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The nucleation in the metastable phase near the critical point of a thermodynamic system is described as 
a relaxation of a metastable state of the order-parameter field. For cases with conserved and 
nonconse~ed scalar order parameters, equations are obtained that describe the random change of the 
dimension of the nucleus of the new phase. On the basis of the random-process equation a closed scheme 
is constructed for a statistical description of the metastable phase. Equations are obtained for the 
transition probability and for the distribution function of the sizes of the nuclei. The lifetime t ,  of the 
metastable state and its variance Dm are calculated. The scaling behavior of t ,  in the region of strong 
fluctuations is discussed. 

PACS numbers: 05.70.Fh 

1. FORMULATION OF PROBLEM 

I t  is known that a metastable state of matter  can be 
obtained in a first-order phase transition.' This  s tate 
i s  thermodynamically stable t o  smal l  perturbations. I t s  
relaxation into a thermodynamically stable s ta te  is ac- 
companied by formation of a cri t ical  nucleus of a new 
phase, suggesting the surmounting of an energy bar r ie r .  
The  classical theory of Zel'dovich and Vollmer (ZV)a-4 
considers the relaxation of a metastable state a s  relax- 
ation of the distribution of the nuclei in size. An equa- 
tion is postulated for the flux J of the nuclei along the 
phase axes in a region of large dimensions. The  result  
obtained in the theory, J  = J ,  exp(-AF,/T) (where AF, is 
the minimal work of production of the cri t ical  nucleus) 
is universal, apart  from a pre-exponential factor, and 
is determined by the equilibrium thermodynamics of the 
system. The quantity J, i s  different for  sys tems with 
different relaxation thermodynamics and is not calcu- 
lated within the framework of the ZV theory. 

The  dynamics of the nucleation lends itself t o  obser- 
vation, particularly near cri t ical  points of systems (for 
example, near cri t ical  stratification points). The  pur- 
pose of the present paper is to  investigate the dynamics 
of the relaxation of the metastable state of a system 
near a critical point. The theory developed below 
s tar t s  from the relaxation equation for the field (fields) 
of the order parameter. This  makes it unnecessary t o  
make additional assumptions concerning the properties 
of the nucleus (for example, concerning the dependence 
of the nucleus energy on the dimension, concerning the 
cqnditions on i t s  boundary, etc.). These  assumptions 
a r e  not always obvious, particularly in a system with a 
large correlation radius. The  method makes it possible 
t o  take into account in regular fashion the influence of 
various effects (fluctuations of the shape of the nucleus, 
coalescence processes, etc.) on the relaxation of the 
metastable state. The proposed theory is general in 
character  and the ZV approximation can be obtained 
within its framework. 

The  dynamics of a system near a cri t ical  point is con- 
nected with the relaxation and fluctuations of the hydro- 
dynamic modes-fields of the order  parameter  q(x,  t), 
energy density c(x, t), etc. The  slowness of their relax- 

ation makes i t  possible t o  exclude other degrees of free- 
dom that manage t o  reach local equilibrium. The  form 
of the relaxation equations for the hydrodynamic modes 
is determined mainly by the conservation properties. 
We consider a system described by a s ca l a r  field 
q(x, t); we assume that the energy of th is  field is not 
c o n s e r ~ e d . ~  F o r  sys tems with a conserved parameter  
cp (x, t ) ,  the relaxation equation for q (x, t )  takes the form 

while for systems without conservation of q(x ,  t )  we 
have 

where ~ { c p )  is the effective Hamiltonian, which we take 
in  the Landau form 

Here  r, and r, are kinetic coefficients, and f ,,,, is an 
extraneous force that imitates a thermal ensemble. 

T h e  scheme used by us  t o  describe the  dynamics of 
the field of an  order  parameter  is standard.' Near the 
cri t ical  point, the properties of the system with Hamil- 
tonian (3) are well known.' At h = 0 and p = p, < 0 there  
is a cri t ical  point in the system; the line h =0, p < p,  is 
a line of f irst-order phase transitions. The  metastable 
s ta te  of the field ~ ( x ,  t )  is obtained by intersecting the 
line h = 0 a t  p < p, in the thermodynamic plane. We , 
shall investigate i t s  relaxation for ca ses  (1) and (2). 
The  smearing of the interphase boundary does not make 
it possible in our case  t o  use the illustrative concepts 
of particle absorption by the nucleus, and the mechan- 
ism of nucleus formation must be determined. 

