
is determined by the imaginary part of the magnetic 
susceptibility, cannot be described by a single pheno- 
menological constant 0, (see Ref. 6, 5 31, and Ref. 
18). Second, the perturbations of the magnetization 
field that a re  due to  the nonlinear wave a r e  not small 
and a r e  not determined solely by the linear suscepti- 
bility. Our approach, of course, takes account of both 
these facts and may prove useful for analysis of the 
nature of the dissipation of nonlinear waves in any non- 
linear media with dispersion. 

The authors a r e  deeply grateful to V. G. Bar'yakhtar 
and to A. A. Slutskin for a number of valuable sugges- 
tions and discussions. One of the authors (B. I. ) sin- 
cerely thanks I. E. ~ z ~ a l o s h i n s k i i ,  A. M. Kosevich, 
and V. M. Tsukernik for very fruitful discussions. 

')1n contrast, for example, to the problem of the damping of a 
dislocation in a metal4 or  ferromagnet, in which the elastic 
strain field due to the dislocation may be regarded simply a s  
an external force acting on the electron or magnon subsystem. 

2 ' ~ u c h  "minimal" inclusion of dipole energy is necessary, 
since without allowance for magnetic dipole energy a DW in 
a uniaxial FM cannot move at all (see Ref. 12). 

3)This formula takes no account of the attenuation y of spin 
waves. Analysis shows that it  is  important only atvery small 
DW velocities (V< x0ys (1-10) cm/sec). 

4, The value of (in our notation) B/Bo at  room temperature was 
measured in Ref. 16. The value obtained was B/Bo "6 6. Al- 
lowance for dipole scattering increases B/Bo, but this i s  un- 
important for analysis of the results of Ref. 17, since in that 
work ferrite films with p /4ra  30 were used. 
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Nonlinear theory of the electron temperature superlattice in 
semiconductors 
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A nonlinear theory is developed for the electron temperature superlattice (Bhard phenomenon) in 
semiconductors with hot electrons. The stability conditions of the superlattice and the amplitude of the 
spatial oscillations of the electron temperature are determined as functions of the voltage applied to the 
sample. The asymptotic distribution of the electron temperature T, which is establiihed upon 
superheating, (T - T0)Tc1 (To is the lattice temperature), is also obtained when the superheating is 
suffFiciently large but not so great that scattering of the energy by optical phonons is appreciable. The 
interchange of the energy and momentum scattering mechanisms which occurs at a sufficiently high 
electron temperature is also taken into account. The asymptotic distribution is found to be one- 
dimensional and stable, at any rate, on a small scale. 

PACS numbers: 72.20.Ht 

1. INTRODUCTION AND SETUP OF THE PROBLEM Bknard-the appearance of a spatially inhomogeneous 
distribution of the electron temperature in a nonuni- 

The electron analog of the hydrodynamic problem of formly heated electron gas-has been investigated in 
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previous researches. It has been proposed that the 
heating is due to electromagnetic radiation absorbed in 
the intraband transitions (the situation in the case of 
interband absorption has been studied elsewhere3). 
It was shown that free convection ar ises  in the electron 
gas under certain conditions, and that the one-dimen- 
sional static distribution of the electron temperature 
and of the electric field intensity in the sample become 
unstable. It becomes three dimensional, while in the 
xy plane perpendicular to the flux of the heating light 
(see the drawing) this distribution turns out to be spa- 
tially periodic (super-lattice). The period of the 
superlattice is controlled by the parameters of the ma- 
terial, and also by the intensity of the heating light and 
(or) the voltage V applied to the sample (according to  
the field effect scheme). 

The results of Refs. 1-3 were obtained, however, 
under conditions of weak heating and, in addition, in an 
approximation that i s  linear in the quantity 

Here T and T o  denote respectively the electron and lattice 
temperatures; 5,(z) is the relative heating under static 
conditions, while the component 65 ar ises  in the pres- 
ence of convection. ~ater ," '  the condition of the 
smallness of 5 was removed to a known extent, and i t  
was shown that i t  is not always justified. However, an 
explicit solution of the problem, which is valid over the 
entire range of values of 5,, has not been obtained and, 
what is especially important, the theory has remained 
linear in 65. This did not permit calculation of the 
amplitude of the spatial oscillations of the electron 
temperature and of the intensity of the electric field in 
the superlattice, but it is necessary to know them for a 
complete description of the effects which must be ex- 
pected here.' The investigation of the second-order 
(as a minimum! ) approximation in 65 is also necessary 
for the solution of the question a s  to the stability of the 
superlattice. In the present work, a corresponding 
nonlinear theory for a nondegenerate gas is proposed; 
a s  a preliminary step, the static solution is found in 
explicit form. This solution is valid without any limi- 
tations on the value of the relative superheating. 

