
mula (9'1, the experiment indicates that in the excita- 
tion of the &ll, states the following approximate selec- 
tion rules hold fairly well: 4N = 0 for the 84 state 
and AN=* 1 for the &n', state. A critical discussion of 
this experiment and further development and refine- 
ment of the ideas in the present study a re  contained in 
Refs. 14. 
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We consider the selfconsistent problem of passage of resonant pump and third-harmonic pulses through 
a gas consisting of four-level atoms (molecules). An exact solution of the problem is obtained, with 
account taken of all the terms of the expansion of the nonlinear polarization in powers of the field 
intensities. It is shown that the wave propagation equation coincides in form with the canonical Hamilton 
equations, so that the mathematical formalism of classical mechanics can be used. The dependence of the 
conversion efficiency and of the intensity-transfer period on the pump emission parameters is 
investigated. The case of small detunings from resonance, in which deviations from the ordinary theory 
are observed, is considered. 

PACS numbers: 51.70. + f, 42.65.Cq 

1. INTRODUCTION 

In the theoretical analysis of third-harmonic (TH) gen- 
eration the nonlinear polarization of the medium is us- 
ually expanded in powers of the field intensities, and 
only the terms of lowest order, which contribute to this 
process, a r e  retained (see e.g., Refs, 1 and 2). This 
approach, however, is no longer correct in the presence 
of resonances, when all the t e rms  of the expansion must 
be retained.3 The ensuing mathematical difficulties a r e  
in part unsurmountable and make it necessary nonethe- 
l e s s  either to include a small number of expansion 
terms3 o r  to assume that the resonance condition is 
satisfied for only one of the transition; otherwise, other 
approximations must be used. In this paper we develop 
a procedure for solving this problem exactly, by taking 
the effects of coherent saturation into account. 

2. POLARIZATION OF A FOUR-LEVEL SYSTEM 

ized pulses with ca r r i e r  frequencies o and 3o. The 
pulse durations a r e  assumed to be small compared with 
all the relaxation times of the system. The pulses will 
be assumed to be adiabatic, to propagate in the same 
directions, and to be described by the classical intensi- 
ty vectors 

E,-El ( x ) e ,  exp{io (zlc-t))+c.c., 

E,=E, (x) e, exp (3io (xlc-t) ) +c.c. 

The frequency w is assumed close to the system transi- 
tion frequencies. In the resonance approximation4 we 
seek the solution of the SchrCidinger equation in the form 
of the following superposition of unperturbed wave func- 
tions i),: 

The energy is reckoned from the ground state. Substi- 
tuting (1) in the SchrCidinger equation we obtain a system 

Consider the behavior of a four-level system with of equations for the amplitudes a,(x) ,  which we shall 
nondegenerate levels in the field of two linearly polar- write in matrix form: 
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where E,  = wni - (n - 1)w a r e  the detunings from reso- 
nance, and d,, a r e  the dipole-moment matrix elements 
and can be regarded a s  real. The quasienergy A is de- 
termined from the condition that the solutions of the 
system (2) not be trivial: 

ti4h(A-er) (A-es) (A-e&) - I Ei I zti2[dlr' (h-es) (h-8') 
+d,J'h (A-e4) +dsr2A(A-e,) I - I Et I'A2dirZ(A-er) (A-€3) 

+ IE, 14dil'ds,L+ IEi 1 lEs l2dl~'drlE 
-digda,d,,d,, (E,SEJ'+E,"Es) =O. 

(3 

If the interaction is turned on adiabatically, the unper- 
turbed states of the system go over into the correspond- 
ing quasienergy states, so that the roots of Eq. (3) must 
be numbered in accord with the condition A, - &, a s  
E l - 0  andE,-0. 

The time-dependent polarization of the system, which 
corresponds to the transitions a, - @,, leads to the ap- 
pearance of a coherent (m=n) TH emission and to an in- 
coherent (m+n) emission of frequencies close to this 
harmonic. In this paper we shall take into account only 
coherent TH emission whose direction coincides with the 
pump-pulse direction. We assume that initially the sys- 
tem was in the ground state. Then, after turning on the 
interaction, the state of the system is described by a 
quasienergy wave function el. The polarization of the 
system in the state @, is of the form 

where the amplitudes a'," a r e  solutions of the system 
(2) with A = A,, Obviously, the direct substitution of the 
quantities a'," would turn expression (4) into an utterly 
unmanagable form. The polarization (4) can however be 
reduced to the form given in Ref. 5, which does not call 
for finding the explicit form of the amplitudes a(," and 
which is convenient for further investigation. 