In the absence of an extraneous force f ,,,,, Eqs. (1) 
and (2) have stationary homogeneous solutions cp 
=cpIa(h), which are stable in the smal l  and can be ob- 
tained from the condition 

The re  is a lso  a c lass  of quasistationary solutions, for 
which cp(x, t )  is almost everywhere close to the values 
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v,, with the exception of boundary regions of thickness 
6 - (c/( p ( ?I2. The  evolution of the quasistatic solutions 
reduces to motion of the boundaries. F o r  a smal l  ex- 
traneous force f,,,,(x, t )  the solutions of Eqs. (1). (2) a t  
each instant of t ime constitute smal l  fluctuations about 
the solutions a t  f,,,, =O. The  quantity f ,,,, (x, t) can be  
assumed small  i f  the resultant amplitude of the fluctua- 
tions of the field cp(x, t )  i s  smal l  compared with the 
quantity cp = (1 p ( /gy/2 in a region with dimension A 5 r ,  - (c/l p 1 yf2. This  condition i s  satisfied for systems that 
a r e  in the region of applicability of the Landau theorys 

We consider f i r s t  this  c a s e  of smal l  fluctuations. 

2. NUCLEUS DYNAMICS FOR A SYSTEM WITH A 
NONCONSERVATIVE PARAMETER &,t) 

The relaxation of the system is described by Eq. (2). 
We consider f i r s t  a spherical nucleus with center a t  the 
origin (h = 0, f ,,,, = 0). We introduce the following dimen- 
sionless variables: the radius 4 measured in units of 
(2c/J p )  y", the time measured in units of 2/r,l p 1 , and 
the transition parameter  

Fo r  the angle-independent configuration $([, t )  in n-di- 
mensional space (n = 1,2 ,3 , .  . . ) we obtain 

a g  a2g n-i a g  -=-+-- 
at  at" t i  + 2 (9-9') .  

The solution of Eq. (6) of the form of interest  t o  u s  is 
well known for the one-dimensional case: 

We expect that in the case  n > 1 the solution will be sim- 
i la r  to (7). At [, >>I the t e rm 

in (6) must be taken into account only in the region of 
the boundary of the nucleus [ - to(t), the position of 
which depends on the t ime t. At other values of [ this 
t e rm is relatively small. If the width of the boundary 
is small  compared with the dimension of the nucleus, 
then Eq. (6) can be written in the form: 

The solution of Eq. (8), which describes the relaxation 
of a spherical nucleus, is 

& n-l 
$(t,t)=*th(E-E,(t)),  T-- -. 

E.(t) 

The quantity [,(t) is the effective radius of the nucleus 
and decreases with the t ime like 

The  solution (9) is valid if ~ ( t )  >> 1. Nuclei with smal- 
l e r  dimensions &(t) - l attenuate t o  a solution that is 
homogeneous in space. Both phases ( $) = i1 turn out to 
be stable at  h = O  relative t o  formation of a nucleus of 
arbitrari ly la rge  size. The  relaxation equation a t  h #O 

(h is measured in units of $1 p I p,) has two homogeneous 
and stable (in the small)  solutions only if I h 1 << h, 
~ 4 / 3 ~ / ' .  We shall consider weakly metastable states,  
when I h 1 << h, c 1, SO that i t  suffices to obtain the solu- 
tion of the relaxation equation accurate to t e rms  linear 
in h. 

Real  nuclei in a system have a shape close t o  spheri- 
ca l  i f  their  dimension is large  compared with the cor- 
relation radius tm,=$. We shall assume therefore that 
in the expansion of the nucleus radius to(@, cp, t) in the 
spherical functions 

the quantities ('"'(t)(&2 1 )  a r e  smal l  compared with (g(t) 
which is the radius of the nucleus averaged over the 
angles. The  calculations here  and below a r e  carried 
out for three-dimensional space, n =3. T h e  solution of 
the relaxation equation 

"- [ 1 8 .  $ a  d - + - -  sin 0 -1 
sinzOdcp' s i n e 8 0  dB 

accurate t o  t e r m s  of higher order  in the quantities 
g(1 a 1) and h, is 

A s  seen from (13). the amplitudes of the spherical 
harmonics g(1a 2) attenuate in the course  of relaxation 
quite rapidly: 

i.e., the nucleus becomes spherical. The  undamped 
harmonic g(t)  describes the displacement of the nucleus 
a s  a unit in space. In a reference f rame connected with 
the center of the nucleus we have i$(t) = 0. The  solution 
(13) describes a nucleus of a phase ($) =-1 in a phase 
($) = 1. At h < 0 the nuclei with angle-averaged radius 
.$ < [, = 4/3 1 h I attenuate, while the nuclei with [:(0) > (, 
increase. T h e  phase (4) = 1 a t  h < 0 i s  metastable-un- 
stable t o  formation of a nucleus with radius [E > [,. At 
h > 0 the  phase ($) = 1 is stable. A s imi lar  solution is 
obtained for  the nucleus of the phase ($) = 1 in the phase 
($)= -1. 