We shall use the same assumptions on the parame- 
t e r s  of the system a s  previously,"2'4'5 assuming in 
particular that the inequalitites 

a r e  satisfied. Here ro is the screening length, Y is the 
absorption coefficient of the heating light, assumed, 
for simplicity, to  be independent of the electron tem- 
perature, hi' = [ ( 2 / 3 ) ~ . ~ ~ ~ ] " ~  is the cooling length. By 
no and To a r e  denoted the electronic thermal diffusivity 
and the energy relaxation time, respectively; the index 
0 here and in what follows means that the correspond- 
ing quantity is taken a t  T =To .  The inequalities (2) 
make i t  possible to use the condition of quasineutrality 
(outside of narrow regions of space charge a t  the boun- 
daries of the sample), and also to consider the absorp- 
tion of light a s  a volume effect. The sample in this 
case can be regarded a s  semi-infinite in the direction 
of the z axis; the plane z = 0 coincides with the irradia- 

ted surface. 

We shall consider a nondegenerate gas of positive 
carr iers  (yet calling them electrons). As b e f ~ r e , ~  we 
introduce the following units of measurement: length- 
&', time-To, drift velocity (u)-$%,', electron k ther- 
mal diffusivity-xo, differential thermal emf (a) - (3/ 
2)e, where e is the absolute value of the electron 
charge, temperature-To, potential (9) and electric 
field intensity-3To/2e and 3Toh0/2e, respectively, mo- 
bility ( ~ ) - 2 e / 3 ~ ~ ~ ~ h ~ ,  light energy flux (I)--(3/2)noTouo. 
Here no is the constant concentration of the carr iers  in 
the unilluminated material outside the space charge re- 
gions. The carr ier  concentration n will be measured in 
units of no; under conditions of quasineutrality, it is 
equal to  unity. We note that, by virtue of (21, the di- 
mensionless absorption coefficient turns out to be small 
in comparison with unity. This inequality.wil1 play the 
fundamental role in what follows. 

It is convenient to specify the dependence of the kine- 
tic coefficients on the electron temperature in the fol- 
lowing frequently used form (we preserve the same no- 
tation for the dimensionless and dimensional quantities, 
since the latter a r e  not encountered further in the fun- 
damental part  of the paper): 

p=p,(I+E)', ~=(i+g)'+', ~ = ( l +  g)P, (3 

and in this system of units po  = (9/2)(2r + 5). The val- 
ues of Y and p for the various scattering mechanisms 
a r e  given in Ref. 1 and in a number of books (see, for 
example, Ref. 7). 

The equations of continuity and energy transfer, and 
also the expression for the drift velocity outside the 
space charge regions have the form 

div u=O, (5) 

u=-p(~v+aVt). (6) 
Here I, is the light energy flux (the light intensity) on 
the irradiated boundary of the sample (at x=+O-see 
the drawing). 

For the thermal emf, we have 

where F(T) is the absolute value of the difference be- 
tween the Fermi  level and the edge of the correspond- 
ing band, expressed in units of To .  It is convenient to  
set  (as before, outside of the space charge region) 

where @ is a new unknown function. It is easy to esta- 
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blish the fact that Eq. (8) is always solvable; in parti- 
cular, under the conditions (7) and n=no, 

0 =cp+'/, (5+2r) E+ 'lsFoE 
+ ( l+E) In ( i+E) -S+const, 

where Fo=F(To). Then 

and Eq. (5) takes the form 

d l n p  
V'O +- V@.VE=O. 

4 
(5') 

The boundary conditions a t  z = 0 and in the absence of 
bending of the bands (V=O) have the form 

aa, 
- = o ,  
az 

Here v [ [ ]  i s  the phenomenological coefficient introduced 
perviously4 describing the energy losses of the ca r r i e r s  
on the boundary (here i t  is dimensionless-expressed in 
units of uo). It is clear beforehand that intensive ex- 
change of energy with the surrounding medium prevents 
the development of effects connected with the heating 
of the electron gas. Therefore, there is sense in con- 
sidering only the conditions under which v << 1, to which 
we shall limit ourselves in what follows (actually, the 
indicated inequality is by far not rigorous, since the 
unit of velocity uo is of the order of 10~-10' cm/sec). 
We also note that the smallness of the function v itself 
still does not mean the smallness of i t s  derivatives: 
according to  Ref. 1, a rapid increase of v with in- 
crease in temperature of the electron gas is entirely 
possible. 

