and even changes sign. 

From these statements one gets the impression that 
there must exist a range of pressures where the char- 
acteristic value of the dispersion i s  so small that the 
parameter (1) is larger than or  of the order of unity. 
Then the standard perturbation theory does not apply, 
and the question ar ises  a s  to how to describe the 
kinetics of a system of phonons in this case. 

This question primarily involves three-phonon pro- 
cesses, which a r e  allowed for positive dispersion and 
forbidden for negative dispersion. This question was 
first  posed by ~awasaki." He suggested that to de- 
scribe three-phonon processes with small negative 
dispersion ("almost allowed" processes) it suffices 
to consider the finite lifetime of the phonons, by re- 
placing the 6 function which expresses the law of con- 
servation of energy with a Lorentz function. Such a 
procedure partly allows three-phonon processes, and 
in addition permits u s  to describe their gradually be- 
coming forbidden a s  the change from positive to neg- 
ative dispersion goes on. A similar way out of the 
situation was proposed by Simons," who also had in 
mind phonons in solids. 

~ e ~ ~ e t t  and ter  Haar12 examined critically the re- 
sults found by Simons," using a graphical technique. 
They showed that a consistent treatment of the finite 
lifetime of phonon states i s  equivalent to considering 
many-phonon processes, and for this there must be no 
restriction to a finite order of perturbation theory. 
Gurevich and Shklovskii13 showed that in the special 
case when the finite lifetime of states in a given branch 
is mainly due to interaction with phonons of other 
branches, Simons' procedure i s  well founded. 

Our result here is that if the interaction within one 
branch predominates the situation i s  quite different. 
Namely, the interaction between photons brings in a 
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negative dispersion, which in the three-dimensional 
case overcomes the damping; the ratio of the two 
quantities is a t  least proportional to  a large logarithm. 
From this we conclude that in the quantum case pertur- 
bation theory can always be used to describe phonon- 
phonon collisions. If the primary dispersion i s  com- 
paratively large, this means that the condition (1) is 
satisfied, i.e., standard perturbation theory is valid. 
In the general case one can use an "improved" per- 
turbation theory; the condition for this to be  applicable 
is 

~ I I A I C I  (3) 
and is satisfied for small primary dispersion owing 
to the large logarithmic factor. 

It might seem that there is not sufficient foundation 
for this conclusion, since in the expression (2) for A, 
the first  and second terms could almost exactly cancel . 

each other, so that A, would be of the order of I?. We 
shall show, however, that this is not so. Strictly 
speaking, A, i s  a functional of A,; what we actually find 
is an integral equation for the function A, [Eq. (31), 
see belaw]. The study of this equation shows that 
whatever the primary or  bare function 5(k) may be, 
A, can go to zero only a t  particular points. I ts  char- 
acteristic value is at  least logarithmically large, so  
that the condition (3) i s  always satisfied. 

In final analysis, perturbation theory can be used with 
a small bare dispersion because the anharmonicity is 
small: 

(p i s  the density of the helium). The expansion, how- 
ever, is not in powers of the parameter (4), a s  would 
be the case for 5-1 ,  but in inverse powers of i t s  log- 
arithm. An essential point is that in quantum theory 
there i s  a scale factor ( f i /?~) '~  of the dimension of 
length, which is not directly connected with the value 
of the dispersion, and this makes the argument of the 
logarithm dimensionless. 

It must be emphasized that this theory i s  essentially 
quantic, and does not work in the classical region, 
i.e., when the phonon occupation numbers a r e  large. 
Formally this is manifested in the fact that in the 
latter case the anharmonicity r increases along with 
the numbers of phonons, and in proportion to them, so 
that the inequality (3) is no longer satisfied. 

An immediate consequence of the applicability of per- 
turbation theory i s  that one can use the ordinary kinetic 
equation with a three-phonon collision integral to de- 
scribe the kinetics of phonons in the region k < k ( ~ ) .  
Beyond the three-phonon threshold, i.e., for k>k('), 
the three-phonon collision integral becomes equal to 
zero, and i t  is necessary to take into account four- 
phonon processes of types 2 - 2 and 3= 1. Processes 
of the type 2- 2 a re  allowed for arbitrary k, and those 
of the type 3= 1, only up to the four-phonon threshold, 
i,e., for k <k(3), where k(3) i s  determined from the 
equation S A ( ~ ( ~ ) )  = 351(kc3)/3). 