So  f a r  we have disregarded the random force f,,,,(x, t )  
due to the small-scale fluctuations. The  properties of 
the random force f,,,, were defined under the assumption 
that the small-scale fluctuations a r e  in equilibrium. 
The  random field f,,,,(x, t )  is Gaussian with a 0 mean 
value. The  force j,,,,(x, t)  is assumed to  be weak, s o  
that the amplitude of the response of the field p(x, t )  t o  
the action of the force f,,(x, t )  is smal l  compared with 
qs. We seek the solution of the relaxation equation with 
account taken of the force f(5,  t)  measured in units of 
I @  1%/2 
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in  the form 

$6, t )  =th [ E - t o @ ,  cp, t )  l+'l,h+v (6, t ) ,  
- ~ 2 l d t - 2 / ~ 0 V - + ' l ~ h + 6 v ~  (bo"(t), t )  , (16) 

-@o'ldt=[E(1+1) -21 ~ o ' l ( ~ o ~ 2 + 6 v ' ( ~ o o ( t ) ,  t )  , 

where the function v(6, t )  describes the response of the 
field $(I ,  t )  t o  the action of the force f (6,  t )  and is a sol- 
ution of the equation 

av - = Av-4v+f (6,  t ) ,  
at (17) 

and 

The  quantities v l ( ( ,  t )  a r e  the amplitudes of the expan- 
sion of the function v(6, t )  in spherical functions: 

The  quantity v(6, t )  is a linear function of the force 
f  ( l ,  t ) ,  and if the force is weak enough we have I v l <  1. 
We investigate now the correlation properties of the 
field v ( [ ,  t ) .  Assuming the random force f ( l ,  t )  to be 
6-correlated: 

( f  (61, ts)f  (62, td  ) = d ( t t - t z )  6(bi-bz), 

we obtain 

I t  is seen from (20) that the field v ( l ,  t )  is correlated in 
the space (tco, = 8) and in time ( t  = i). The assumption 
that the field f ( t ,  t )  is &correlated can always be made 
if i t s  proper correlation radii a r e  small  compared with 
those obtained for the field v ( t ,  t ) .  

We turn now to  Eq. (15). Substituting in it the solution 
(16) and retaining only the t e rms  linear in v(6, t  ), we 
find that the equation is satisfied accurate t o  the te rm 

At ( 5 - b ( 0 ,  rpt)l> 1 this te rm is exponentially small. 
F o r  [ -lo((?, rp, t )  we expand v ( t ,  t )  in a s e r i e s  near  
b(0, rp, t ) .  Since the correlation radius of the field 
v(5, t )  is of the order  of the width of the boundary of the 
nucleus, we can confine ourselves in the expansion to 
the f irst  term. In this approximation, the solution (16) 
sat isf ies Eq. (15). Allowance for their  random force 
f (e ,  t )  leads to small  fluctuations of the amplitude 
$ ( ( ,  t )  and of the nucleus boundary, described by Eq. 
(16). The amplitudes of spherical harmonics of radius 
t i ( t )  fluctuate under the influence of the corresponding 
harmonics of the effective random force v ( l ,  t ) ,  which 
is a functional of the field f  (5, t ) .  

3. NUCLEUS DYNAMICS FOR S SYSTEM WITH A 
CONSERVATIVE PARAMETER cpCu,t) 

We write down Eq. ( I ) ,  using the dimensionless radi- 
us  [ measured in units of C( 1 )lh, the time t  mea- 

sured in units of 4c/rcIw 12, and the transition param- 
e t e r  IJ =(P/(P,. The field h and the extraneous force f,,,, 
are measured in units of 1 C( (rp,/2, 

-=- 'lp A [A$+2 (9-9') +f (E, t )  I. 
at (21) 

J u s t  a s  in the case  considered above, we obtain in the 
absence of a random force f,,,, a quasistatic solution 
that describes a spherical  nucleus. 

The homogeneous solutions of Eq. (21) (f ,,,, = 0 )  satis- 
fy the condition 

9'-3-h/2=0 (22) 

and describe the two phases of the system. The  field h 
in the investigated case  is the analog of the chemical 
potential of the system. F o r  example, for the binary 
mixture h - p  ,- p,, where p, is the chemical potential 
on the stratification line and p ,  is the chemical poten- 
t ial  of the initial phase. 

We consider the nucleus of the phase ($) )--I in the 
metastable phase ($) = 1, corresponding to  h < 0  and I h  ( 
<<,I. An arb i t ra ry  configuration of the field # ( l ,  t )  
should satisfy in this case, in accord with the conser- 
vation law, the condition $(a, t )  = 1 - IhJ /4 .  The station- 
a ry  solution of (21) ( f  ,,, = 0 )  corresponding to a nucleus 
of radius t;, >>I i s  

I t  sat isf ies the boundary condition only in the case  when 
t;, = 4/3 1 h 1 = t;,. A nucleus of this  s ize  is critical. 