At V + 0, it is more convenient to apply2 the boundary 
condition on the function -3 (see also the Appendix) not 
on the irradiated surface itself but on the boundary of 
the space charge layer, considering this layer a s  a 
plane (this procedure is justified by the left hand in- 
equality of (2)); then the condition (9a) changes to the 
following: 

Here cp: = cp:(V) is the field intensity on the irradiated 
surface of the sample in the static regime, before the 
free convection has yet set  in. 

Under certain conditions, the relation (9b) i s  subject 
to a similar modification. As  is shown in the Appen- 
dix, we have here, instead of (Qb), 

However, such a modification is justified only if al l  the 
electrons incident on the near-surface space charge 
layer take part in the exchange of energy with the sur- 
rounding medium (or recombine on the surface). This 
means, in particular, that the mean free path length in 
the momentum, l,, should exceed the screening radius. 
Then the quantity v becomes, strictly speaking, not a 
function of the relative heating, taken a t  z =0, but a 
function of 5(x, y, z). For  this reason, we shall in what 

follows consider the case 1, Yo, using the boundary 
condition (9b). 

Finally, a s  z -u, all  the quantities of interest to us 
should be bounded, and standard periodicity conditions 
should be imposed on the lateral. faces of the sample, 
a s  in Refs. 1-5. 

Taking into account the f i rs t  of the formulas (31, we 
can conveniently introduce the variable 

in place of 5. Then Eqs. (4) and (51, with account of (7) 
and (81, take the form 

The term with Int in Eq. (11) appeared because of ac- 
count of the relation between Fo and no in a nondegen- 
erate semiconductor. The boundary conditions also 
transform in obvious fashion a t  z = 0. 

We note two identities which the solutions of the 
stated problem should satisfy. Integrating Eqs. (4) and 
(11) over the volume of the sample with account of the 
boundary conditions given above, and using the rela- 
tions (5) and (12), we obtain, in the case (Qb), 
a A  i 5+2r 

A + A ~ + - ~  at S d x ~ y ( v [ % l ~ - ~ ( & - ~ ) p [ % ~  

(13) 

A,=S-' j dt dy dz e (z, y, z )  , A%=s-' j dx dy dz 5 ~ - ~ [ 6 ] ,  

Here S is the area  of the surface z =0, 

B,=S-' j dz d y  dz C11(r+21 (z, y, z ) ,  

The functions 5 and f in the double integrals on the left 
sides of (13) and (14) a r e  taken a t  z = O .  

2. STATIC SOLUTION 

Setting Vlh = 0 and f = f,(z), we get from (11) 

- f,,,+ (r+z)XC ,I'-PII"+~I - f ; w * + z ~  ) = (rt2) y~,e-7'. (15) 

The solution of Eq. (15) i s  easily found by using the 
smallness of y. We denote by the solution of the 
equation obtained from (15) by discarding the second 
derivative and we set  5, = 5, + x, where x << I;, . Linear- 
izing Eq. (15) in x, we find 

where 
-IP+~+III(~+~I+~~;(P+'+~)/(*~) U= (1-p)T.  (17) 
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The values p =& a r e  in fact of interest. Here Dz0, 
and for 5, we obtain 

~=3- '"  cos ['I, arc cos (1/z3vzu) 1 (19b) 
-7 .e a t  v s 2. 3"12, p =-$, where v = YI,e . 

Since 5, depends on z only through the argument v, the 
derivatives dQ/dz and d2u/dz2 a re  small in comparison 
with D in view of the smallness of the parameter Y, and 
the solution of Eq. (16) is easily determined by the WKB 
method. Taking into account the boundary conditions a t  
z=O, we find 

Here d z )  = D l f 2  (z), \=  ~[c,], 

At 5, - 1 << 1 (i. e. , 5, << 1) we naturally obtain the result 
of the linear theory. ' 

We see that the function x is actually small in com- 
parison with 5, a t  small y and 8. However, we note 
that (as also in the theory that i s  linear in 5,) the der- 
ivative x' a t  z -0 is comparable with 5:; along with 
this, both 5; and x: are  small in comparison with 5,. 
3. DEVIATION FROM THE STATIC SOLUTION 

We shall seek the standard solution describing the 
f ree  convection regime (u + 0). It should be expected 
that it occurs a t  a light intensity exceeding some criti- 
cal value I,,. In accord with the method of ~orokin '  
(see also the book of Gershuni and zhukhovitskiiQ) we 
set" 

(lo-lcr) l lcr  =eZ (22) 

and 

Here we must use for 5, the formulas of the previous 
section, replacing I, in them by Icr. 