Which values of k a re  important in a given kinetic 
problem is determined by the characteristic quantity 

k, =T/Ec, where T is the temperature of the helium.') 
As Landau and ~ha la tn ikov '~"~  pointed out, under def- 
inite conditions there can exist in helium I1 a state of 
incomplete equilibrium, in which the temperature T i s  
a function of the direction in k-space. In this case the 
characteristic values k, can also be different for dif- 
ferent directions. If kT<< k(') -k(3) , the main role in 
the kinetics i s  played by three-photon collisions. They 
determine both the rate of longitudinal relaxation along 
a given direction in k-space, and the form of the kinetic 
coefficient that appears in the operator for transverse 
relaxation. The latter characterizes the rate of es- 
tablishment of complete equilibrium, i.e., of the equal- 
izing of the temperature among different directions, 
and, a s  has been shown in papers by Gurevich and 
~arkhman,3"' it i s  a fourth-order differential operator 
acting on the temperature a s  a function of direction. 

If now k, ~ k ( ~ ) ,  along with three-phonon processes 
four-phonon processes will also be important. But 
processes in which larger numbers of phonons par- 
ticipate must, generally speaking, contribute little 
owing to the smallness of the anharmonicity parameter 
(4). The only exception i s  processes of the type 2 ~ 3 ;  
in Refs. 14 and 15 i t  is indicated that they can play a 
part  in establishing equilibrium in the numbers of 
p h o n ~ n ~ . 4 )  

The possibility of using perturbation theory greatly 
simplifies the calculation of the collision operator in- 
volving a large number of phonons, and also of the 
damping of phonons. Namely, out of the whole set of 
diagrams we need include only those that contain re- 
normalized vertices, i.e., vertices of the type of 
trees,  not containing any internal loops. This state- 
ment also relates in particular to the problem of cal- 
culating the damping in the immediate neighborhood 
of the point k =k("), where it is necessary to consider 
decay processes involving an arbitrarily large number 
of phon~ns .~"  

In summary, we wish to emphasize the main conclu- 
sion of the paper: There is a quantum lower limit on 
the size of the total dispersion A,, which i s  derived in- 
dependently of the magnitude and sign of the bare dis- 
persion. The difficulties that ar ise  in describing a 
system of phonons with an almost linear dispersion law 
a r e  due to the fact that the spectrum of the phonons i s  
calculated by means of perturbation theory, in which 
there is a certain freedom in the choice of the bare 
spectrum. If we use the renormalized, that is, the 
observed, spectrum, then perturbation theory i s  al- 
ways suitable for the calculation of phonon-phonon 
collisions. 

The proof of the assertions we have made and the 
construction of the quantitative theory will begin with 
the calculation with perturbation theory of higher order 
corrections to the three-photon vertex (Fig. 2). For 
this i t  i s  convenient, to use the technique of 
~ e l d y s h , ' ~ " ~ ~ ~ ~  since this enables u s  to avoid analytic 
continuation with respect to frequencies. We write 
the bare  three-phonon vertex in the form 
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FIG. 2. 

Here q denotes the set of variables w, k, and 
b(q,, q,, q,) is given, with dispersion neglected and for 
almost parallel wave vectors, by 

Here u = (p/c)ac/ap, which is equal to 2.84 a t  normal 
pressure. The expression (6) remains correct a s  to 
order of magnitude for arbitrary angles between the 
wave vecto~-s.~) To evaluate the diagrams (Fig. 2) we 
use order-of-magnitude estimates of the bare vertices 
and Green's functions, taking only one pole term into 
account: 

Here is the renormalized frequency and I' is the 
damping of the phonon spectrum. For  graph a, after 
integrating over the internal frequency we get an ex- 
pression which is, in order of magnitude, 

where the variables q, and q, relate to the external 
photons. We remember that we a re  interested only in 
the case of small dispersion and damping of the 
phonons: 

A I Q ~ ~ ,  r l saa i .  (9) 
Under conditions for which ordinary perturbation theory 
is valid 

A,=c,kE (k) . (10) 
Accordingly, the inequalities (9) mean that the bare  
dispersion and phonon damping a re  small. 

