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The effect of a magnetic field on the polarization spectrum of hot photoluminescence in p-type 
semiconductors is considered (in the Stokes and anti-Stokes regions of the spectrum). It is shown that in 
quasielastic energy relaxation the distribution function of the photoexcited electrons depknds periodically 
on the magnetic field at a fixed energy and on the energy at a fued field. This leads to the same 
dependences of the position of the luminescence-polarization plane in a longitudiial magnetic field 
(Faraday geometry) and the degree of linear polarization in a transverse magnetic field (Voigt geometry). 
It is shown that if the Stokes paranieters of the photoluminescence in the magnetic field are known it is 
possible to determine the energy and momentum relaxation times of hot electrons. 

PACS numbers: 78.20.Ls, 78.55. - m 

1. INTRODUCTION energy E within the same time ?(c) and their momenta 
rotate through the same angle wcf(c) around the direc- 

The polarization characteristics of hot photolumine- tion of the magnetic field. The anisotropic part of the 
scence in p-type semiconductors were investigated ex- distribution function "rotates" around the field direction 
perimentally and theoretically in Refs. 1-6. It was and becomes a periodic function of the parameter 
established1" that in interband absorption of light the w , ~ ( E ) .  
photoexcited electrons are anisotropically distributed in in present paper, the periodic chprpcter of 
momentum near the excitation line, i. e., optical align- distribution function is established by solving the kinetic 
ment of the momenta of these electrons takes place. equation. In Sec. 2 of the article is derived a system of 
The last circumstance leads to linear kinetic equations for  the coefficients ft,,2,3(&, H) for an anOmalousl~ high degree of polarization spherical angular invariants that characterize the dis- 
of the recombination radiation in the short-wave region. tribution of the photoexcited electrons in the magnetic 

In the present paper we investigate the influence of a field. In Sec. 3 this system-of equations i s  solved near 
stationary homogeneous magnetic field on the alignment the excitation line (in both the Stokes and anti-Stokes 
of the momenta of photoexcited electrons in p-type se- regions), and then (in Sec. 4) the obtained solutions are 
miconductors under stationary illumination by linearly continued into the energy region where the "diffusion" 
polarized light. The case is considered when the mag- approximation is  valid. In magnetic fields satisfying 
netic field H is not quantizing for the relaxing hot elec- the relation 
trons (we= le  lH/mc<< b c h ,  bc is the average energy o.z (e) (6e/l eo-E 1 ) '"<I,  - . .  
given up or  acquired by the electron in one collision 
act, and m is the electron mass). It is shown in this 
article that when the electrons are excited by the light 
high into the conduction band (T << G, where c, is the 
electron energy at the instant of excitation and T is  the 
temperature in energy units), when quasielastic energy 
relaxation becomes possible, the anisotropic part of the 
electron distribution function at fixed energy depends 
periodically on the magnetic field1'. The reason for this 
is the following. Each electron, produced with an ener- 
gy E, and momentum &, is cooled to a fixed energy c 
after a certain random time 7 ,  and its momentum ro- 
tates around the direction of the magnetic field through 
an angle wC7. However, the scatter of the random 
quantity 7 about the mean time ?(c) of the descent of the 
electron is 

Ar=((z-? (e))'))'"-7 (e)/n'", 

where n is the number of scattering acts when the %is- 
tance" is traversed. If the field is such that 

then it can be assumed that all the photoexcited elec- 
trons, which are anisotmpically distributed in momen- 
tum at the instant of their production, are cooled to the 

the distribution of the electrons turns out to be period- 
ically dependent on the parameter wc?(c); the time ?(&) 
is determined. Also determined is  the magnetic mo- 
mentum-distribution anisotropy damping due to the 
dephasing of the oscillations. In Sec. 5 are investigated 
the polarization characteristics of hot photolumine- 
scence in a magnetic field. Two cases are considered: 
the Faraday geometry (radiation in a longitudinal mag- 
netic field) and the Voigt geometry (magnetic field per- 
pendicular to the outgoing light beam). It is established 
that in the case of the Voigt geometry the degree of lin- 
ear  polarization of the recombination radiation depends 
periodically on the field at a fixed radiation frequency 
o r  on the frequency at a fixed field. In the case of the 
Faraday geometry, the plane of the radiation polariza- 
tion rotates when the magnetic field is  increased or  
when the distance from the excitation line is  increased. 