In addition, setting 

51=f1(z) cos kr, cP,-x, (z) cos kt, 
(24) 

ft(z) =f i (o)V~(z) ,  k={k., k,), r=(x, y), 
Ez=fz(z) cos 2kr+fz(z), 'Rr-i?(~)  cos 2kr+xz(z), (25) 

we find, in first-order approximation (omitting terms 
that a r e  small because of the smallness of Y): 

fl(0) 9.' e-rz 

x' = (r+2) 6. (0) 
' 

-V,"+U(z)~,-ay (z) ,  

where the function U(z) is obtained from 0 (17) by the 
replacement of 5, by 5, and by the addition of the com- 
ponent k2, 

At 5,  - 1 << 1, Eq. (27) transforms into the correspon- 
ding equation of linear theory. ls2 However, it is seen 
that the parameter of expansion here i s  not YI, but the 
quantity (2p + r + l)yI,. In the absence of a distortion 
band (qi = 0) this quantity i s  equal to  unity, i. e. , a t  
I,> I,, this expansion is not valid. " Actually, however, 
it is not necessary because, a s  is also the case of (161, 
Eq. (27) is easily solved by the WKB method (see the 
next section). 

The boundary conditions to Eq. (27) follow from the 
relations (9) and (24): 

where vl is given by Eq. (21) with the replacement3' of 
5, by 5,. In the second approximation, we obtain 

1 
u , =  -- (p+r+~)~;'P+Zr+='"r+zJ +P (p+r+2) E;'P+lr+o/'r+Z' 

2 (r+2) 1. 
(32) 

We note that U- k2 = 0 with accuracy to within small 
quantities. 

The boundary conditions a t  z = 0 take the form 

where 

the subscripts of v and of the derivatives of v mean 
that the corresponding quantity is taken a t  5 = 5,. 

4. FIRST APPROXIMATION. CRITICAL LIGHT 
INTENSITY 

Solving the inhomogeneous equation (27) and taking 
into account the boundary conditions (29), we obtain the 
following equation for the determination of k2: 

here 

a(z) = Wh (4, I (z') = Ja (z") dz". 

We first  consider the case of low light intensity, when 
(2p + r + l)yI,, << 1. The integrals in Eq. (36) a r e  then 
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easily calculated, and a t  & << 1 we get 

where 
ko=2(y-v.)l7Icr (37-98) 9 

yIc1=3 ( 1 + ~ , + v , )  I(y-~.)Foq.'p~. (39) 
We retain here the terms of order vl, keeping in mind 
the possible role of the boundary condition (9b'). They 
can be neglected upon use of the condition (9b). 

Equations (38) and (39) have meaning a t  Y > Fs and 

In essence they represent nothing else than Eqs. (39) 
and (40) of Ref. 2 (in different notation). The only dif- 
ference is that here we do not use the effective value of 
v: that enters in these equations, expressing the result 
in terms of the initial function ~ ( 5 ) .  As is seen, it i s  
this which manifests itself a s  the limitation on the rate 
of energy loss at the surface. 

In accord with the estimates in Ref. 2, the inequality 
(40) imposes a rather stringent limitation on the quan- 
tity q;. For  this reason, it is natural to consider also 
the case of higher light intensity, YI ,  a 1. We can make 
use here of the fact that 5, is a slowly changing function 
of z and calculate approximately the integral in (36), 
setting = c ( 0 )  and 5: = - 7 2 ~ , c ,  where c =d&/d(? l , ) .  

Then, with accuracy to within small quantities, Eq. 
(36) reduces to the form (41) 

The quantities 5, and ti in Eqs. (42)-(44) a r e  taken a t  
x = 0 and (as is also vl) a t  I ,  = I,, . 

Equation (43) has meaning only if the right side of i t  
is positive. It is easy to  demonstrate that a t  ~ I c r  -1 (as 
also a t  YI,, << 1) this condition is satisfied s o  long a s  
7 > F, (the case YI,, >> 1 under conditions of small su- 
percriticality is apparently of little interest). 