To calculate real processes involving phonons we 
a r e  interested in the properties of the vertex part 
near the mass shell, i.e., for 

) 6 o  1 t c k ,  (11) 
where 6w = w - ax. In virtue of the inequalities (9) 
and (11) both denominators in the integrand in Eq. (8) 
a r e  small when k < k, and the vectors k, k,, k, are  
parallel. The complete vertex G ( O )  is symmetrical 
in k, and $. The symmetry becomes obvious if be- 
sides (7) we include terms containing frequency de- 
nominators of the same type but with different labels 
and signs on the frequencies. For some of them the 
region where the denominators a r e  small i s  bounded 
not by the inequality k <k, ,  but by k < k,. As for the 
integrals over the ranges k > k, and k> k,, they have 
either only one such denominator or  none a t  all. 

In either case the integrand increases with increas- 
ing k like some power of k. Accordingly, the main 
contribution to these integrals comes from values of k 
of the order of atomic values, and cutting off of the 
integrals occurs because of the change of character of 

the spectrum of damping and interaction on this scale. 
In the integrals containing one small denominator the 
integration over the angles can lead to the appearance 
of a large logarithm, but the small denominator itself 
exists only in a phonon region whose size is small in 
comparison with the phase volume that makes the main 
contribution to the integral. For values of k in the 
atomic range we can neglect the quantities k, and k, 
in comparison with k, and the result is simply a re- 
normalization of the bare  vertex. We shall assume 
hereafter that the appropriate subtraction has already 
been carried out in the integral (8). 

Then the integral (8) has a maximum when the vec- 
tors  k, and k, are  parallel, and the main contribution 
here comes from a region of k values close to the di- 
rection of k, and &. The maximum value of the inte- 
grand is reached a t  angles between the vectors of 
the order of a,, which is given by the relation 

Let us  estimate the value of the integral (8) for a 
very small angle between k, and $. We resolve all 
vectors into components parallel and perpendicular to 
k, +$: 

As we shall verify, the main contribution to the integral 
(8) comes from the region of values k, <<kll. In this 
region 

( ~ ~ - S ) ~ - Q r - t , f  i r  1 - (6'+6,'-266, cos q+6.') ck, 

I o,+Qr-Qr+t,+ir I - (62+62'-2620 cos cp+6.1) ck, 

where 

6-k,/k, 6,=k,,lk,, 6s=kulkz, (14) 
and cp is the angle between k,, and k,. Then 

hk' as ' 
G ' " ' - ~ - S  

6 a* dq 

pc . (6'+6,2+6.2-26,6 cos cp) (fE2+6:+6,'-26,6 cos cp) ' 
0 1) 

(15) 
In the denominator of the integrand the values of the 
angles denoted by 9, in each parentheses a r e  in general 
different, so that after integrating over cp we get 

For 9,-9,>>3, the integrals of the terms in the brackets 
contain the large logarithms ln(9,/9,) and ln(9,/9,), 
which a r e  gathered from the neighborhoods of the 
values 8 =9, and 9 =a,, i.e., in the regions k,9, 
<< 1 k,, - k, ( << k,, and k,9, << 1 I,, - k, 1 << k,,. However, 
the coefficients of these two logarithms a r e  identical, 
so that the subtraction gives a quantity of the order of 
unity. Accordingly, the remaining integral can be 
estimated from dimensions, and the result i s  

hk' I 
G("'-g--. 

pc 6 ,  +6. 

In estimating the higher-order graphs, we begin with 
dimensional arguments. Any graph for three external 
lines contains an odd number of internal vertices. Let 
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u s  denote by G ,  such a graph with 2n + 1 internal 
vertices. The value of G, contains 3n propagators and 
n independent internal four-dimensional integrations. 
After the integration over frequencies there remain 2n 
propagators and n three-dimensional integrations. We 
shall be interested only in the value of a three-terminal 
graph with small angles between the momenta of the 
entering phonons. Just a s  for the simplest graph (Fig. 
2), we must separate out the contribution from large 
internal momenta (of the order of atomic values), 
which corresponds to the bare  vertex. In complicated 
graphs there also exist contributions corresponding to 
large values of some of the internal momenta and small 
values of the rest. Suppose, for example, in the graph 
of Fig. 3a we have p,>>p,. In each of the lines that 
include the momentum p, we can neglect the other mo- 
menta compared with this one and shrink the contour 
of these lines to a point. In this way the graph of Fig. 
3a reduces to that of Fig, 3b. By this procedure graphs 
appear that contain internal many-terminal vertices. 
As we have shown in an earlier paper,' the contribution 
of these graphs is small, proportional to  the anhar- 
monicity parameter (4). 