F o r  a nucleus with dimension (, + t ,  i t  is necessary to  
find that the correction to  the solution (23).  The cor- 
rection 6$ = u ( [ ,  t )  a t  [ >> 5- tends t o  the limit 1/3&, - ( h  I/  
4.  Inside the nucleus ( < to the correction u ( [ ,  t )  tends 
to zero. Outside the nucleus there  exists  a nonzero flux 
(vu#O), and the dimension (, of the nucleus depends on 
the time t .  Retaining in (21) t e rms  up to those l inear in 
4 5 ,  t ) ,  we get 

Since the relaxation of the nucleus is quasistatic, the 
quantity 8u/8t is of higher order  of smallness than the 
other t e rms  of (24). The t e rms  containing the factor 
cosh-'(( - &,) must be taken into account only in the re- 
gion of the boundary of the nucleus (, - [ ,(t) .  Outside the 
boundary (( >>to o r  ( cc 5,) we obtain the equation 

We take the solution of (25) in the form u, =P,+ a , / t  
(i = 1,2).  Inside the nucleus (0 < 4 c 5,) we have 9 = 0  
and =O. The solution outside the nucleus should go 
over into the solution inside the nucleus in the region 
5 -So ,  therefore (y, =-&(*,  where [* - 5,. We use the 
boundary condition 

u(-, t )  ='/i(l/Eo-lltc), t=413 1hl 

and obtain 

0, E4t' 
( = ( i f - i t  - f'P.. 

We used the law of conservation of the parameter  #([, t )  
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to determine the dependence of 5, on t. We integrate 
Eq. (24) over the region 0 < 5 < f(f>> to). The integral 
of the right-hand side of the equation will be transform- 
ed into a surface integral over a sphere of radius 5. A s  
a result we obtain 

fioldt=-Zls ( ll$o-liEc) b'lEoz. (27) 

We require that the solution (261, (27) satisfy the Eq. 
(25) also in the nucleus boundary region 5 - 6,. We ob- 
tain t* = 5,. Thus, the relaxation of a spherical nucleus 
is described by the solution 

$ ( E ,  1 )  =th re-e.ct) I - ~ / ~ E o + u ( ' s ,  1 ) .  
(28) 

The generalization to the case  of an arb i t ra ry  form of 
the nucleus and the allowance for  the weak random 
force f,,,,,are carried out in the same manner a s  in the 
preceding case. In the principal order  in the force f,,,, 
and in the harmonics of the radius (:(la 1 )  the solution 
of (21) i s  

The function u(6,  t )  coincides here  with the function de- 
fined by (26), with [,(t) replaced by the nucleus radius 
F;:(t) averaged over the angles ( t *  = 5:). The function 
v( l ,  t )  describes the response of the field $(t ,  t) on the 
action of the random force f (t ,  t )  and i s  a solution of the 
equation 

a v / a t - - A [ A v - 4 u + f ( ~ ,  t )  1, 

1 
1 

u ( l .  i)= -7 Iexp( ik~-k ' (k2+4) t )  {I e x p ( ~  (k-4)t') fk( t ' )dtr}  dk. 
(an) o 

(30) 

The quantities ~ ' ( 5 ,  t )  a r e  spherical  harmonics of the 
field v( 5, t ) .  

Eqs. (29) for  the quantities tA(t) ( 1  2 2) describe the 
fluctuations of the shape of the nucleus. The  shape of 
the nucleus remains close to spherical if 5: >> 1. The 
random deviations of the nucleus a s  a unit a r e  de- 
scribed by the equation for [i(t). The  solution (29) de- 
scribes the metastable phase ($) = 1. At  h >0, the 
phase ($) = 1 is stable and the metastable phase is ($) 
= -1. 

4. CASE OF STRONG FLUCTUATIONS 

In the case  Gi 2 ( p ( the amplitude of the fluctuations 
of the field q(x,  t) with scales A-r, is not smal l  com- 
pared with the difference between the mean values of 
the field in the two phases. In this  case  the state with 
the nucleus is not described by a specific configuration 
of the field q(x ,  t), and has an appreciable probability 
of containing a se t  of strongly differing configurations. 
The field ~ ( x ,  t), averaged over the fluctuations of the 
scales A S  R (R >>re), fluctuates weakly. F o r  a field 
smoothed out t o  such a scale we can determine the con- 
figuration that describes the nucleus. The relaxation 
equation for the smoothed field i s  obtained by the re-  
normalization group method (see, e.g., Ref. 5). 

Fo r  scales R >>Y, the result  in the thermodynamic- 

equilibrium state is determined by the fact that the re- 
normalized Hamiltonian lands in the vicinity of a Gaus- 
sian immobile point. The  equations of motion and the 
Hamiltonian take the form (I), (2), (3) but with renor- 
malized coefficients: r , c , k , g - r * , c * , ~ * , g t .  T o  de- 
termine the procedure of smoothing in the metastable 
state i t  is necessary to know the probability distribu- 
tion of the configurations of the field q(x, t )  in this 
state. This  distribution will be given in the next sec- 
tion, and R < R, it coincides for  sca les  with the given 
distribution. Consequently, for  smal l  deviations of the 
smoothed field q(x ,  t )  from an equilibrium from the 
metastable mean value, the Hamiltonian takes the form 
of the Landau Hamiltonian 

