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A two-level system acted on by resonance and non-resonance fields is considered. It is shown that in a 
nonstationary regime the effect of nonresonance fields is proportional to the first power of the ratios of 
the amplitudes of the nonresonance fields to their detunings dative to resonance and depends on the 
initial phases of the fields. In a stationary regime in a system with damping the effect of nonresonance 
klds depends on the level of the resonance field. The analysis is based on the solution of the Bloch 
equations by the method of averaging, up to the third approximation of this method. 
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There are  well known resonance'-' and nonreso- 
nance3'%' effects which appear when high-frequency 
fields interact with a quantum system. In the present 
paper we consider the behavior of a two-level system 
in fields which include simultaneously resonance and 
nonresonance frequencies. The main attention will be 
given to effects that arise when resonance and non- 
resonance fields act together. Effects of this kind 
occur when classical oscillators interact with high- 
frequency fields? ' 

The analysis of a two-level system in fields is based 
on the solution of the Bloch equations by the method of 
averaging, up to the third approximation of this method. 
It is well known6 that the Bloch equations describe the 
behavior of a magnetized assembly of spins in  the case 
of magnetic resonance. These equations a r e  also used 
in opticsZ (the optical Bloch equations) in the study of 
the interaction of light with a two-level system. In 

where w, is the frequency of the transition between 
the levels, x is the gyromagnetic ratio in  the case of 
magnetic resonance, and in optics x = 2d/5 (d is the 
magnitude of the dipole matrix element), ~ ( t )  is the 
strength of the high-frequency magnetic (or in optics 
the electric) field acting on the system, T, is the lon- 
gitudinal relaxation time (in optics the damping or 
inversion time), Tz is the transverse relaxation time 
(in optics this is the damping time for the dipole mo- 
ment), g is the equilibrium value to which the mag- 
netization (the inversion) relaxes in the presence of 
noncoherent pumping in  the case F ( t )  TO. A dot de- 
notes differentiation with respect to the time. In the 
theory of magnetic resonance Eqs. (1) correspond to 
the case of orientation of the high-frequency magnetic 
field perpendicular to the static field. Here the com- 
ponents s, a r e  the projections of the magnetization 
vector. 

optics one introduces an auxiliary vector of a fictitious 
electric spin s = (s,,s,,s,), o r  a speudospin vector Let the system be acted on by external linearly pol- 
whose components s, and s, a r e  associated with the arized fields 
dipole moment of the system, while the third compo- 
nent s, is associated with inversion of the atom? F ( t )  =Pi cos(o,t+6,) +F~cos(o,t+6~), (2) 

1. Let us consider a two-level system described by 
the Bloch equations where the field with frequency w, is a resonance field, 

i.e., w, = wo, and that with frequency w, is a nonreso- 
(1) nance field, i.e., wz #o,. Substituting Eq. (2) in the 

i,=-XF (t)s,- (ss-s,)/T,, equations (1) and using the substitution 
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we arrive at a system of equations for  u, v, and w that 
contains many-dimensional slow and fast  motions; in 
the right hand sides of these equations a small para- 
meter can be distinguished, owing to our assumptions 
that: 1) the frequency of inversion oscillations U F , / ~  

in the rotating-wave approximation (the Rabi frequency) 
is small in comparison with the natural frequency w,, 
i.e., E = x ~ ~ / ( 2 w d  cc 1, 2) the fractional detuning 6, = 
(w, - wd/w, is small, 3) the dampings a r e  small, i.e., 
(woT1)-l, (woT2)-' <: 1. 

The solution of this system can be found by using the 
method of averaging,1° The solution consists of slowly 
varying functions Z, Z,Z on which rapid oscillations 
a re  imposed. These vibrations a re  brought about by 
the existence of three nonresonance fields: A field with 
left circular polarization, which is part of the linearly 
polarized field with amplitude F,, and two nonresonance 
circularly polarized fields which make up the field F ,  
cos (w,t + P,). Besides oscillatory perturbations, the 
nonresonance fields produce cumulative effects on the 
system. 

In the third approximation of the averaging method 
we find a set  of equations for the averages ii, 5, iii: 

1 et Tr 
3 = b i i - - b 1 - T ( k - F ) ~ ]  dr  ooTi L i, 

dii 
d r  

(3) 

where 

In the case P = Q = 0 we get from Eq. (3) the equations 
of the first  approximation (the well known rotating- 
wave approximation), and with Q =  0 we get the equa- 
tions of the second approximation. The original in- 
itial values u,, v,, w, undergo corrections; for the 
equations in the second approximation they can be 
written 

where 

cos 26, F, cos(C,+S,) + F, cos(5,-fz) C = + -  
2 0 , / 0 .  F ,  ' ( o , + o z ) / o ;  F ,  ( a i - o z ) / w o  ' 
sin 26, Fz sin(l;,+b2) +E; sin(5,-2;Z) S= - +- 
2 0 1 / 0 0  F ,  ( o , + ~ . ) l o o  F , ' ( o , - o z ) / o o '  

tions that appear in the expansion of u, v, and w in 
powers of the small parameter the requirement that 
the averages of these functions over the rapidly vary- 
ing phases must be zero. 