After subtracting that part of a graph which comes 
from values of the internal momenta of the order of 
atomic values, we break the integration up into inte- 
grations over transverse and longitudinal components. 
In the integral over the transverse components the 
main contribution comes from the lower limit, since in 
each such two-dimensional integration there a re  a t  
least two denominators, each of which after the ex- 
pansion in transverse momentum components contains 
squares of these components. It follows that if the 
angles between incoming momenta a re  of the order of 
9,, then 

Ak' 1 " 
~ " - g  (Fa..) 

In this case G ,  cannot contain logarithms, since 
logarithms appear owing to large ranges of integration, 
and here all  the ranges of integration over solid angles 
a re  of the order of 9;. If an angle 9, between incoming 
momenta becomes larger than a,, then 9, appears in 
a t  least some denominators in the integrand. The re-  
sult of this is that some, if not all, of the ranges of 
integration over solid angles a r e  of the order of q. It 
i s  important to note that each internal momentum runs 
through at  least two propagators (of course after the 
integration over frequencies). If 9, i s  involved in all 
of the propagators, the characteristic values of the 
variable of integration a re  9-9,. If 9, appears in all  
but one of the propagators, the characteristic range i s  
9, < 9 < 9,, and the integral contains a factor 
9i2" 1~(9,/9~), where m 2 1. If there a r e  two or  more 

propagators without 9, the characteristic range of inte- 
gration i s  8-8,. There is no necessity for obtaining an 
accurate estimate for G,; we merely note that since 4, 
i s  involved in not fewer than two propagators (after 
integration over the frequencies), in the range 9,>>9, 
G, falls off with increasing 9, not more slowly than 
I/$;. We recall that we a r e  considering a vertex from 
which the contribution from large internal momenta 
has already been subtracted. 

Let u s  proceed to the calculation of the renormalized 
dispersion law of the phonons, A(k, ck) = 6ck +A,, where 

and IIT, IIC, and II' a r e  matrix elements of the polar- 
ization operator (see Ref. 3). The lowest order of 
perturbation corresponds to the diagram of Fig. 4a. 
Substituting the expressions for the phonon Green's 
function in terms of the phonon distribution Nk (see 
Ref. 3), we get (after integration over the frequency 
w ) 

A d'k' iV~~(q)--~--;{bz(~ck;k',rk';k-~,c~k-k'~) 
1 6 ~  ( 2 4  

Nk.+ Nt-r*+I 
X +[bz (k ,ck;  k+k', cIk+k'I; k', cIk+k'I-ck) 

o-Bk*-Qt-r, 
Nre-Nr+w 

+b2(k,  ck; k+kf ,  ck+ck'; k', ck') ] 
o-Qr+r.+Qr, 

Nr.+N-r-t.+l 
-b2(k, ck; k', ck'; k+k', ck+ckl) 

o+Qr.+Qr+r~ 

The expression for the matrix elements 
b(k, w; kf, wf; kN, w") a r e  given in the Appendix. In the 
matrix elements we have neglected the difference be- 
tween the frequencies w and SZ,, and also the dis- 
p e r ~ i o n . ~  

The integrals of the t e rms  in (20) that contain N a re  
cut off a t  values of k' of the order of a few times k,, 
if N is the Planck equilibrium distribution. Let u s  
examine in more detail the two remaining integrals [of 
the f i rs t  and last terms in Eq. (20)], which do not 
contain N. They diverge a t  large k' a s  k'd2k', and 
the main contribution to them is from values of k' of 
the order of atomic values. Expansion of the integrand 
in powers of kf/k leads to the following well knownLs 
expression for the "divergent" part of the integral: 

AA-Ak+BkJ+CkS In ( k d k ) ,  (21) 

where k, i s  a momentum of atomic order and AA is the 
renormalization of the bare dispersion law.7) If the 
vertex is given by Eq. (5), then C = t i ( l + ~ ) ~ / 3 0 1 r ~ p .  But 
in the integral that leads to  the expression (21) there 
a r e  contributions from large values of k, for which 
there i s  no justification for using the expression (5). 
Analogous divergences ar ise  in higher orders of 
perturbation theory, so that strictly speaking there is 
no reason to suppose that when all such t e rms  were 
summed the term proportional to k5 ln(ko/k) would be 
preserved in the bare spectrum. 