F o r  la rge  deviations of the smoothed field from the 
mean values I 6cp 1 - p, the explicit form of the Hamilton- 
ian i s  not determined from general considerations. If 
the Hamiltonian ~ { p )  differs from the Landau Hamil- 
tonian only by t e rms  that a r e  independent of V q ,  then 
the dynamics of the nucleus coincides with that consid- 
e red  in Secs. 2 and 3, except that the quantities I', c, 
p ,  and g a r e  replaced by their  renormalized quantities 
r*, c*, p*,  and g*, which a r e  defined in t e rms  of 
measureable characterist ics  of the sys tem (the order-  
ing ps, the susceptibility X ,  and the correlation radius 
r,) by means of the formulas 

Le t  the relaxation of the configuration of the 
smoothed field q(x ,  t )  be described by the equation 

The change of the field ~ ( x ,  t )  a t  the point x during the 
time d t  is 

acp 6~ (x ,  t )  = - dt. 
at 

The total change of the energy of the configuration of the 
field q(x ,  t )  is 

F o r  configurations describing a nucleus, the quantity 
+/at deviates noticeably from ze ro  only in the region of 
the boundary of the nucleus. Recognizing that 

we get 

1 ($-I ( ~ ) ' P } ~ ~ = = P S ~ ~  dt, = - r;s v (33) 

where the quantity a2 does not depend on the surface 
a r e a  S of the nucleus. On the other hand 

2u 
6H==6Hv+6H8=2hq.iS dt + - i S  dt,  (34) 

r 

where 2q, is the difference between the mean values of 
the field in the two phases; a is by definition the effec- 
tive surface tension. From (33) and (34) we get 
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F o r  the system (1) with conserved transition ~ ( x ,  t) 
parameter  the equation of motion can be written in the 
form 

Repeating the arguments presented above, we obtain 

The  properties of the random force that causes a 
change of the radius of the nucleus cpjncide in the case  
of weak and strong fluctuations. We note that when the 
system is described by the averaged field q ( x ,  t ) ,  the 
lower-bound of the correlation radius i s  lifted, s o  that 
the description is applicable also far  from the cri t ical  
point. Formulas (35) and (37) can be expressed in the 
same form a s  the formulas of the preceding section, by 
introducing the effective quantites r*, I * ,  etc. In this 
case  the scale dimensionality of these quantities, a s  
can be readily verified, coincides with the scale dimen- 
sionality that follows for these quantities from the theo- 
ry of equilibrium f l~c tua t ions .~  

5. STATISTICAL DESCRIPTION OF THE 
METASTABLE STATE AND OF ITS RELAXATION 

The metastable state produced when the f irst-order 
phase transition lines a r e  crossed with finite velocity is 
a state of incomplete equilibrium. In such a state, the 
distribution of a small  scale (A<< R,) of the degrees of 
freedom corresponds to  local equilibrium for slowly 
varying large-scale degrees of freedom (A 2 R,) and is 
close to their  distribution in the initial phase. The  crit- 
ical dimension R, depends on the depth of penetration 
into the region of metastability of the initial phase. In 
the case of weak metastability, the cri t ical  dimension is 
by definition large compared with the correlation radius 
r,. On the phase-transition line R,=m, whereas the 
correlation radius i s  finite. 

The  considered systems with correlation radii la rger  
than the interatomic dimension a r e  described by the 
transition-parameter field cp(x, t). We introduce the 
transition-parameter field smoothed out to a scale 
~ ( r ,  << A < R,) 

where Z,(x) is a certain smoothing function with charac- 
ter is t ic  dimension A, for example, ~,(x)=exp(-%'/A2). 
The  fluctuations of the field cp(x, t )  with scales R > A  a r e  
small, therefore the quantity 

(where (of i s  the mean value of the field p(x, t )  in the 
initial (+) and final (- ) phases, respectively), provided 
only that the averaging region is not occupied by a nu- 
cleus of a new phase with dimension R 2 A. 

The nuclei of the dimensions R >R, increase with 
overwhelming probability. Thei r  presence in the sys- 

tem denotes that a transition into the heterophase state 
has taken place. In a homogeneous metastable state 
there should be no such nuclei ( R  2 R,). These  argu- 
ments allow us  t o  propose a distribution of the probabil- 
i t ies  of the configurations of the field q(x ,  t )  also in the 
metastable phase.7 

We introduce the functional p+{cp,) of the smoothed 
field *,(x) with the following properties: p+{v,} = 1 if 
everywhere 

and p+{cpA)=O if these conditions a r e  violated even a t  
one point. The  probability density of the configurations 
of the fields cp, (x) in a state that i s  a metastable continu- 
ation of the phase cp+ is by assumption 

The probability of configurations containing at  least one 
nucleus of a new phase with dimension R > A  is equal to 
zero. On the se t  of the remaining configurations, the 
distribution ~ & { c p )  coincides with the Gibbs distribu- 
tion. If >> r,, then the distribution W: differs from the 
Gibbs distribution only for  configurations of the field 
cp(x) that a r e  extremely improbable in the region of the 
stability of the phase q+. Consequently, in this region, 
these distributions a r e  thermodynamically identical. 
The distribution ~ ; { c p }  describes the stable states of 
the phase cp+, and a lso  states that a r e  metastable con- 
tinuations of the phase cp+  and in which R,>A. We can 
construct analogously the ensemble W, - {cp), which de- 
scr ibes  the metastable continuation of the phase cp-. 
The ensembles W: a r e  not stationary and should be 
used a s  initial distributioas when solving the problem of 
the relaxation of the corresponding metastable states. 