At yIc, << 1, Eqs. (41)-(44) transform into (37)-(39). 
In the general case, however, the quantity YI,, enters 
into the right side of (43) in rather complicated fashion. 
Therefore, the equality b = b,, is more simply regarded 
a s  the definition of the critical field intensity q:, ,  a s  a 
function of yIc, : 

3'lazcr ~ : e r  

As also in the case of low light intensity, what is 
found uniquely a r e  the individual quantities I,, and 
(ccI but rather their ratio. In order words, either of 
these two quantities can be varied, selecting the other 
in accord with (45). However, the freedom of variation 

is not unlimited. Thus, a t  > 0, the presence of bend- 
ing of the bands turns out to be mandatory: a s  q:-0, 
Eq. (45) i s  either not satisfied or  requires that I,, be- 
come infinite. 

5. SECOND APPROXIMATION. STABILITY OF A 
TEMPERATURE SUPERLATTICE 

Solving the second-approximation equation with the 
boundary conditions (33) and (341, we verify that the 
functions 72 and li.2 a r e  determined here with accuracy 
to  within a multiplicative constant. The role of the 
latter, a s  in the first  approximation, can be played by 
the quantityf2(0); i t  can be found only by considering 
the next approximation. 

On the other hand, the function f2 is determined com- 
pletely: the boundary conditions (33) and (34) yield 

1-r 
f 2  ( 0 )  = - 

4 (r+2) 58-'(o)f,'(0) =pfl'(O) 

(the quantity p is defined by this equation), and 

Here, with accuracy to within small quantities, 

By q : , ,  we mean the critical value of (45), and 5', 
=b(O). The quantities v, and 8y in the first  and third 
t e rms  a r e  left because, a s  we shall see, a t  yI,, z 1 
the quantity 5 turns out to be much less than unity. 

The quantity R can have any sign. Obviously, the 
stationary formulation of the problem that we have 
chosen, under the conditions of small supercriticality, 
is valid only a t  R > 0; the state described by the func- 
tions 61, is stable here in the small. At R < 0, the 
considered stationary state i s  not realized and the su- 
perlattice turns out to be unstable-the superheating 
increases with time (we can establish this by using, 
for example, the identity (14) ). The problem is, to 
what does this instability lead? This will be considered 
below in Sec. 6. 

We first  consider the case of low light intensity, 
yI,, << 1. Then, in accord with Eqs. (17)-(191, (47) and 
(49), we have 

and the condition R > 0 reduces to 
~z<q.'cr<~t;  

In the nondegenerate system expF,, >> 1, but, since the 
electron concentration under conditions of interest to 
us must still be not too small, Fo cannot exceed sev- 
era l  units. On the other hand, according to (39), d C ,  
>> 1. Thus, R > 0 and the system is stable only if v(5) 
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increases improbably rapidly with the heating of the 
electron gas: a t  v, << 1, the inequality u:'~ > 1 should be 
satisfied. Apparently this possibility is not realized. 

At y I , , ~  1, the cases of acoustic (p  =-i) and piezoel- 
ectric ( p  = scattering of the energy should be con- 
sidered separately. According to (19b), a t  p =-+ and 
YI, z 2, with accuracy to  within -10- 15%, we have 
x* ( y ~ , ) ' ~  and, consequently, c ( 0 )  = (yIc, )'I3 at Y = 3/2 
(impurity scattering of the momentum) and 5,(0) =yIL, 
a t  r=-4 (acoustic scattering of the momentum. Under 
the given conditions, (45) yields 

The third and fourth terms on the right side of (48) turn 
out to be small in comparison with the second, and the 
condition R > O  reduces to the form 

The condition (52b) is unrealistic. However, i t  must 
be remarked that in the materials of interest to us  
(carrier concentration of the order of 1 0 ~ ~ - 1 0 ~ ~ c r n ' ~  
and a t  not too high temperatures, see  the estimates in 
Refs. 1 and 2) the impurity scattering of the momentum 
changes to acoustic only a t  very intense heating of the 
electron gas. The corresponding asymptotic form is 
investigated in the next section. 

On the other hand, the inequality (52a) is not impos- 
sible. Thus, a t  Y = lom2, vz = lo-' and Fo = 4. 5, i t  is 
satisfied a t  rIC, = lo .  According to  (51a), the corres- 
ponding value of = 17 or, in ordinary units, 

At To = 75 K and = 10'cm-', this corresponds to  a 
value of V = 0.022 volts. 

The value of YI,, given above is still rather large: in 
dimensional units, a t  a photon absorption cross  section 
equal to  10'l4cm2 and T o =  lo-'' sec, we obtain I,, -800 
w/cm2. By decreasing ~ I c r  a t  the same voltage on the 
sample we cannot satisfy the critical condition (51a) 
(i. e . ,  the free convection does not arise); but if we 
increase the voltage correspondingly, then not only 
the one-dimensional distribution of the electron tem- 
perature becomes unstable, but also the three-dimen- 
sional one (with the superlattice). 