FIG. 3. 
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The integral that remains after subtracting the quan- 
tity (21) from Eq. (20) converges on k' of the order of 
k or  k,. The values of k' close to the direction of k 
make a logarithmically large contribution to  the inte- 
gral, of order "ln(l/X). Let us  calculate this con- 
tribution. Precisely a s  in the calculation of the ver- 
tices, we break up the integration over k' into inte- 
grations in the direction parallel to k and in the trans- 
verse plane. The logarithmically large contribution 
comes from terms with small frequency denominaotrs, 
which a re  obtained with k: <<k. Small values of k: in 
the matrix elements can be neglected, and then 

hc(u+l)'  ' { j kk'(k-k') ( 2 ~ ~ - + 1 ) d k ' f  
d2k,' 

( q )  = 
4p(2nIa ~ - Q r . - Q t - r *  

In the first  integral in Eq. (22) the integral over k' 
from k to 03 has been dropped, since in this range the 
frequency denominator does not have small values. 
Expanding the frequency denominators in k:, we get the 
following expression for the renormalization of the 
velocity: 

and for that of the dispersion we get 

The logarithm in these two equations has appeared be- 
cause the characteristic range of integration over the 
angle 9 between k and k' turned out to be large: 

d6 /6 - ln ( l /6 . ) .  
0. 

The calculation of higher order terms in A(q) reduces 
to making one of the vertices in Fig. 4a more compli- 
cated. However, we have seen that corrections to 
vertices fall off not more slowly than I/# a s  the angle 
9 between the external momenta increases. There- 
fore the corresponding integrals over the angles in 
A(q) a re  concentrated a t  9-a,, i.e., no logarithms such 
a s  ln(1/9,) appear in the higher orders. The result is 

A ( q )  =AU' (q )  + - hk' 1 

P 

In estimating the remaining terms we make no dis- 
tinction between k and k,; C, and C, a r e  constants of 
the order of unity. 

It is hard to expect the two terms in the expression 
(2) for A, to cancel each other over the whole range of 
values of k. In particular the bare dispersion contains 
a term proportional to k3, owing to short-range forces, 
and a term proportional to k4, owing to the 
van der Waals interaction between the atoms of heli- 
Um.~z.~s The expression for A;') contains only a term 

proportional to k5 ln(l/%), associated with the inter- 
action between phonons. It follows from this that al- 
though at  particular points Ak may be equal to  zero, 
i t s  characteristic value satisfies the condition 

Being interested in the relaxation of the phonons (i.e., 
real processes), we shall calculate the phonon Green's 
function in a small neighborhood of the mass  shell 

1601~r. (27) 
By means of precisely the same sort  of estimates a s  
led to Eq. (26), we can estimate the damping of the 
phonons. The result is 

tik' hk' 1 r - -[I+o(-?) + . I  
P PC 6 

This expression differs from the analogous expres- 
sion for the renormalization of the dispersion, Eq. 
(28), by the absence of the large logarithm in the f i rs t  
term, and this makes possible the solution of the 
problem. In fact, it follows from Eqs. (26)-(28) that 

It is reasonable to  use only the f i rs t  term ~ ( " ( q )  of 
the expression for A(q). Accordingly, neglecting terms 
of the order of unity in comparison with the large log- 
arithm, we get the following expression for the re- 
normalization of the velocity (for the case  of thermal 
equilibrium): 

(30) 
and also the integral equation for A,: 

hz2:2 1 k'2(k-kt)21n ck Ak=ckg ( k )  - - 
I Ar-Ah.-Ar-k.l 

dk'. (31) 

In the f i rs t  term of Eq. (30) we do not distinguish be- 
tween c and c, because 6c<<c. 