We use the fact that the matrix equation (2) is of the 
same form as the stationary Schrtidinger equation. We 
regard the quantities El ,  E:, E,, E j a s  parameters on 
which the Hamiltonian depends. Then the polarization 
(4) can be expressed in t e rms  of the derivatives of the 
Hamiltonian H with respect to the parameters, and in 
terms of the column matrix A,, with elements a',": 

x exp{.. ($ - t ) ]  + c.c. 

Using the known relation for  the diagonal matrix ele- 
ment of the derivative of the Hamiltonian with respect 
to a parameter,' we obtain 

3. WAVE-PROPAGATION EQUATIONS 

We consider the self-consistent problem of the pass- 
age of pump and TH waves through a gas consisting of 
identical four-level atoms (molecules) that a r e  uniform- 

ly distributed with density N. Assume that prior to 
turning-on the interaction ( t  -a) all the atoms were in 
the ground state. Then the polarization of each of the 
atoms in the field of the pump wave and of the TH wave 
is described by expression (5). Substituting (5) in the 
one-dimensional wave equation and neglecting the sec- 
ond derivatives, we obtain the following system of equa- 
tions for the slow field-intensity amplitudes: 

dE, 2nhoN ah, dE, 2nhoN ah, 
= - i -  --.=-i-- 

dx c aE,' ' dx c dEa" (6) 

The usual approach to the considered problem would 
correspond to expansion of the quasienergy in powers 
of the quantities E l  and E,. Substituting the first  term 
of the expansion of A,, obtained from (3), into Eqs. (6) 
we get the known formulas for  the resonant refractive 
indices at the frequencies w and 30: 

2nNdlzZ 2nNdlrZ 
n,=l + - , n,=l+-. 

he, he' 

Retention of the next-order t e rms  of the expansion 
would lead to the known equations1 that do not take into 
account the effects of coherent saturation. 

Since we a r e  able now to represent the polarization in 
the form (5), we can solve the propagation equations 
(7) exactly. We transform (7) into their  complex con- 
jugates: substituting 

we have 
d l ,  - 2nfioN dh, d q ,  2nhoN ah, __-_ -=- _ 
d~ c d m '  05 c a l ,  ' 
d l ,  6nhoN ah, aq,  6nhoN ah, 
-=-- 
dx 

I -=---. 
c aq, dx c at ,  

It can be readily noted that Eqs, (8) a r e  of the same 
form a s  the canonical Hamilton equations for classical 
motion with two degrees of freedom, if the quantities 
I,, I, and cp,, q3/3 a r e  regarded a s  the corresponding 
generalized coordinates and momenta. The role of the 
time is satisfied by the coordinate x ,  and the Hamilton- 
ian coincides, apart from a constant factor, with the 
quasienergy : H = 2lri7wA1/c. We shall investigate Eqs. 
(8) by using the methods and terminology of classical 
mechanics. 

It is seen from (3) that the quasienergy does not de- 
pend on x explicitly. It is therefore an integral of the 
motion, i.e., dA,/dx = 0. The second integral of motion 
can be obtained by recognizing that the generalized mo- 
menta enter in Eq. (3) only in the form of the linear 
combination 3(cp, -cp3/3). We carry  out a canonical 
transformation, going over from the two pairs of the 
canonically conjugate variables I ,, cp, and I,, q,/3 to  . 

new pairs I ,cp and I,, 8, where I = Z , + I ,  and 8=q3/3=cp 
1' 

In t e rms  of the new variable Eq. (3) becomes 

hah(h-ep) (h-e,) (A-el) - (I-I , ) f i1[d ,2(h-eJ (h-e,) 
+d,,'h (A-e,) +d,,X(A-el) ] -I,ti'd,,2(A-e,) (A-e,) 

+ (I-Is)  Zd,ztdsr2+Zs (I-I , )  d,,'dzSa 

- 2 d , z d , , d , , d , l ( ~ - ~ , ) " ~ ~  cos 38=0. (9) 

Since cp, does not enter in (9) explicitly, we have 
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Consequently I (x) is a constant, meaning conservation 
of the summary intensity of waves in a lossless dielec- 
tric. The values of the integrals of the motion a r e  de- 
termined from the boundary conditions. Assume that 
the atoms occupy the half-space x > 0. The TH inten- 
sity at the entrance will be assumed equal to zero, i.e., 
I,(O) = 0, and we introduce the symbol I(0) =I,. Then 
one integral of the motion is I (x) =I,, and the other (the 
quasienergy A,) is determined from Eq. (9) with x = 0: 

fi6h(h-E,) (&el) ( I - E , )  -loA2[dilt(A-e,) (A-eL) 