The case of low temperatures, when the corrugation 
of the equal-energy surfaces in the valence band be- 
comes important, is considered separately. Approx- 
imate expressions are obtained for the Stokes parame- 
ters  at arbitrary directions of the magnetic field and of 
the excitation polarization plane relative to the crystal 
axes. 
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It is shown in the Conclusion that the polarization 
characteristics of the luminescence in a magnetic field 
make it possible to determine the times of the energy 
and momentum relaxation of the hot photoexcited elec- 
trons. 

2. KINETIC EQUATION 

The kinetic equation for the distribution function f (p, 
H) of photoexcited electrons in a constant homogeneous 
nonquantizing magnetic field H is of the form 

i@=(emL)f ( P ,  H )  + f  ( P ,  H )  W ( p ,  p ' ) B p ' / ( 2 ~ h ) ~ -  
(1) 

- s f  (P', H )  W ( P ' ,  p )d3p' / (2nh)  '=-F(p) , 

where e,is a unit vector along the field H, and L 
=-i[p x 8/8p 1. The function F(p) is the rate of electron 
photoexcitation. The quantity W(p,pf) is the probability, 
per unit time, of the transition of the electron from a 
state with momentum p into a state with momentum p' 
under the influence of the collisions. The collisional 
relaxation is assumed to be isotropic, i.e., W(p, p') de- 
pends only on the initial and final energies E and cf and 
on the angle between p and p'. Introducing the unit vec- 
tors v and e respectively along the momentum band 
along the exciting-light polarization vector, it is con- 
venient to seek the function f (p,H) in the form 

Here the functions 1 j j,( j3) j,00) are all the possible var- 
iants made up of the vectors v . e. and e (Ref. 8) and 
are listed in the Appendix. Separating in Eq. (1) the an- 
gular part (see the Appendix) we obtain system of equa- 
tions for the functions f , ,  ,,,,: 

- 2 " i 0 . j ~ ~ , + I f ~ ~ ~ = ~ ~ , .  (4) 
-ioc[2'frro+ ( 7 / I ) " ' f 2 ~ 2 1  f Ifzzl=O, (5) 

-iw,[ (7 / s ) 'b f i z l+  (e/31%) ft l l l+IfL12=0, (6) 
-io.I ( a / J ) % )  fZm+('/l% f,zl l+Ii2LJ=0, (7) 

- z / l (b i~e jZ23+Ifzz l=0 .  (8) 

Here Foo0(&) and F,,(E) are the coefficients of the ex- 
pansion of the pump2 F(p) in a series such a s  (2), 

p(c) is the state density, and 0 is the angle between p 
and pf. It is more convenient to represent the system 
(4)-(8) in a different form, expressing all the functions 
f,,,, ,, in terms of the single function f,,: 

i i 1 5 
f 2 2  - - [ 1 0 - ~ ~ + 7 - ( f ~ -  + I f -  2 , (14) 

6 0. O L  0. ) I  

3. DISTRIBUTION OF PHOTOEXCITED ELECTRONS 
NEAR THE EXCITATION LINE (I&- c0 I << Go) 

We assume that the electrons are produced with an 
energy c,,(T<< E,,, T is the temperature in energy units), 
i.e., 

Foeo(e) ~F.3008 (e-en),  FlZo(e)  =F,,oG(e-en). 

To solve Eqs. (3) and (11)-(15) we shall follow the pro- 
cedure used in Ref. 8. We assume the energy relaxa- 
tion to be quasielastic. Then the quantities I&,- E I << E,, 
near the excitation line depend only on the difference 
E' - E and on the energy E, i.e., 

The detailed balancing principle then takes the form 

ul(e0 ,  x )  = e J r u l ( e o - 2 ) .  (16) 

In addition, the state density p(cf) can be replaced by 
p(c,,) and the integration limits in the collision integral 
can be taken to be -a and + .o . These approximations 
are valid in the region I c, - E 1 << E,, if the energy 6 E 

given up or  acquired by the electron in one collision act 
is much less than E,,. Using these assumptions, we can 
solve the system (3) and (11)-(15) by the Fourier meth- 
od. Equation (3) was treated by the described scheme in 
Ref. 6. The solution of Eq. (11) will be sought in the 
form 

ja0(e, H) -f:zOo' ( e )  +f::o' ( 8 . H ) .  

with the function fg (3 subject to the condition 
Z ~ : , O ~ = F ~ , ~ .  (17) 

The solution of Eq. (17) was obtained also in Ref. 6. 