The  relaxation of the metastable state will be de- 
scribed a s  the relaxation of the distribution of the nuclei 
of the new phase. The  distribution of the nuclei at  in- 
stant t=O, namely w(r,O)=W,, is determined by the en- 
semble (39). The evolution of each nucleus i s  described 
by ei ther  Eq. (16) o r  (29), depending on whether the 
transition parameter  is not conserved on conserved, 
respectively. We note that both in the system (16) and 
in (29) the quantities &$(z 1) do not en ter  in the equa- 
tion for  the radius .$(t) averaged over the angles. In the 
approximation considered, the distribution W(r, t )  in the 
values of the radius r turns out t o  be independent of the 
distribution in the deviations from the spherical form 
of 5A(12- 1). 

We consider now nuclei with dimensions r >>%, where 
A, is a scale whose fluctuation amplitude is comparable 
with the value of the spontaneous ordering. The concen- 
tration of these nuclei is small, and the probability of 
their  collision can be neglected. The interaction of the 
nuclei (r 5 &,) with the fluctuations of the  sca les  ( r  2 &,) 
is taken into account by the effective random force 
v ( ( ,  t). In this approximation, the change of the nucleus 
radius [ : ( t )  averaged over the angles is described in 
both considered ca ses  by the equation 
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The regular "force" F ( [ : )  is determined by formulas 
(13) o r  (27); v O ( ~ i ,  t) i s  the value, averaged over the 
sphere [:(t) of the effective random force v(4, t) deter- 
mined by formulas (18) and (30) respectively; c is equal 
to 6 o r  12. 

The  field vO((:(t), t )  by virtue of the relative slowness 
of the change of the dimension of the nucleus, can be 
regarded as &correlated in time 

where ~ (6 : )  =D/([:)~ in the case  of a system with a non- 
conserved transition parameter  and ~(5:)  =D/([:)' in the 
case of a system with a conserved transition parameter .  

Following the theory of homogeneous random proces- 
ses: we introduce the transition probability 

where the averaging is over al l  the realizations of the 
random force uO(f:, t). The  quantity P ( r ,  yo, t )  is the 
probability that a t  the instant of t ime t the dimension of 
the nucleus is equal to r if Y = r, at  t=O. The distribu- 
tion of the nuclei a t  the instant of t ime t is 

The distribution (43) sat isf ies the Kolmogorov equation 
determined with the aid of (40) and (41) 

where 

F ( r )  =2 ( l / r+3h/4) ,  D ( r )  =DIP 

in the case  of a system with a nonconserved transition 
parameter  and 

in the case  of a system with a conserved transition pa- 
rameter. 

The  stationary solution of the equation (44) 

h [ ( r z + - r a ) ]  W ( r )  = V o  exp - - 
2 

is, at  h a 0 ,  the distribution of the nuclei of the phase 
(4) =-1 in the stable phase (4) .I 1. Comparing (45) with 
the equilibrium distribution of the nuclei, we find D 
= 3 ~ / 8 q  (where T i s  the temperature measured in units 
of I p  CI(qte) and V is the volume of the system. The  
quantity w does not depend on the dimension r and can 
be calculated by integrating the Gibbs distribution over 
al l  the configurations corresponding to  a nucleus of di- 
mension r ,  a t  h = 0. 

When h < 0 the distribution (45) increases without lim- 
i t  a s  r --. Thi s  means that the most probable a r e  
states with a nucleus of infinite s ize,  i.e., the system 
has gone over into a new phase state. The distribution 
of nuclei in the metastable phase wm(r), corresponding 
t o  (39), is leave 

8n 2 r3 
w m ( r ) = v o  exp [ - - ( r 2  - - - ) I  e ( r0 - r ) ,  

3T 3 R. 

where 
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T h e  relaxation of the distribution (46) is described by 
Eq. (44). During a time that is short  compared with the 
lifetime t, of the metastable state,  a stationary relaxa- 
tion regime i s  established-a smal l  flux of nuclei .T in a 
region of large dimensions 

J=D (r)dW/dr+F(r)  W .  (47) 

The  flux J is a constant. Equation (47) is postuiated in 
the ZV theory (see e.g., Ref. 9). 