We now turn to the case p = $ and r= 3/2 (piezoelec- 
t r ic  scattering of the energy and impurity scattering of 
the momentum). It can be realized a t  not too intense 

heating of the electron gas; the solution can be investi- 
gated numerically. The condition R > 0 here reduces to 
the form 

TABLE I. Dimensionless values of the critical light intensity, 
of the critical stress on the irradiated surface, and of the mm- 
ber rn in the case p = i ,  r=3 

m 
va>. y"~,+3 ln x-')" ( 5 2 ~ )  

The quantity m is shown in the table. We see  that a t  
y - lom2 acceptable values of v, and pi,, a r e  obtained 
beginning with yIc, = 1.5 and a t  Y = lom1-beginning with 
vIC, =O. 7. 

1 

6. CHANGE IN  THE SCATTERING MECHANISM. 
ASYMPTOTIC CASE OF INTENSE SUPER HEATING 

a (F& ln r:) I m , I  

At R < 0 there a r e  two possibilities. Fi rs t ,  there 
could exist, in principle, a strange attractor in the 
phase space of the considered dynamical system. " 
Then turbulent motion of the electron liquid would de- 
velop. Second, the superheating (with the framework of 
the formulation of the problem given above) could in- 
crease "without limit. " Clarification of the question a s  
to which Gf these possibilities is actually realized is 
connected with a number of mathematical difficulties. 
However, we note that overcoming them can be less  
necessary than i t  would seem, because upon increase of 
the superheating a new factor comes into play-the in- 
terchange of the mechanisms of energy and momentum 
scattering. The conditions of this interchange a r e  easy 
to find by using the expressions for the energy and 
momentum relaxation times. " 12s13 

n:.(r*urs) I m 

I I I I 

As before, we limit ourselves to a simple parabolic 
model of the bands. Here the impurity scattering of the 
momentum changes to  deformation acoustical scatter- 
ing s o  long a s  

Here Z is the absolute value of the charge of the im- 
purity center in units of e; M and Vo a r e  the mass and 
volume of the elementary cell, s is the sound velocity, 
N,  is the impurity concentration, WB and aB a r e  the 
Bohr energy and the Bohr radius in the crystal, m is 
the effective mass of the carrier,  El is strain-potential 
constant, and E is the permittivity of the material. In 
addition, the piezoelectric (acoustical) mechanism of 
energy scattering changes to  deformation acoustics a t  

where P is the piezoelectric modulus (for simplicity, 
the case is considered in which only one component of 
the corresponding tensor is significant). 
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For an estimate, we set  W, = 6.4 x 10'' eV, a;' = 4 
x loi5 cm-', MS' = 1 eV, To = 3.5x 10" eV, E =  16.8, 
vi1'=6. 5x10'' cm, E1=20 eV, P = I o ' ~  cal/cm2 and 
rn = 1 0 ' ~ m ~  (mo is the mass of a free electron), and we 
obtain the following result from Eqs. (53) and (54): 1 
+ 5 2 0.8 (IO-'N, [ ~ m - ~ ] ) " ~  and 1 + 5 2 1.25. It is seen 
that a s  applied to the energy scattering mechanism, the 
expression "sufficiently great superheating" actually 
means 5 k 0.25. The theory developed above still has 
meaning here. On the other hand, for the interchange 
of the momentum scattering mechanism under condi- 
tions of interest ot us  (N, = l0'~-10'~ crn-'1, values of 
5 = 10-20 a r e  required. Here the study of asymptoti- 
cally great superheating, when 5 >> 1, has significance. 
Neglecting unity in the expressions (3) in comparison 
with 5, and sett ingp=r=-8, we get, in place of ( l l ) ,  

At yl,, s 1, we can write on the right side of (551, in 
place of YI, the difference y(I,- I,, 1. 

With accuracy to  a factor of 3/2 in the second term, 
and on the right side, Eq. (55) is the same a s  the equa- 
tion (15) linearized in 5. It has a solution that depends 
only on z and is completely analogous with the solution 
for 5, a t  small superheating (Eqs. (17) of Ref. 1): 

Here C is a constant determined from the boundary 
condition a t  z = 0. The latter obviously follows directly 
from the relation (9b) and, generally speaking, i s  a 
transcendental equation, It is simplified in two limit- 
ing cases of almost impenetrable and completely pene- 
trable surfaces. The f i rs t  of these corresponds to a 
very small (at any superheating) value of v(<<Y), while 
the second corresponds to a practically constant value 
of v5-'l2. In both cases, the quantity YI, drops out of 
the boundary condition and, consequently, C does not 
depend on yI,. Here [(z) -(I, - I,, )=I2. 