Solving the equation for f& (E ,H )  by the Fourier 
method, we obtain 

jiii ( e ,  H )  = - - Fzz0 L( 5 ) 

where 

-- 
The integrand in (18) has no singularities in the band 

0 < Im t < l/T, since Re ~ ( t )  does not vanish in this re- 
gion. On the other hand i t  follows from the detailed bal- 
ancing principle (16) that 

Using these circumstances, we can show that near the 
excitation line ( 1 c, - E 1 << h) 

f:::  of A E ,  H)=e-AelTf:::  ( E O - A E , H ) .  (19) 

In similar fashion, using (12)-(15), we can establish 
relations of the type (19) also for the functions f,,,, f,,,, 
f,, , f,,. Similar relations for the functions f,, and 
f$b were obtained in Ref. 6. Thus, all the quantities 
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fjIrza(c, H) that characterize the distribution function 
(2) near the excitation line in the anti-stokes region 
( E  > q,) are expressed in terms of the values of the same 
functions in the Stokes region ( E  < q,): 

f i , id.(~o+A~. H) =e-A"Tfj,j,j,(~o-Ae, 11). (20) 

It should be noted that relations (20) hold at 1 Ac I << % 
independently of the relaxation mechanism and of the 
temperature. 

We now obtain the asymptotic expression for f,, 
( h -AE,H)  at Ae>O and A&>>.>, 6ca'(but, a s  before, 
A&<< q,). The asymptotic function fig (&,-A&) is given 
in Ref. 6, and the asymptotic expression for f,: (q, 
- A E ,  H) will be determined by those poles of the inte- 
grand of (18) which have the smallest absolute values. 
To find these poles we can use the small parameter 
6&/&, and expand the function ~ ( t )  in (18) in a series 
in the "diffusion" approximation [i.e., neglecting quan- 
tities of order (6&/c,,)']: 

The relaxation times 7,' (q,) and 7, (6) and the "diffu- 
sion" coefficient D2(&,) are determined here by the re- 
lations 

The sought poles of the integrand of (18), which contrib- 
ute tothe asymptotic formoff $!,, will thenbethefollowing 
values of t: 

t=-it*, t=-i(to+bt)*e..c.'(eo)leo, 

t=-i(ta+4At) f 20,r.'(eo)/eo, (25) 
t o = ~ ~ ( e o ) / e o ~ p , ( e o ) ,  At=D,(ea) (~ . ' ( e~ ) / e~ )~o , ' .  

The imaginary parts of the poles (25) describe the 
damping of the anisotropic part of the electron distrib- 
ution function with increasing energy distance from the 
excitation line. This damping is due both to momentum 
relaxation and to the presence of the magnetic field. In 
the expression for At we have discarded the diffusion 
correction terms that do not depend on the magnetic 
field. The pales (25) yield the correct asymtotic form 
off$ if Itl<<(6&)". 

Closing the integration contour in (18) in the lower 
half-plane and using the values of the poles (25) and the 
asymptotic representation of the function f&) (q, -A&) 
(Ref. 6) we obtain the asymptotic form off,,, (&, - &, H): 

fzza(e,-~e, H) - l / J f z ~ ' ( e o - ~ e )  [1+2(D4 coa 2qi-2'3 cos cp], (26) 
@=erp (-Athe), cp=w.~.'(e~)Ae/e,. (27) 

Similar calculations yield readily the asymptotic repre- 
sentations of the other functions f,, ,, ,, near the excita- 
tion line. 