+d,LX (h-e,) +dz3X(h-er) I +Io'd,t'd~.z=O. 
(10) 

Recall that A, is that root of Eq. (10) which vanishes 
together with I,. Thus, since I, is an integral of the 
motion and I, is bounded, the problem reduces to an 
investigation of a one-dimensional finite motion des- 
cribed by the Hamilton equations 

We consider now the f i rs t  equation of motion (11). We 
obtain the quantity a ~ / a  0 from Eq. (9). Recognizing that 
A, satisfies Eq. (10) we obtain at s(%)=I,(x)/I, 

ds (~ ( (1 - s ) ' - (a s+p) ' s ) )"  
- =*GIo - 
dz 6+ys (12) 

where 
12nNod,zdz,~,,d,,  G= - 

ch3eZeter ' 
(13) 

(14) 

1 

X[ (d,: - d,,') (A, - E , )  + dZ,'(h, - eL)  + d,,'(h, - ez )  

+ €,dl,' - ~ , d , , " ] -  2d,,'d,," + d,,%z,t (15) 

I0 y=- 1% (d,,' + d2tz + d,," - dl,") - d,,'~, - d,,'e, 
(16) 

~ ' E ~ E S E L  

+ ( E ,  + E ~ ) ~ I L ' ] .  (17) 

The choice of the sign in (12) depends on the sign of 
sin 38 at x = 0. The allowed region of motion l ies be- 
tween s = 0 and s = s,-the smallest (or only) root of the 
cubic equation 

The quantity s,, which characterizes the ratio of the 
intensity of TH at the maximum to the intensity of the 
pump, will be called the conversion efficiency (CE). 

It should be noted that nonzero boundary conditions 
for the TH intensity lead only to appearance in the radi- 
cand of (12) of a polynomial of fourth degree with a non- 
zero free term. The procedure of obtaining and invest- 
igating the TH propagation equation, on the other hand, 
remains unchanged. 

4. DEPENDENCE OF THE CE ON THE PUMP 
EMISSION PARAMETERS 

The investigation of the dependence of the CE on the 
parameters of the four-level system itself as well as on 

the parameters of the pump emission reduces to an an- 
alysis of the roots of Eq. (18) at the corresponding val- 
ues of a! and p. We consider two limiting case. 

1. At low pump intensities I,- 0 we have from (19) 
A,= -d:210/ti2~2. Substituting A, in (15) and using formu- 
las (7) and (13), we get 

B=Ak/GIo+p, 

where 

As p - a  we readily find from (18) that s,= @-2. 

Then, recognizing that s,= I,,/I,, where I,, is the 
maximum value of I,(x), we get 

At kGI,<<Ak we obtain the known dependence I,,-1:. 
However, even in the case of low pump intensities we 
have I ,,- I, if Ak = 0. The condition Ak = 0 is an equa- 
tion linear in the frequency w; consequently, the indica- 
ted situation takes place at only one value of w. 

2. We consider now another limiting case  when all the 
detunings from resonance a r e  small (but remain none- 
theless larger  than the widths of the atomic levels and 
the spectral widths of the pulses), s o  that the conditions 
A2&2, <<I , D2 a r e  satisfied, where D~ = dt2 + d& + G4. In 
the zeroth approximation in Eq. (10) all the detunings 
must be se t  equal to zero. It is then necessary to 
take into account the fact that although small detunings 
do not enter in (10) in the presently considered approxi- 
mation, their signs a r e  important when i t  comes to 
numbering the roots of this equation. We make use of 
the fact that the quasienergies of the considered system 
can not intersect an any value of Consequently if 
the relation c, < E, < E, < E, holds for the resonance de- 
tunings that a r e  the values of the quasienergies at I, = 0, 
then at I , #  0 a similar relation A, < Aj < A, < A, should 
hold. Thus, the quantity A, takes the form 

Putting c, = c, = c, = 0 in (15) and using (21) and (22), we 
get 

1 
{ ( D L  dd,,') [Dz - ( D L  - 4dl,'ds,')rh] (24) - 2dlzdztdSldl, 

- 4d,2zd,,' + 2d,,'d2,') if e,s, < 0 .  