The expression (30) has been derived by Andreev 
and K h a l a t n i k o ~ , ~ ~  and also by Pethick and t e r  Haar." 
In Eq. (31) we can, with our chosen degree of ac- 
curacy, take the logarithm out from under the integral 
sign; then 

(u+l)=tikS ck 
A&--cke ( k )  - 4 8 0 t p  lnd' 

where h is a characteristic value of A, for the range 
[0, k]. Havlin and LubanZ6 were the f i rs t  to call atten- 
tion to the existence of a correction to the law of dis- 
persion proportional to k5. We note that the renormal- 
ization of the dispersion is due to  the zero-point vi- 
brations, i.e., is an essentially quantum effect. 

If in the important range of values the f i rs t  term of 
Eq. (32) is larger than the second, the small param- 
eter i s  of the form (I), corresponding to ordinary per- 
turbation theory. If, on the other hand, the f i rs t  term 
is smaller than the second, the improved perturbation 
theory applies, and the small parameter is a quantity 
inversely proportional to 1n(pc/Ek4). 

We note that because of Eq. (27) we have 6w << A. 
This condition shows the essential differenc: between 
our s i t u a p n  and that analyzed by Iordanskii and 
P i t a e ~ s k i i , ~  who considered the behavior of the polar- 
ization operator far  from the mass  shell, i.e., for 
O<w-ck<<A. 

946 Sov. Phys. JETP 50(5), Nov. 1979 V. L. Gurevich and B. D. Laikhtman 946 



In conclusion we point out that it is obviously inter- 
esting to trace the behavior of the phonon-phonon col- 
lision operator in the neighborhood of the point k = k"). 
In fact, for k >  k(') the spectrum i s  nondecaying, and 
we can use the four-phonon collision operator given by 
Landau and Khalatnik~v. '~ ' '~ For k < k(') this collision 
operator diverges, and the sum of an infinite ser ies  
of diverging terms of that type reduces to a renor- 
malization of the spectrum in a three-phonon collision 
operator, while the remaining part of the four-phonon 
operator converges. Accordingly, the four-phonon 
operator takes different forms for k >  k(') and k < k ( ' ) .  
It is interesting to see how one expression goes over 
into the other. Since, a s  we have shown, in calculating 
vertices it is sufficient to use the lowest order of per- 
turbation theory, in the entire range of values of k the 
sum of the three-phonon and four-phonon collision op- 
erators i s  the sum of the diagrams in Fig. 4, a and b, 
where each line corresponds to  the complete Green's 
function. Separation of the three-phonon and four- 
phonon operators from this sum leads to  extremely 
cumbersome calculations. This problem ar ises  only 
in the region of temperatures and pressure where the 
two operators a r e  in competition, and we shall not 
deal with it in the present paper. 

We thank V. S. L'vov for a discussion of this woi-k 
and helpful comments. 

APPENDIX 

The Hamiltonian of the three-phonon interaction con- 
tains parts associated with the kinetic and potential 
energies8) : 

where 

i s  the velocity operator, V i s  the volume of the sys- 
tem, and 

i s  the operafor of density fluctuations. 

It i s  convenient to construct the diagram technique 
by means of the operator 

1 
q ~ ( x )  = F- 9. ( t ) e z l :  (1)  =k e x p ( - i o I t )  +b^-k+ e x p ( i o k t )  

k 

(A.4) 

(x  i s  the four-vector r, t), in t e rms  of which the 
velocity and density operators can be expressed in the 
following way: 

It can be seen from these relations that one cannot 
construct both the velocity and the density operators 
in terms of cp; the velocity i s  expressed in terms of 

acp/at. Therefore also in the construction of the dia- 
gram technique we cannot a t  once introduce only one 
Green's function 

where T ,  i s  an ordering on a contour, a s  described in 
a paper by Keldysh.17 Three further Green's functions 
ar ise  in a natural way, two vector functions 

E , ( x ,  x') =-i<T,v,(x)cp(x') ), 

F,(x ,  x') -- i(T,cp(x)v,(s')  ), 

and one tensor function 

G.,(x, x') -- i(T.u,(x) wP(x1)  ). (A.9) 

For all  of these functions we introduce spatial Fourier 
transformations 

D ( x ,  .') = e ' (kr-k 'r ' 'D(k ,  k') etc. 
Ik. 