4. DISTRIBUTION OF PHOTOEXCITED ELECTRONS 

We obtain now the distribution of the electrons in the 
energy region ( & - q, 1 >> 6.5, where the diffusion approx- 

imation is valid. In this energy region (the diffusion re- 
gion), which is far from the excitation line, the aniso- 
tropic part of the distribution function satisfies the sy- 
stem of equations (11)-(15), in which we can neglect 
that contain the source function F,,. Taking into ac- 
count the quasicontinuous character of the energy re- 
laxation of the photoexcited electrons, we write down 
the collision term in Eqs. (11)-(15) in the diffusion ap- 
proximation ( E  < q,): 

The relaxation times T;  ( c )  and T,, ( c )  and the diffu- 
sion coefficient D,(&) are defined here by the relations 

Equations (29)-(31) with E = c,, go over, in the approx- 
imation assumed in Sec. 3, into Eqs. (22)-(24). 

We now obtain the solution of Eq. (11) in the diffusion 
region. Since the function f,, (c,H) takes near the ex- 
citation line the form (26), it is natural to seek this 
function in the energy region E < h in the form 

where C and y are constants. Substituting (32) in (28) 
and recognizing that If% =O'in the "diifusion" region, 
we obtain, neglecting quantities of order be/&,, 

Ifare-l~~.frto, r<el. (33) 

Substituting now in Eq. (11) the collision term in the 
form (33), we obtain for the parameter y the equation 
y - 5y3 + 4y = 0, whose solutions are the numbers 0, A ,  
lt2. Returning to Eq. (32) and considering its real part 
with the obtained values of y in the region of energies 
close to c,, we match the solution to Eq. (26). As a re- 
sult we find that f,, (c,H) is  determined as before by 
Eq. (26), in which we replace f,!! (q, - A&) by f ig  (&), 
and the functions Q and cp are defined not by (27) but as  

We now solve Eq. (11) in the anti-Stokes region (c>q,) 
far from the excitation line. Using the detailed balanc- 
ing principle, it is easy to show that in this region the 
collision term (9) for a function in the form f=e-EJT@ in 
the "diffusion" approximation is written in the form 

Using expressions (20) and (26) for the asymptotic rep- 
resentation of the function f,, (&$) near the excitation 
line at E > %, we seek the solution of (1 1) in the form 

where C and y are constants. 

Substituting (36) in (35), we easily verify that in this 
case, just as  in the Stokes region, the following rela- 
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tion hold if quantities of the order 6c/% are neglected: 

Ifzro=irocfnot &>en. (37) 
Substitution of the collision term in the form (37) in (11) 
and the subsequent matching of the real part of (36) to 
the function f, near the excitation line make it possi- 
ble to obtain the solution of (11) in the anti-Stokes re- 
gion. Determining the explicit form of f,, (a,H) in the 
energy regions to the left and to the right of the excita- 
tion line, we can obtain with the aid of (12)-(15) the 
anisotropic part of the distribution function in the entire 
"diffusion" region. Thus, in the Stokes and anti-Stokes 
regions of the energy spectrum, where the "diffusion" 
approximation ( I & - E, I >> T, b c )  is valid, the functions 
f ,n, s, which characterizes the distribution (2) of the 
photoexcited electrons, are  of the form 

2" 
fr;r(e, H) = - if::: (E) [20L sin 2q+@ sin q], s (39) 

2" 
f n ~ ( e ,  H )  = - if,::' (e) [@'sin 2q-2@ sin q], 

5 

(e) [ 3 t 0 4  eos 2 ~ - 4 8  cos q], (42) 
where 

The expressions for the functions f&' ( c )  and for the 
isotropic part of the electron distribution f,, (c) in the 
diffusion region are given in Ref. 6. 

In magnetic fields, for which the relation3' is satisfied 

b 

the magnetic damping is small (a = 1) and the electron 
distribution depends periodically on the parameter 
w,T(E), where 

4 

It can be directly verified that in this case the distrib- 
ution function can be represented in the form 

where e' is a unit vector obtained from the excitation- 
polarization vector e by rotation through an angle cp 
= wCf(c) in the positive direction around the vector e, 
In other words, the anisotropic part of the distribution 
function at fixed energy is described a s  before (just as  
at the instant of excitation) by the second Legendre 
polynomial, but the direction of the anisotropy axis (of 
the vector e') depends on the magnetic field and on the 
energy. The reason why the electron distribution func- 
tion at fixed energy in a magnetic field is obtained by 
the action of a rotation operator in momentum space 
on the initial distribution function (in the absence of the 
field) is that at the instant of excitation the anisotropic 
part of the electron distribution is a definite spherical 
harmonic (the second Legendre polynomial). At an ar-  
bitrary initial distribution, the distribution function in 