Thus, in  the considered limiting case  the quantity p, 
and with it the root s, of Eq. (18) a r e  constant, and 
consequently I ,, - I,. However, the proportionality 
coefficient depends essentially on the signs of the de- 
tunings. This means, in other words, that asymmetry 
in the CE must be observed relative to the frequencies 
of the atomic transitions. A similar picture takes.place 
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also in the case of systems for which not all detunings 
become small simultaneously. Thus, for  example, for  
a system in which the detunings &, and &, a r e  large when 
the pump frequencies approach the two-photon reso- 
nance, the EP will be different on opposite sides of the 
frequency w,,. 

5. DEPENDENCE OF  THE TH INTENSITY ON THE 
COORDINATE 

The sought dependence can be obtained by integrating 
Eq. (12). For simplicity we consider here a particular 
case when I pI >> 1 and I p l 2  ( @ I ,  1 y 1,161. AS shown above, 
in this case s(x) changes from s = 0 to s, - p-2, SO that 
Eq. (12) can be written in the form 

This equation is easily integrated, and when account is 
taken of the boundary condition s(0) = 0 we get 

We consider two limiting cases at which I 1, so 
that formula (26) is valid. 

1. At sufficiently low pump intensities o r  at a large 
mismatch of the phase velocities, we need retain in 
(19) only the first  term. It follows from (16) that in the 
approximation in question b = - 1. Then, substituting (19) 
in (26), we arrive at the well known relation 

2. We consider the case of small detunings from res-  
onance for systems in which dl, - d,, -d, >> dl,. We can 
then neglect in (23) and (24) the t e rms  that contain q,, 
and introduce for the parameter p a single expression 

The upper sign in (28) must be taken in the case  when 
all the detunings a r e  of the same sign, and the lower 
sign in all other cases. Putting &, = c, = &, = 0 in (13) and 
(16) and substituting these expressions together with 
(28) in (26), we get 

16di,ldz?d,r2dirz 
s ( x )  = 

(D' - 4d,,ld3,') [Dz  * (D' - 4di,lda,2)'b]Z 
3noN 

[Dl* ( ~ & - 4 d , i d , . ' )  ' L ]  " x ]  . 

It follows from this expression that the CE does not de- 
pend on the pump intensity, in accord with the result 
obtained above. At the same time, in the case  of de- 
tunings of equal sign the CE is smaller than in all other 
cases. Thus, for example, for system with "conden- 
sing" levels (a,,> w,,> w,,) the resonance detunings will 
have like signs at w < w,, and w > w,,. Consequently, 
for this type of systems the TH generation is most ef- 
fective when the pump frequency approaches the fre- 
quency of one-photon absorption wZl from below, and 
decreases sharply at frequencies exceeding w,,, as 
was in fact observed in experimentss on SF, molecules. 

For the coordinate period over which intensity is 
transferred from the pump pulse into the TH and 

back, we obtain from (28) 

We see  that in contrast to the case of low intensities, 
when the period does not depend on I,, in this case the 
period increases with increasing I ,  and also depends 
on the ratio of the signs of the detunings. 

For  lengths x small compared with the period, we 
get from (29) 

It follows from this expression that at x<<X the TH in- 
tensity does not depend on the pump intensity. It was 
shown earlierg that the probability per unit time of TH 
emission on an isolated atom is likewise independent of 
the pump intensity in the limit of small detunings. As 
expected, the results  agree at x <<X, when the accumu- 
lation effects can be neglected. 

6. PERIOD OF INTENSITY TRANSFER 

It follows from the equation of motion (12) that a 
periodic (in the coordinate) transfer of the pump pulse 
intensity to the TH and back takes place, It is easily 
found from (18) that s l <  1; consequently only part of 
the pump intensity is transferred to the THO For  the 
value of the period we get from (12) 

2 " 
x=*-[ 64-7s ds. 

GIoo [ s { ( I - ~ ) ~ - ( a s + j 3 ) ~ s ) ] " ~  

It was shown above that the period does not depend on 
the pump intensity at low values of the latter. In the 
case  of small detunings, however, putting &, = &, = &, = 0 
in (13), (15-(17), and (32), we get 

cRh, S 2tt%h,'-I,Dz+Io (Dz-dibZ) s 
X= ds. 