The  distribution of the nuclei of dimensions r cc R,, 
accurate t o  smal l  J, coincides with Wm(r). Solving (47) 
with the boundary conditions w(l)=Wm(l) ,  w(-)=O, we 
get 

The  quantity (48) is the average t ime of appearance of a 
t ranscri t ical  nucleus in the volume V. Th i s  time is in- 
versely proportional t o  the volume and for  large V i t  
can be smal l  than the time of establishment of the sta- 
tionary regime. I t  i s  reasonable t o  define the lifetime 
of the metastable s ta te  by assuming that the volume V 
is much smal ler  than the volume of the system but much 
la rger  than the dimension of the cri t ical  nucleus. 

T o  study the stat is t ics  of formation of t ranscri t ical  
nuclei, we introduce the probability p ( r ,  t )  that a nucle- 
us having at t = O  a dimension r acquires in a time t a 
dimension la rger  than R: - 

P(r ,  t )  = j p ( r r ,  r, t )drg.  (49) 
R 

The  quantity ~ ( r  , t )  sat isf ies the second Kolmogorov 
equations 

aP/at=- ( P ( r )  -dD/dr) aP/ar+D ( r )  P P / a f .  (50) 

Assume that the system contains centers  of nucleus 
formation of dimension r, with concentration p. The di- 
mension of the nucleus produced on such a center is r 
27,. The  probability that a nucleus la rger  than R is 
produced on the center  during the time t is the solution 
of Eq. (50) with initial condition ~ ( r ,  0)  = O(r, < r < R )  and 
boundary conditions 

We calculate the moments of the distribution P(Y, t): 

The  quantity BP/W is the probability of production of a 
nucleus with dimension la rger  than R in unit time, if 
the dimension was r a t  t =  0. Consequently, T,(Y) i s  the 
mean expectation t ime of such an event, [ ~ , ( r )  - T :(r)]"' 
is the variance of the expectation time, etc. Applying 
the operator 

t o  Eq. (50) we obtain equations for  the moments: 
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D ( r )  dlT,/di-- ( F ( r )  -dDldr) dT,,/dr=-nT,-, ( r )  . (52) 

F o r  ~ , ( r ) = ~ ( r , - ) = l .  

Solving (52) with the boundary conditions 

we obtain 

At t =0, the dimensions of the nuclei produced on the 
centers  a r e  r -r,. In the case  r, << R - R,, we calcu- 
late the integral in (53) by the saddle-point method and 
find that T,(r) does not depend on r. This  means that, 
just a s  in the case  of homogeneous nucleation, a sta- 
tionary relaxation regime is established. The  expres- 
sion for the flux J, differs from the expression for J 
only in normalization. The lifetime of the metastable 
state i s  t,,, = (J+J,)-I. In the case  r,  aR,, the relaxation 
of the distribution of the nuclei reduces t o  i t s  displace- 
ment along the dimension axis  into the region of large r 
at  a rate ~ ( r ) ,  and to a spreading a s  a result  of diffu- 
sion ~ ( r ) .  If we assume that a t  t = 0 we have 

then the moments (53) describe the subsequent distribu- 
tion W,. 

The equations for the dynamics of the nucleus (16) and 
(29), describe also the changes in the form (1 a 2) and 
position of the center of gravity ( I  = 1). The analysis of 
the (13 1)  equations is simple if i t  i s  recognized that the 
nucleus radius (:(t) averaged over the angles varies 
slowly. The amplitudes of the probable fluctuations of 
the quantities 5:(12 2) a r e  of the order  of the width of 
the boundary of the nucleus, i.e., the deviation of the 
shape of the nuclei with dimensions 5 :  >>I from spher- 
ical is small. If necessary, the influence of the fluctua- 
tions of the shape on the nucleus growth process can be 
taken into account in the next order  of the theory. The  
equation for 5: describes the increase of the nucleus a s  
a whole, in which case  the diffusion coefficient fi in 
space is described in t e rms  of the thickness D deter- 
mined in formulas (41) and (45). 

Writing down the results  in dimensional units, we ob- 
tain 

In  the weak-fluctuation region the diffusion coefficient 
is small. In the strong-fluctuation region, where 
G i l p l z  1, the formula (54) is valid for nuclei with di- 
mensions r >>A, where A is the smoothing scale, chosen 
such that 

In the region of strong fluctuations, the diffusion co- 
efficient of the considered nuclei is also small. The 

smallness of the diffusion coefficient and of the concen- 
tration of the nuclei with dimensions r >>re justifies the 
neglect of the probability of their  coalescence in the 
course of the growth. The  mobility of the nucleus, ac- 
cording to  the Einstein formula, is b =D/T. 

6. DISCUSSION OF RESULTS 

Substituting in (48) the functions ~ ( r )  and ~ ( r ) ,  we ob- 
tain the lifetime of the metastable state. Using dimen- 
sional quantities, we obtain in the case  of a system 
without conservation of the transition parameter  

16n 1 2 1p1q2r.J 128n Iplq.'r,J R ' trnn = -- (-.-A) "' (:)2esp [-- 
vw r.1~1 3 T 9 T (31. 