the magnetic field can not be obtained by rotation, inas- 
much in the latter case the different spherical harmon- 
ics at fixed energy will be rotated through different 
angles cp,. The rotation angle of the 1-th harmonic is 
cp, = wcT,, where 

and the 7 ;  are determined by a formula obtained from 
(29) by replacing W with W,. One can speak of rotation 
of a distribution function of arbitrary form in a magne- 
tic field only in the case of small-angle scattering, 
when the values of W1(&, c') (10) for different I are close 
and the differences between the rotation times TI (&)  for 
the different spherical harmonics can be neglected. 

5. POLARIZATION CHARACTERISTICS OF HOT 
PHOTOLUMINESCENCE IN  A MAGNETIC FIELD 

We consider the recombination of hot electrons exci- 
ted by linearly polarized light in p-type semiconductors 
with the band structure of GaAs in a magnetic field. We 
are interested in the recombination of electrons with 
equilibrium heavy and light holes in the valence band o r  
with holes that are  frozen out to the ground level of a 
shallow acceptor. The valence band is assumed for the 
time being to be spherically symmetrical. The mag- 
netic field is assumed to be non-quantizing for the re- 
combining electrons and holes. It is convenient to char- 
acterize the partially polarized recombination radiation 
by the Stokes parameterse El, E,, and E,, which are 
connected with the mutually perpendicular polarization 
unit vectors e, and e, that form a right-hand triad with 
the unit vector n directed along the emerging light beam 
(el x e, =n). The parameters 5, and F, determine the de- 
gree of maximal linear polarization I and khe angle $I 
between the direction of the maximum pplarization and 
the vector el (Ref. 9): 

kl=l sin 29, er-I cos 29. 

The third parameter 4, determines the degree of cir- 
cular polarization, and in our case is equal to zero, 
since we assume the magnetic field to be non-quantizing 
and by the same token we disregard its action on the 
distribution of the electrons and holes over the spin 
sublevels . 

We assume that the observation direction coincides 
with the excitation direction or  with the opposite direc- 
tion, and choose a s  the polarization vectors el =e,  e, 
= n x e (e is the unit vector of the excitation polariza- 
tion). We consider the case when the radiation emer- 
ges parallel to the magnetic field (n Il em Faraday geom- 
etry). Using the explicit form of the anisotropic part of 
the distribution function (38)-(42) and the expressions 
given in Ref. 3 for the Stokes parameter, we can show 
that in this case 

El(*) =(nea) Pi@' sin 29, k3(m) =Pt@' cos 2q, (46) 

where P,(w) is the degree of linear polarization of the 
luminescence in the absence of a field. Here and be- 
low the argument E ( W )  in the quantities cP and cp [Eq. 
(43)], which enter in the polarization characteristics, 
is taken to mean the energy of the electron that takes 
part in the production of a luminescence quantum of 
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frequency w.  From (46) it is seen that in the Faraday 
geometry the degree of maximal linear polarization I 
is (P, and the vector of the maximum polarization 
is rotated through an angle 

relative to the vector e in a plane perpendicular to the 
observation direction (to the vector n), at a fixed fre- 
quency, with increasing field o r  in a fixed field with in- 
creasing distance from the excitation line. The spec- 
tral dependence of the degree of linear polarization 
P,(w) at H=O was investigated earlier in Refs. 5 and 6. 

We consider now the Voigt geometry, when e,ln. We 
assume also that the excitation-polarization plane is so 
oriented that e Len.  In this case, a s  above, using the 
expressions for the Stokes parameters: we can show 
that 5, = 0 and 

E3(a) =Pl(l+Q' cos 2rp)/[2-P1(l-Q' cos 2cp) 1, (47) 

i. e., the axis of the maximum polarization is oriented 
in the same manner as  in the absence of a field, and the 
degree of maximal polarization I changes in accord with 
formula (47) (1 = 1 (,I). In magnetic fields that satisfy 
the condition (44), the degree of maximum polarization 
is a periodic function of the parameter mCF(&(w)). 