3 ~ N o d , ~ d ~ , d , , d , ,  [ ~ { ( l - s ) ~ -  ( a ~ f j 3 ) ~ s )  1'" 
(33) 

Since p =  const in the considered case, and from (21) 
and (22) we have A, - I:", we obtain X - I A'~ .  Thus, 
the form of the dependence of the period on the inten- 
sity is preserved also a t  arbitrary ratios of the values 
of the matrix elements. 

We examine now the dependence of the TH intensity 
at a given point x, on the gas pressure. It follows from 
the equation of motion (12) that I, (x,) is a periodic 
function of the atom density N. Obviously, the quantity 
I,(x,) will be maximal if the condition x,= (1/2+ k)X 
X (k = 0,1,2.. . ). is satisfied. From (32) we have 
X - N-'. At low densities the pressure is proportional 
to the density; consequently the maximum of the TH 
intensity at a given point will be observed a t  pressures 
p =p0(2k + 1). At low pump intensities Po does not de- 
pend on I,, and in the case  of small  resonance detun- 
ings, as follows from (33), we have Po- I A ~ ~ ~  

7. CONCLUSION 

The exact equations we obtained allow us to take 
into account the coherent-saturation effects that a r e  
significant under resonance conditions. In view of the 
large number of parameters in the problem, we have 
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confined ourselves to application of the general results 
to two particular cases. In the case of low pump inten- 
sities we have shown that all the results agree with the 
known ones. On the other hand, to illustrate the appli- 
cation of the general methods to  cases that a r e  not des- 
cribed by the usual theory, we have chosen only that 
class of systems for which all the resonance detunings 
become small simultaneously. It must also be empha- 
sized that our procedure is applicable to the analysis 
of experiments at arbitrary ratios of the resonance de- 
tunings, matrix elements, and other parameters. 

In conclusion, the authors thank M. L. Ter-Mikaelyan 
for a discussion of the results. 
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A theoretical investigation is reported of photon echo formed in a gas medium, by two linearly polarized 
exciting pulses of small area. The intensity and polarization are obtained for the echo on an optically 
allowed transition with arbitrary angular momenta of the levels and with arbitrary ratio of the durations 
of the exciting pulses and the time of the reversible Doppler relaxation. Analytic expressions are obtained 
for the fonn of the echo pulse for both a narrow and a broad spectral line. The results of the theoretical 
investigations point to the need of performing new experiments on photon echo in gases for the purpose 
of identifying the resonant transitions. 

PACS numbers: 42.65.Gv, 51.70. + f 

With the advent of lasers,  various methods of investi- 
gating the characteristics of matter, based on nonlinear 
interaction between the matter and electromagnetic ra- 
diation, have found extensive applications. One such 
method is the photon echo, which uses the nonlinear 
response of a medium after the passage of two exciting 
pulses. The photon-echo method yields information on 
the relaxation characteristics of matter, and permits 
identification of the corresponding resonant transition. 
To reduce the experimental results by this method, the- 
oretical relations a re  necessary between the experi- 
mentally recorded quantities, such a s  the echo intensity 
and i ts  polarization, on the one hand, and the charac- 
teristics of the medium on the other. 

The first  photon-echo experiment was performed in 
ruby? Subsequently it came into extensive use also for 
the investigation of gases. In a gas medium, the reson- 
ant levels on which the echo is formed a re  usually de- 
generate. This adds to the complexity of the theoretical 
analysis of the photon echo in gases. We note that up to 
now there were no calculations for the intensity and po- 
larization of the echo a t  arbitrary values of the angular 

momenta of the resonant-transition levels. 

An important role in the theoretical investigation of 
the photon echo phenomenon is played by the relation be- 
tween the durations T, and T, of the exciting light pulses 
and the time of the reversible Doppler relaxation To. As 
a rulez4 the calculations a re  performed within the limits 
of a narrow spectral line ( l /To<< l /T i ;  i =  1, 2). At the 
same time, most experiments on photon echo in gases 
have been performed either for small values of the 
angular momenta of the  level^,'^ o r  with the degeneracy 
neglected ~ o m p l e t e l y ? ~  It follows from the results of 
Refs. 13 and 14 that on a broad spectral  line the echo 
pulse has a complicated shape, and i ts  polarization on 
the transitions j - j( j > 1)  and j = j i l( j > 1/2) depends on 
the intensities of the exciting pulses and on the ratio of 
To and T i .  On a narrow spectral line, as follows from 
Refs. 2-4, the echo polarization on these same tran- 
sitions also depends on the intensities of the exciting 
pulses. 

It is established in the present paper that in the limit 
of small areas  of the exciting pulses the calculation of 
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