(55) 
and in the case  with conservation 

(56) 
In ei ther  case,  the cri t ical  dimension i s  

2 Iplq rc, R =-L 
3 Ihl 

where r, is the correlation radius. 

Formulas (55) and (56) a r e  applicable for weakly 
metastable states,  when ~ , / r ,  >> 1, which coincides with 
the usual weak-field condition of the theory of phase 
transitions. In the case  of weak fluctuations, the quan- 
tity I p 1~ ;Y:/T separated by us i s  large. It is expres- 
sed in t e rms  of the Ginzburg number 

T-T. 
T T. 

Weak fluctuations a r e  described by the Landau theory, 
in which case  C( =pOr .  The other coefficients g and c of 
the effective Hamiltonian and the kinetic coefficient 
r,, a r e  slowly varying functions of the temperature: 
iPs=(lp]/gY'2 and r ,= (c /2 )p )Yh .  

As  the cri t ical  point is approached r - 0  the condition 
( r l /G i  >>l is violated, and the fluctuations a r e  no longer 
weak. As  shown in  the analysis of the strong fluctua- 
tions, the obtained formulas (55) and (56) can be re-  
tained by replacing in them the quantities r, c, p, and 
g by the renormalized values that have definite scale 
dimensionalities. The fluctuations have the similarity 
property, a s  is well known,' a t  sca les  r sr,. In the 
metastable state the distribution of such fluctuations is 
determined by the same effective Hamiltonian a s  the 
stable phase, therefore the behavior of the quantities 
under scale transformations and their  cr i t ical  exponents 
a r e  the same in both cases.  The  cri t ical  dimension R, 
has  the same scale dimensionality a s  the correlation 
radius r , ,  since the combination ( p* lqos/ l  hl is scale- 
invariant. The  rat io R,/Y, =cons t .  s, where s = 17 ()'+*/ 
( h 1 i s  scale-dimensionless. The  quantity 

is a function of a scale-invariant parameter .  I t  is 
therefore convenient t o  use a s  the coordinates the lines 
I T  ( =const and s =const. The  change of t, when moving 
along the line 17 (=cons t  is connected with the function 
R,(h): 
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A variant  of nucleation theory, based on the ZV ideas, 
was developed by Langer,lo who made concrete assump- 
tions concerning the form of the coefficients in expres- 

(60) sions of the type (47). These assumptions, which do not 
influence the form of the universal exponential factor, 
yield for  the pre-exponential factor  expressions that 
differ from those obtained in the present  paper. 

When moving along the line s =const, the scale-in- 
variant argument of the exponential remains unchanged. 
The change of t, is determined by the scale non-invari- 
ant factor in the preexponential multiplier. In the case  
of a system with nonconserving parameter ,  this is the 
factor r:Jp* ( ( I@*  1 -  1 T 17, the renormalized kinetic co- 
efficient is r: - 17 1 &r), and then 

In  the case  of a conserved transition parameter  the 
kinetic coefficient rF is not renormalized, and c* - I T  ( Y -'"; this yields 

In the strong-fluctuation region, the average lifetime of 
the metastable state has a definite scale dimensionality 
that depends onthe conservation propert ies of the relax- 
ing system, and the cri t ical  exponent t,,, is determined 
by formulas (61) and (62). 
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The equations of the dynamics of an electron-ion system in a nontransition metal with a simple 
anisotropic lattice are derived on the basis of the electron and ion Hamiltonian and with account taken 
of the scattering of the electrons by the impurities. In the quasiclassical long-wave approximation the 
equations reduce to the elasticity equations for the lattice and to the kinetic equation for the electrons. 
Microscopic expressions are derived in terms of the pseudopotential of the deformation-potenrial tensor 
and the bare elastic moduli of the lattice. It is shown that under adiabatic and neutrality conditions the 
long-wave oscillations in the metal can be described by the Frohlich Hamiltonian. 

PACS numbers: 62.20.D~ 

1. INTRODUCTION 

Two essentially different approaches a r e  presently 
used for the theoretical description of those electronic 
properties of metals which a r e  connected with deforma- 
tions of the crys ta l  lat t ice,  One of them, most widely 
used in the theory of metals, i s  in essence phenomeno- 
logical. I t  is based, on the one hand, on the notion that 
electrons a r e  quasiparticles with a complicated disper- 
sion that applies to the particular crystal  lattice. 

On the other hand, this  approach postulates the exis- 
tence in the metal of "bare" phonons that do not interact 
with the electrons, and of corresponding "bare" elast ic  
moduli of the metal A,,,. The interaction of the elec- 
t rons  with the phonons is the result  of the change of the 
electron energy under the influence of the lattice de- 
formation. Th i s  interaction is described with the aid of 
a deformation potential first introduced by Akhiezer? 
I n  a strong magnetic field, an induction interaction 
exists  besides the deformation i n t e r a c t i ~ n . ~ ~ '  The  the- 
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