It is easy to establish the fact that the solution (56) is 
stable in the small, so  long a s  v,((,) >0. The investi- 
gation by methods of ordinary branching theory also 
shows that the solutions which depend not only on z but 
also on x and y, and correspond to nonvanishing velo- 
city u do not exist in the present case. " 

The distribution (56) completes to  a certain degree 
the process of heating up of the electrons in the con- 
sidered case, arising either a s  a result of development 
of an instability or  at a sufficiently great supercriti- 
cality. It remains in force until scattering processes 
with participation of optical phonons become signifi- 
cant. It can be shown that the corresponding critical 
value i s  5-Pioo/2To, where wo is the frequency of the 
optical phonon. However, we note that, thanks to the 
inhomogeneity of heating, the interchange of the scat- 
tering mechanisms will not take place simultaneously 
over the entire sample, but initially only near the ir- 
radiated surface. Thus the problem ar ises  of the dis- 
tribution of the electron temperature in two- and three- 
dimensional systems (the number of layers obviously 
depends on which scattering mechanisms had predom- 

inated at low superheating). It is easy to show that 
such a system is unstable under the considered condi- 
tions. Actually, according to  (52a)-(52b), the condi- 
tions of stability of the newly formed states turn out-at 
the given value of I,-to be more and more rigorous. 
Thus the regions corresponding to the lower-tempera- 
ture scattering mechanisms will gradually be displaced 
by the higher temperature ones, a s  long a s  the distri- 
bution of 5 does not take the asymptotic form (56). 

APPENDIX 
EFFECTIVE BOUNDARY CONDITIONS TO THE 
EQUATION OF CONTINUITY AND ENERGY 
TRANSPORT 

The condition (9a1) was obtained and used (at 5, << 1) 
in Ref. 2. Here we shall give a somewhat more gen- 
era l  derivation. 

The general expression for the drift velocity, which 
is valid also in the space-charge region, has the form 

where D is the diffusion coefficient. Here the potential 
q can be represented in the form of the sum of two 
components, q = q1+ q2, the f i rs t  of which is connected 
with the change in carr ier  concentration in the space- 
charge layer, while the second i s  due to inhomogeneity 
of the temperature of the electrons. It is obvious that 
cpl changes considerably over the distance ro (the fast  
component), while q z  changes over the length q1 (the 
slow component). In the body of the paper, the quantity 
cpz has been designated simply a s  q; i t  is the only one 
that enters in the definition (8). Thus, 

(A. 2) 

At z = 0, we have u. = 0, i. e., 

(A. 3) 

because of (2), the quantity aq/az remains practically 
the same a t  z =yo a s  a t  z = O  while the right side of 
(A. 3) goes to zero. Then 

Under static conditions, this is the identity 0 = 0. 
With the appearance of convection, both sides of Eq. 
(A. 4) become different from zero (the right side, basi- 
cally because of the dependence of the ratio D / p  on the 
electron temperature); here 

Thus, Eq. (A. 4) can conveniently be written in the form 

aa, 
7 G  1 ,-: [(:) t-c,+e-(+)t-c, 1 1 (:)z-c. (A.5) 

In the absence of Fermi  degeneracy the condition 
(9a1) then follows. 

In general expression for the energy flux density is 
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Transforming here to the nondimensional variable 
given in the body of the paper, and using the equality 
nZno, we obtain the condition (Qb'). 

"This method has been used in a number of researches 
(see, for example, Ref. 10). 

2 ) ~ u s ,  although the ideological content of Ref. 1 and the 
statement of the problem given there a r e  not subject to doubt, 
the result expressed by Eqs. (43) and (44) of this paper appar- 
ently does not have a r.egion of applicability. 

3'We note that the quantity vi could in principle turn out to be 
negative. As is easily shown, under certain conditions this 
circumstance can itself cause the instability of the static 
distribution of the electron temperature in the heated electron 
gas. In what follows, we shall nevertheless assume v i  > 0. 

4)Th1s result should not produce surprise, because (55) is 
normally nothing other than the equation of transport of ener- 
gy under conditions in which an external voltage is lacking and 
the kinetic coefficients do not depend on the temperature of 
the electrons. - 

'v. L. Bonch-Bruevich, Zh. Eksp. Teor. Fiz. 67, 2204 (1974) 
[SOV. Phys. JETP 40, 1093 (1974)l. 