In Eq. (4) the expression with the coefficient P is the 
well known Stark shift in the resonance detuning, which 
comes in in the second approximation of the averaging 
method. There a r e  contributions to this shift both 
from the resonance field (Bloch-Siegert shift) and 
from the nonresonance field (quadratic dynamic Stark 
effect). 

2. Let us  examine the undamped case (TI-' = T2-' = 0) 
in the framework of the second approximation of the 
averaging method. Then the system of equations (3) 
gives a solution identical in structure with the well 
known Rabi solution in the rotating-wave approximation 
(cf., e.g., Ref. 2). Besides this shift in the resonance 
detuning, the nonresonance fields act through a speci- 
fic mechanism which is expressed by the appearance 
in the expressions (5) of terms readjusting the initial 
values of A, v ,  w. Equations (5) and (6) show that the 
corrected initial values u(O), v(O), w(0) give changes 
in the solution proportional to the f i rs t  powers of the 
ratios of the nonresonance fields to their detunings 
relative t o  the resonance and depending on the initial 
phases gl, 6 ,  of these fields. Without changing the 
oscillation frequencies of the functions u, v,w, this 
mechanism leads t o  a change of the amplitudes and 
initial phases of the functions u, v,w. 

This mechanism can be observed in practice a t  radio 
frequencies in experiments on magnetic resonance. In 
optics the arbitrariness of the phases a t  the time the 
fields a r e  turned on can be avoided, for example, for 
a beam of particles interacting with two fields from a 
single source, namely with the field incident on a 
reflector and the reflected field, which moves in the 
same direction as the particles. When one of the 
fields is at the resonance frequency the other is not, 
owing to  the Doppler effect. 

3. We shall analyze the stationary regime, on the 
basis of the third approximation of the averaging method. 
Stationary solutions which do not depend on the initial 
conditions follow from a system of algebraic equations 
which is obtained from Eq. (3) by setting du1d.r = dv/dr  = 
dw/d.r = 0. These solutions a re  the well known expres- 
sions for  u, , v, , w, in the rotating-field approdma- 
tionZn6 (with the Stark effect taken into account) plus 
the corrections proportional to c2 which appear in the 
third approximation. 

Let us compare the absorptions of Z and v, at their 
maxima. To do so we calculate, with 6 = 0 and to  ac- 
curacy E', the fractional difference 

The corrections on the initial conditions a r e  due to 
the fact that in deriving Eq. (3) we impose on the func- 

which gives the decrease of the absorption in the stat- 
ionary regime in the presence of the nonresonance 
fields [including the left-circular polarized field which 
is part of the field Fl cos (w,t + 5,)] for arbitrary TI, 
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T, and arbitrary level of the resonance field. The 
ratio (7) depends on the intensity of the resonance 
field, since the term XF,/~)~T,T, in (7) can be of the 
order of o r  larger than unity. This fractional expres- 
sion appears already in the rotating-field approxima- 
t i ~ n , , . ~  where its increase with increasing field gives 
saturation. 

Let us also compare the extremal values of G and w,. 
Setting 6 = 0, we calculate to accuracy c2 the fractional 
difference 

which shows that the ratio depends on the level of the 
resonance field and that by changing the intensity of 
this field the sign of the ratio can be changed in the 
case T,> 2 T,. If we set F, = 0 in the expression for Q, 
the only contribution to the expression (8) is that from 
the left-circular polarized wave included in the reso- 
nance field F, cos (w,t + 5,). 

It follows from Eq. (3) that nonresonance fields change 
the widths of spectrum lines. For  B and 57 the Lorentz 
curve is broadened in comparison with the case of 
a rotating resonance field only (we suppose that the 
intensity of the resonance field is the same in both 
cases) by a factor 

- -. -- 
A characteristic feature is that the broadening caused 
by nonresonance fields depends on the level of the res- 
onance field. Depending on the sizes of the relaxation 
times T,, T, and the level of the resonance field, the 
nonresonance fields can lead to either a broadening or  
a narrowing of the spectral line. Setting F, = 0 in the 
expression for Q, we can obtain the contribution to 
the ratio (9) from only the left-circular wave which is 

one component of the field F, cos (o,t + g,). 

In conclusion we note that the results derived both 
for the stationary and the nonstationary regimes by 
the method of averaging have been checked with exact 
calculations made by solving the initial equations (1) 
by the Runge-Kutta method on a computer. 

There is no difficulty in extending the results to 
the case of many nonresonance fields. 
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