Interest attaches to the case of low temperature, 
when an important role is played by the corrugation of 
the equal-energy surfaces in the valence band. We as- 
sume that the particles taking part in the recombination 
are only the heavy "diagonal" holes, whose quasimo- 
menta are directed along [I l l ] ,  [ i l l ] ,  [ i f f] ,  etc. This 
situation obtains, for example, in G a ~ s  ?' To gain an 
idea of the dependence of the radiation polarization on 
the magnetic field, we shall assume that the condition 
(440 is satisfied and that the entire distribution function 
of the electrons in the magnetic field is rotated at fixed 
energy through an angle p = wc?(&) (this is strictly 
speaking not the case, a s  indicated above, since the dis- 
tribution of the electrons photoexcited from the corru- 
gated valence band are characterized by cubic rather 
than spherical harmonics3). Then, using the expressions 
given in Ref. 3 for the Stokes parameters, we can ob- 
tain the following expressions for the Stokes parame- 
ters of the luminescence due to heavy diagonal holes: 

, where 
R,~=e~'e,=e*+ e,"eeeh+e,"eeej., 

the coordinate axes X, Y, and Z are directed respec- 
tively along [loo], [OlO], [OOl]. The quantity P,(w) in 
(48) and (49) is the maximum degree of linear polariza- 
tion of luminescence of frequency at H  = 0, when the ra- 
diation emerges along the [OOl] direction perpendicular 
to the crystal surface, and the excitation polarization 
vector e lies in the plane of the surface of the crystal 
and makes an angle 7r/4 with the [ O l O J  axis. (The the- 
oretical value near the excitation line is3 PI =025.) 
The vector eP(w) in (48) and (49) is the vector S,e, 
where S, is the operator of rotation through an angle 

cp = clrc?(&(rd)) about the magnetic-field direction. 

We consider now the case when the radiation emerges 
along the [001] axis perpendicular to the surface of the 
crystal and parallel to the direction of the excitation. 
It follows from symmetry considerations that the vector 
of the maximal linear polarization (if it is not equal to 
zero) lies in the plane of the surface of the crystal and 
makes an angle 1r/4 with the [loo] axis independently of 
the excitation polarization and of the magnetic-field di- 
rection. This can be verified by writing down the 
Stokes parameters in a reference frame in which the 
vectors el-and e, are directed along [loo] and [OlO], re- 
spectively. In this system 5, = 0 and 5, = 2PI(e 'el)(e '6,). 
In the case of Faraday geometry 5, =PIsin 2P, where P 
is the angle between the vector e' and the [loo] axis. It 
is seen that the maximum degree of polarization at a 
fixed frequency can either increase when the magnetic 
field grows from zero (if the vector e is directed along 
[100] or  [OlO], or  else decrease (if e is directed along 
[I101 or fl101). In the Voigt geometry, if the exciting 
light is polarized in the (100) plane, the expression for 
in the reference frame connected with the axes [loo] 
and [010] takes form 

jl=2Pl[cos cp+ (ee,)'(l-cos c p )  ] (I-cos c p )  (ee,) ( [ n  X e lea) .  

It is seen that the luminescence will be completely un- 
polarized in the absence of a field, and also in the pre- 
sence of a field H if el e, or e II en. 

We note in conclusion that knowing the Stokes para- 
meters of the recombination radiation in a magnetic 
field, we can determine the 'relaxation time ?,. From 
the shape of the line P,(o) at H = 0  we can assess the 
time ratio r;/rp2 (Ref. 6). Consequently, by studying 
the polarization of the photoluminescence in a magnetic 
field we can determine the times 7,' and 7 of the ener- 
gy and momentum relaxations of the hot epectrons. 

The author thanks V. I. Perel' for directing the work, 
and D. N. Mirlin and his co-workers for stimulating 
discussions. 