We then have 
D ( k ,  kf)=-i(T,cp,(t)cp1~(t1)>, E, (k ,  k ' ) = - i ( T . ~ , ~ ( t ) c p ~ . ( t ' ) > ,  

(A.11) 
F.(k, k t )  = - i < T C ~ k  ( t )  w.kl ( t ')  ), Gap ( k ,  kr) =-i(TSv.k(t)  wok. (t') ). 

Now by means of Eq. (A.5) we can easily establish the 
relations 

Accordingly, the complete (spatial and time) Fourier 
transformations of E,, Fa, and GaB can be  expressed 
in t e rms  of the complete transformation of D, but be- 
cause Eq. (A.12) contains time derivatives these ex- 
pressions involve frequencies. And if in constructing 
the technique we use these expressions and eliminate 
E,, Fa, and GaE, leaving only the function D, which 
also appears in the usual versions of the diagram tech- 
nique, the bare  vertex is frequency dependent. It 
takes the following form 

The vertex has the property 

b(-q , ,  qz. q r ) = b ( q t ,  -qz, q ~ ) ~ b ( q i ,  q*, -qs)=b(ql ,  p.2, q a ) .  (A.14) 

~ igher -o rder  vertices do not depend on the 
frequencies. 

" ~ n  exception i s  a paper by ~ordanskif and ~itaevskif,' in 
which a quasiclassical method was used to determine the 
character of a singularity of the polarization operator off 
the mass shell near the line w = cok .  

 he quantity k (') i s  determined from the condition hl(kC2)) 
= 2 ~ & ( ~ ) / 2 ) .  

3)~ctual ly  because of the high powers of k that occur in the 
integrands the characteristic values of k are several times 

k ,. 
4 ' ~ o r  k(')> 0 equilibrium in the phonon numbers i s  brought 

about both owing to processes 2 --' 3 and also owing to pro- 
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cesses 2 2 1 .  These mechanisms can compete, because the 
former has the anharmonicity a s  a small factor, and the 
second (for k,>k'2)) has a small phase volume. 

 he exact expression for b(qi, qz, q3) is cumbersome, and de- 
pends not only on the wave vectors but also on the frequency 
arguments wi, w), wg. It is derived in the Appendix. 

 he last term in the expression (20) differs from the analo- 
gous term given in Refs. 19 and 20; the latter term contains 
a matrix element bQ,ck;K , ck' ; -k-k', ck+ ck'), which does 
not coincide with the term in (20) even when k and kt are  
parallel. The difference is due to the fact that when one con- 
structs the diagram technique for helium II with one type of 
bare vertices and Green's functions the bare vertices must 
depend on the frequency arguments as  well as on the mo- 
menta; this was not taken into account in Refs. 19 and 20. 

"1t is interesting to note that a spectrum of precisely the same 
type is obtained not only in hydrodynamics but also in the 
direct study of a weakly nonideal Bo!e gas with short-range 
forces.21 Kemoklidze and Pitaevskii 22 and ~ e e n b e r ~ ' ~  have 
shown that inclusion of the long-range van der Waals forces 
can lead to the appearance of a k4 term. 

')we call attention to the fact that in this respect the situation 
is different from that which is usual for solids. In them, the 
quantization is usually carried out in a Lagrangian (comoving) 
coordinate system, and therefore the anharmonic terms 
come only from the potential energy of the lattice vibrations. 
On the other hand, the quantization of the phonons in helium 
I1 is done in an Eulerian (laboratory) system:' and therefore 
the anharmonic terms contain contributions from the kinetic 
energy also. 

'v. E. Zakharov, Zh. Prikl. Mekh. Tekh. Fiz. 4, 35 (1965). 
*v. E. Zakharov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 18, 

1470 (1975). 
'v. L. Gurevich and B. D. ~Zkhtman,  Ann. Phys. (New York) 

106, 444 (1977). 
's. A. Akhmanov and R. V. Khokhlov, Problemy nelinernor 

optiki (Problems of nonlinear optics), Izd. Akad. Nauk SSSR, 
1964. 

5 ~ .  L. Gurevich and B. D. ~ Z k h t m a n ,  Zh. Eksp. Teor. Fiz. 
49, 960, (1965) [Sov. Phys. JETP 22, 668 (1966)l. 
'M. I. Rabinovich, Izv. Vyssh. Uchebn. Zaved. Radiofizika 9, 

173 (1966). 
IS. V. ~ordanskii and L. P. ~i taevski i ,  Pis'ma Zh. Eksp. Teor. 