'v. L. Bonch-Bruevich, Zh. Eksp. Teor. Fiz. 71, 1583 (1976) 

[Sov. Phys. JETP 44, 829 (1976)l. 
3 ~ .  L. Bonch-Bruevich, Vestnik, Moscow Univ. Physics and 

Astronomy No. 2 110 (1978). 
4 ~ .  N. Temchin, Izvestiya, VUZov, Fizika No. 7, 41  (1978). 
5 ~ .  N. Temchin, Izvestiya, VUZov, Fizika No. 8, 12 (1978). 
%. L. Bonch-Bruevich, Zh. Eksp. Teor. Fiz. 74, 156 (1978) 

[SOV. Phys. JETP 47, 79 (1978)l. 
'F. G. Bass and Yu. G. Gurevich, Goryachie Qlektrony i 

sil'nye 6lektro-magnitnye volny v plazme poluprovodnikov i 
gazovogo razryada (Hot Electrons and Strong Electromagnetic 
Waves in the Plasma of Semiconductors and Gas Discharge) 
Nauka, Moscow, 1975. Ch. 1. 
'v. S. Sorokin, Fiz. Metall. Metal. 18, 197 (1954). 
'G .  Z . Gershuni and E. M. ~hukhovitski:, Konvetktivnaya 
ustoichivost'neszhimaemo: zhidkosti (Convective Stability of 
an Incompressible Fluid) Nauka, Moscow, 1972. 

'OF. G. Bass and Yu. G. Gurevich, Zh. Eksp. Teor. Fiz. 55, 
1096 (1968) [SOV. Phys. JETP 28, 572 (196911. 

'ID. Ruelle and F. Takens , Comm. Math. Phys. 20,167 (1971). 
"E. M. Conwell, High Field Transport in Semiconductors, 

Academic, 1967 (Russian translation, Mi r ,  Moscow, 1970, 
Ch. 3). 

L. Bonch-Bruevich, and S. G. Kalashnikov, Fizika 
poluprovodnikov (Physics of Semiconductors) Nauka, Moscow, 
1977, Ch. 14. 

Translated by R. T. Beyer 

Polarization of recombination radiation of multiparticle 
exciton-impurity complexes in silicon under uniaxial 
deformation 
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The spectral distribution and the polarization of recombination radiation of free excitons and of 
multiparticle exciton-impurity complexes were investigated in silicon subjected to uniaxial compression 
and tension in the directions [Ill]  and [OOl]. The agreement of the experimental and calculated degrees 
of polarization of all the exciton-emission bands was attained by choosing the values of two parameters 
that characterize the contributions of the different intermediate states in radiative recombination with 
participation of phonons. The degree of polarization of different emission lines of multiparticle 
exciton-impurity complexes is calculated on the basis of the choice of the symmetry of the initial and 
final electronic states in accordance with the shell model of the complexes and in accordance with the 
data on the polarization of the exciton radiation. A quantitative comparison of the results of this 
calculation with the experimental values of the degree of polarization of the phonon and no-phonon 
radiation components of complexes bound on phosphorus and boron atoms in silicon show that the shell 
model describes correctly the main properties of multiparticle exciton complexes. 

PACS numbers: 78.60. - b, 71.35. + z, 62.20.Fe 

1. INTRODUCTION 

The substantial progress made recently in the investi- 
gation of multiparticle exc iton-impurity complexes 
(MEIC)' are due to a considerable degree to the use of 
the "shell" model.zs3 According to this model, the elec- 
trons and holes f i l l  in succession the shells of the com- 
plexes in accordance with the Pauli principle. The cells 
a re  made up in this case of single-particle states and 
have the degeneracy multiplicity and the symmetry of a 
simple donor for electrons and of a simple acceptor for 

holes. The validity of this assumption has already been 
confirmed by the observation of new relatively weak 
lines in the emission spectra of complexes bound on 
donors of group V in silicon (the P series and some 
other lines4-'), a s  well a s  by the character of the split- 
ting of the emission lines of the complexes in uniaxially 
deformed ~ i l i c o n ~ - ~  and in strong magnetic fields. 

The polarization of the recombination radiation makes 
it possible to assess directly the symmetry of the initial 
and final electronic states in radiative decay of the 

878 Sov. Phys. JETP 49(5), May 1979 0038-5646/79/050878-07$02.40 O 1979 American Institute of Physics 878 