APPENDIX 

The spherical invariants made up of the vectors v ,  e,  
and e, are  of the form 

where Y, ,  are the spherical functions. With the aid of 
the relations 

( jr ja( is)  j,OO1eHLli,'jr' G,') jt'O0)= 

-,,. *j,.(,,.+j,+j>+.. ( ' 11 j . ' ) { ;  1 i") 
0 0 0  ' J 1 1 ,  

we can separate in the kinetic equation (1) the angular 
part and obtain the system of equations (3)-(8) for the 
coefficients f,,,, ,, for the following invariants: 

563 Sov. Phys. JETP 50(3), Sept. 1979 V. D. Dymnikov 563 



5 ~ 1 4  'v. I. Zemskiy, B. P. Zakharchenya, and D. N. Mirlin, 
122(2)200)= -- (1-3(ev) (vr,,) (re,,)-3([e X v]e,,)'), 112n" Pis'maEksp. Teor. Fiz. 24, 96 (1976) [JETP Lett. 24, 82 

- - (1976)l B. P. Zakharchenya, V. I. ~ e m s k i l ,  and D. N. 
3110 -- Mirlin, Fiz. Tverd. Tela (Leningrad) 19, 1725 (1977) [SO~.  

122(3)300)=-i-((ev) ([exvIen)-5(ee,) (ve,) ( [ e ~ v l e ~ ) ) ,  
32nn -- -- Phys. Solid State 19. 1006 (1977)l. 

15 2 ~ .  D. Dymnikov, M. I. D'yakonov, and V. I. Perel', Zh. 
122(4)400>-- - {-4+7 (ev) '-30(ve) (ve,) (ee,,) . 

32.70"nn Eksp. Teor. Fiz. 71, 2373 (1976) [Sov. Phys. JETP 44, 1252 

+35(ve,~'(eeH)'+5([exv]e,)'). 11976)l. 'v. D. Dymnikov, Fiz. Tekh. Poluprovodn. 11, 1478 (1977) 
[Sov. Phys. Semicond. 11. 868 (1977)l. 
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')The situation i s  similar to the one discussed in Refs. 7 in 
connection with spin relaxation of photoexcited electrons and 
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Change of phonon energy in germanium at pressures up to 
3 GPa 
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Tunnel spectroscopy is used to measure the phonon energies in germanium at pressures up to -3 GPa. 
It is shown that the restructuring of the germanium bands at - 1.8 GPa, wherein the minimum A ,  of the 
conduction band drops below the L, minimum, is accompanied by a change in the character of the 
tunneling with phonon participation. The values of the Griineisen constants are obtained for the acoustic 
modes of the phonons with wave vector in the [I001 direction; they are found to be - 0.8 and 1.2 for 
the TA and W modes, respectively. 

PACS numbers: 63.20.Dj, 62.50. + p, 71.25.Rk 

T h e  participation of phonons in  electron tunneling 
through ap-n junction which manifests  itself by singu- 
larities on the current-voltage charac te r i s t i cs ,  yields 
information on the phonon s p e c t r a  and the band s t r u c -  
t u r e  of solids.' 

In  germanium at normal  p ressure ,  the tunneling is 
accompanied by  a transition of the  e lec t rons  to the 
valence band (I',!) in  the minimum of the conduction 
band L, (Ref. 2). Therefore,  i n  accordance with the 
momentum conservation law, the positions of the singu- 
larities on the tunnel charac te r i s t i cs  correspond to the  
phonon energ ies  on the boundary of the Brillouin zone 
i n  the [Ill] direct ion (see Fig. 1). 

n-Ge s a m p l e s  with a Schottky b a r r i e r  they investigated, 
i n  apprcnrimately the same p r e s s u r e  range,  the shif t  
of the s ingular i t ies  connected only with the  optical 
branches of the spectrum. Finally, Payne5 investigated 
the  change of the phonon frequencies  in a germanium 
p-n diode under uniaxial compression.  These  data  w e r e  
used to calculate  the Griineisen constants  in  Ge in the 
linear approximation. 

Besides the change in the phonon frequencies ,  the 
band s t ruc ture  of Ge also changes under  p r e s s u r e .  
Various experiments  have establ ished that  the minima 
of the conduction band L,, r,~ and 4 under  p r e s s u r e  are 
shifted relat ive to  the  valence band at different rates 

T h e  change of the  phonon frequencies  under hydro- dE/dP ,  equal  respect ively to 5. 10-'I, 1 4 -  lo-" and 
static compression to 1.8 GPa  w a s  investigated in Ref. -(0-2). 10-l1 e ~ / ~ a . ~  A t  a p r e s s u r e  -1.5-1 GPa, as a 
3 on a Ge tunnel diode (of n-type). In  Ref. 4, using resul t ,  the minimum 4 of the conduction band with 
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