Fiz. 27, 658 (1978) DETP Lett. 27, 621 (1978)l. 
'B. B. Kadomtsev and V. I. Petviashvili, Dokl. Akad. Nauk 

SSSR 208, 794 (1973) [Sov. Phys. Doklady 19, 115 (1973)l. 
'H. J.  Maris, Rev. Mod. Phys. 49, 341 (1977). 
'OK. Kawasaki, Prog. Theor. Phys. 26, 795 (1961). 
"s. Simons, Proc. Phys. Soc. 82, 401 (1963). 
1 2 ~ .  Leggett and D. t e r  Haar, Phys.-Rev. A139, 779 (1965). 
"L. E. Gurevich and B. I. Shklovskii. Fiz . Tverd. Tela (Lenin- 

grad) 9, 526 (1967). [Sov. Phys. Solid State 9, 401 (1967)l. 
"L. D. Landau and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 19, 

709 (1949). 
'9. M. Khalatnikov, Teoriya sverkhtekuchesti (Theory of 

Superfluidity) Nauka, 1971. English transl. of previous edi- 
tion: New York, W. A. Benj~min, 1965. 

L. Gurevich and B. D. Laikhtman. Zh. Eksp. Teor. Fiz. 
69. 1230 (1975) [Sov. Phys. JETP 42, 628 (1976)). 

"L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. 
Phys. JETP 20, 1018 (1965)l. 

"1. B. Levinson, Zh. Eksp. Teor. Fiz. 65, 331 (1973) [Sov. 
Phys. JETP 38, 162 (1974). 

"s. Eckstein and B. B. Varga, Phys. Rev. Lett. 21, 1311 
(1968). 

'k. Yamada and K. Ishikawa, Progr. Theor. Phys. 47, 1455 
(1972). 

"H. Gould and V. K. Wong, Phys. Rev. Lett. 27, 301 (1971); 
Ann. Phys. (New York) 83, 252 (1974): 

2 2 ~ .  P. Kemoklidze and L. P. Pitaevskii, Zh. Eksp. Teor. 
Fiz. 59, 2187 (1970) [Sov. Phys. JETP 32, 1183 (1971)l. 

"E. Feenberg, Phys. Rev. Lett. 26, 301 (1971). 
Andreev and I. Khalatnikov, Zh. Eksp. Teor. Fiz. 44, 

2058 (1963) [Sov. Phys. JETP 17, 1384 (1963)l. 
2 5 ~ .  J .  Pethick and D. ter  Haar, Physica 32, 1905 (1966). 

Havlin and M. Luban, Phys. Lett. 42A, 133 (1972). 
"L. D. Landau, Zh. Eksp. Teor. Fiz. 11, 592 (1941). 

Translated by W. H. Furry 

Effect of a weak electric field on the dielectric losses in 
centrosymmetric ferroelectrics of the displacement type 

A. K. Tagantsev 
A. F. Ioffe Physicotechnical Institute, USSR Academy of Sciences 
(Submitted 17 June 1979) 
Zh. Eksp. Teor. Fi. 77, 1993-2004 (November 1979) 

Two mechanisms whereby a constant homogeneous electric field affects the losses due to lattice 
anharmonicity of an ideal crystal are considered. These are: 1) partial suppression of the already present 
processes of absorption of a measuring-field quantum with participation of two phonons from different 
modes, and 2) the appearance of new processes that cause absorption of this quantum, with participation 
of two phonons from the same mode. The influence of the fmite phonon damping is discussed. A 
threshold is predicted for the field dependence of the first mechanism. The values of the threshold fields 
are estimated and their frequency dependences are obtained. 

PACS numbers: 77.40. + i 

1. INTRODUCTION ternating electric field, based on the papers of 
Balagurov et a1 .,4*5 is contained in Vaks's monograph? 

The question of dielectric losses in ferroelectrics of The results for noncentrosymmetric cyrystals in in- 
the displacement type was considered by a number of homogeneous electric fields were obtainedby Balagurov 

A detailed analysis of the losses in a cen- and ~ a k s P ' "  All the authors considered the contribu- 
trosyrnmetric cubic ferroelectric in a homogeneous al- tion made to the losses by the lattice anharmonicity 
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